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Preface

Countless programmers have learned C++ from previous editions of C++
Primer. During that time, C++ has matured greatly: Its focus, and that of its pro-
gramming community, has widened from looking mostly at machine efficiency to
devoting more attention to programmer efficiency.

In 2011, the C++ standards committee issued a major revision to the ISO C++
standard. This revised standard is latest step in C++’s evolution and continues the
emphasis on programmer efficiency. The primary goals of the new standard are to

• Make the language more uniform and easier to teach and to learn

• Make the standard libraries easier, safer, and more efficient to use

• Make it easier to write efficient abstractions and libraries

In this edition, we have completely revised the C++ Primer to use the latest
standard. You can get an idea of how extensively the new standard has affected
C++ by reviewing the New Features Table of Contents, which lists the sections that
cover new material and appears on page xxi.

Some additions in the new standard, such as auto for type inference, are perva-
sive. These facilities make the code in this edition easier to read and to understand.
Programs (and programmers!) can ignore type details, which makes it easier to
concentrate on what the program is intended to do. Other new features, such
as smart pointers and move-enabled containers, let us write more sophisticated
classes without having to contend with the intricacies of resource management.
As a result, we can start to teach how to write your own classes much earlier in the
book than we did in the Fourth Edition. We—and you—no longer have to worry
about many of the details that stood in our way under the previous standard.

We’ve marked those parts of the text that cover features defined by the new
standard, with a marginal icon. We hope that readers who are already familiar
with the core of C++ will find these alerts useful in deciding where to focus their
attention. We also expect that these icons will help explain error messages from
compilers that might not yet support every new feature. Although nearly all of
the examples in this book have been compiled under the current release of the
GNU compiler, we realize some readers will not yet have access to completely
updated compilers. Even though numerous capabilities have been added by the
latest standard, the core language remains unchanged and forms the bulk of the
material that we cover. Readers can use these icons to note which capabilities may
not yet be available in their compiler.

xxiii
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xxiv Preface

Why Read This Book?

Modern C++ can be thought of as comprising three parts:

• The low-level language, much of which is inherited from C

• More advanced language features that allow us to define our own types and
to organize large-scale programs and systems

• The standard library, which uses these advanced features to provide useful
data structures and algorithms

Most texts present C++ in the order in which it evolved. They teach the C subset
of C++ first, and present the more abstract features of C++ as advanced topics at
the end of the book. There are two problems with this approach: Readers can get
bogged down in the details inherent in low-level programming and give up in
frustration. Those who do press on learn bad habits that they must unlearn later.

We take the opposite approach: Right from the start, we use the features that let
programmers ignore the details inherent in low-level programming. For example,
we introduce and use the library string and vector types along with the built-
in arithmetic and array types. Programs that use these library types are easier to
write, easier to understand, and much less error-prone.

Too often, the library is taught as an “advanced” topic. Instead of using the
library, many books use low-level programming techniques based on pointers to
character arrays and dynamic memory management. Getting programs that use
these low-level techniques to work correctly is much harder than writing the cor-
responding C++ code using the library.

Throughout C++ Primer, we emphasize good style: We want to help you, the
reader, develop good habits immediately and avoid needing to unlearn bad habits
as you gain more sophisticated knowledge. We highlight particularly tricky mat-
ters and warn about common misconceptions and pitfalls.

We also explain the rationale behind the rules—explaining the why not just the
what. We believe that by understanding why things work as they do, readers can
more quickly cement their grasp of the language.

Although you do not need to know C in order to understand this book, we
assume you know enough about programming to write, compile, and run a pro-
gram in at least one modern block-structured language. In particular, we assume
you have used variables, written and called functions, and used a compiler.

Changes to the Fifth Edition

New to this edition of C++ Primer are icons in the margins to help guide the reader.
C++ is a large language that offers capabilities tailored to particular kinds of pro-
gramming problems. Some of these capabilities are of great import for large project
teams but might not be necessary for smaller efforts. As a result, not every pro-
grammer needs to know every detail of every feature. We’ve added these marginal
icons to help the reader know which parts can be learned later and which topics
are more essential.

We’ve marked sections that cover the fundamentals of the language with an
image of a person studying a book. The topics covered in sections marked this

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Preface xxv

way form the core part of the language. Everyone should read and understand
these sections.

We’ve also indicated those sections that cover advanced or special-purpose top-
ics. These sections can be skipped or skimmed on a first reading. We’ve marked
such sections with a stack of books to indicate that you can safely put down the
book at that point. It is probably a good idea to skim such sections so you know
that the capability exists. However, there is no reason to spend time studying these
topics until you actually need to use the feature in your own programs.

To help readers guide their attention further, we’ve noted particularly tricky
concepts with a magnifying-glass icon. We hope that readers will take the time
to understand thoroughly the material presented in the sections so marked. In at
least some of these sections, the import of the topic may not be readily apparent;
but we think you’ll find that these sections cover topics that turn out to be essential
to understanding the language.

Another aid to reading this book, is our extensive use of cross-references. We
hope these references will make it easier for readers to dip into the middle of the
book, yet easily jump back to the earlier material on which later examples rely.

What remains unchanged is that C++ Primer is a clear, correct, and thorough
tutorial guide to C++. We teach the language by presenting a series of increasingly
sophisticated examples, which explain language features and show how to make
the best use of C++.

Structure of This Book

We start by covering the basics of the language and the library together in Parts I
and II. These parts cover enough material to let you, the reader, write significant
programs. Most C++ programmers need to know essentially everything covered
in this portion of the book.

In addition to teaching the basics of C++, the material in Parts I and II serves an-
other important purpose: By using the abstract facilities defined by the library, you
will become more comfortable with using high-level programming techniques.
The library facilities are themselves abstract data types that are usually written
in C++. The library can be defined using the same class-construction features that
are available to any C++ programmer. Our experience in teaching C++ is that by
first using well-designed abstract types, readers find it easier to understand how
to build their own types.

Only after a thorough grounding in using the library—and writing the kinds of
abstract programs that the library allows—do we move on to those C++ features
that will enable you to write your own abstractions. Parts III and IV focus on
writing abstractions in the form of classes. Part III covers the fundamentals; Part IV
covers more specialized facilities.

In Part III, we cover issues of copy control, along with other techniques to make
classes that are as easy to use as the built-in types. Classes are the foundation for
object-oriented and generic programming, which we also cover in Part III. C++
Primer concludes with Part IV, which covers features that are of most use in struc-
turing large, complicated systems. We also summarize the library algorithms in
Appendix A.
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xxvi Preface

Aids to the Reader

Each chapter concludes with a summary, followed by a glossary of defined terms,
which together recap the chapter’s most important points. Readers should use
these sections as a personal checklist: If you do not understand a term, restudy the
corresponding part of the chapter.

We’ve also incorporated a number of other learning aids in the body of the text:

• Important terms are indicated in bold; important terms that we assume are
already familiar to the reader are indicated in bold italics. Each term appears
in the chapter’s Defined Terms section.

• Throughout the book, we highlight parts of the text to call attention to im-
portant aspects of the language, warn about common pitfalls, suggest good
programming practices, and provide general usage tips.

• To make it easier to follow the relationships among features and concepts,
we provide extensive forward and backward cross-references.

• We provide sidebar discussions on important concepts and for topics that
new C++ programmers often find most difficult.

• Learning any programming language requires writing programs. To that
end, the Primer provides extensive examples throughout the text. Source
code for the extended examples is available on the Web at the following URL:

http://www.informit.com/title/0321714113

A Note about Compilers

As of this writing (July, 2012), compiler vendors are hard at work updating their
compilers to match the latest ISO standard. The compiler we use most frequently
is the GNU compiler, version 4.7.0. There are only a few features used in this
book that this compiler does not yet implement: inheriting constructors, reference
qualifiers for member functions, and the regular-expression library.
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This chapter introduces most of the basic elements of C++: types,
variables, expressions, statements, and functions. Along the way,
we’ll briefly explain how to compile and execute a program.

After having read this chapter and worked through the exercises,
you should be able to write, compile, and execute simple programs.
Later chapters will assume that you can use the features introduced
in this chapter, and will explain these features in more detail.

1
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2 Getting Started

The way to learn a new programming language is to write programs. In this
chapter, we’ll write a program to solve a simple problem for a bookstore.

Our store keeps a file of transactions, each of which records the sale of one or
more copies of a single book. Each transaction contains three data elements:

0-201-70353-X 4 24.99

The first element is an ISBN (International Standard Book Number, a unique book
identifier), the second is the number of copies sold, and the last is the price at which
each of these copies was sold. From time to time, the bookstore owner reads this
file and for each book computes the number of copies sold, the total revenue from
that book, and the average sales price.

To be able to write this program, we need to cover a few basic C++ features. In
addition, we’ll need to know how to compile and execute a program.

Although we haven’t yet designed our program, it’s easy to see that it must

• Define variables

• Do input and output

• Use a data structure to hold the data

• Test whether two records have the same ISBN

• Contain a loop that will process every record in the transaction file

We’ll start by reviewing how to solve these subproblems in C++ and then write
our bookstore program.

1.1 Writing a Simple C++ Program
Every C++ program contains one or more functions, one of which must be named
main. The operating system runs a C++ program by calling main. Here is a simple
version of main that does nothing but return a value to the operating system:

int main()
{

return 0;
}

A function definition has four elements: a return type, a function name, a (pos-
sibly empty) parameter list enclosed in parentheses, and a function body. Al-
though main is special in some ways, we define main the same way we define
any other function.

In this example, main has an empty list of parameters (shown by the () with
nothing inside). § 6.2.5 (p. 218) will discuss the other parameter types that we can
define for main.

The main function is required to have a return type of int, which is a type that
represents integers. The int type is a built-in type, which means that it is one of
the types the language defines.

The final part of a function definition, the function body, is a block of state-
ments starting with an open curly brace and ending with a close curly:
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{
return 0;

}

The only statement in this block is a return, which is a statement that terminates a
function. As is the case here, a return can also send a value back to the function’s
caller. When a return statement includes a value, the value returned must have a
type that is compatible with the return type of the function. In this case, the return
type of main is int and the return value is 0, which is an int.

Note the semicolon at the end of the return statement. Semicolons
mark the end of most statements in C++. They are easy to overlook but,
when forgotten, can lead to mysterious compiler error messages.

On most systems, the value returned from main is a status indicator. A return
value of 0 indicates success. A nonzero return has a meaning that is defined by the
system. Ordinarily a nonzero return indicates what kind of error occurred.

KEY CONCEPT: TYPES

Types are one of the most fundamental concepts in programming and a concept that
we will come back to over and over in this Primer. A type defines both the contents of
a data element and the operations that are possible on those data.

The data our programs manipulate are stored in variables and every variable has a
type. When the type of a variable named v is T, we often say that “v has type T” or,
interchangeably, that “v is a T.”

1.1.1 Compiling and Executing Our Program
Having written the program, we need to compile it. How you compile a program
depends on your operating system and compiler. For details on how your particu-
lar compiler works, check the reference manual or ask a knowledgeable colleague.

Many PC-based compilers are run from an integrated development environ-
ment (IDE) that bundles the compiler with build and analysis tools. These envi-
ronments can be a great asset in developing large programs but require a fair bit
of time to learn how to use effectively. Learning how to use such environments is
well beyond the scope of this book.

Most compilers, including those that come with an IDE, provide a command-
line interface. Unless you already know the IDE, you may find it easier to start
with the command-line interface. Doing so will let you concentrate on learning
C++ first. Moreover, once you understand the language, the IDE is likely to be
easier to learn.

Program Source File Naming Convention

Whether you use a command-line interface or an IDE, most compilers expect pro-
gram source code to be stored in one or more files. Program files are normally
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referred to as a source files. On most systems, the name of a source file ends with
a suffix, which is a period followed by one or more characters. The suffix tells
the system that the file is a C++ program. Different compilers use different suffix
conventions; the most common include .cc, .cxx, .cpp, .cp, and .C.

Running the Compiler from the Command Line

If we are using a command-line interface, we will typically compile a program in
a console window (such as a shell window on a UNIX system or a Command
Prompt window on Windows). Assuming that our main program is in a file
named prog1.cc, we might compile it by using a command such as

$ CC prog1.cc

where CC names the compiler and $ is the system prompt. The compiler gen-
erates an executable file. On a Windows system, that executable file is named
prog1.exe. UNIX compilers tend to put their executables in files named a.out.

To run an executable on Windows, we supply the executable file name and can
omit the .exe file extension:

$ prog1

On some systems you must specify the file’s location explicitly, even if the file is in
the current directory or folder. In such cases, we would write

$ .\prog1

The “.” followed by a backslash indicates that the file is in the current directory.
To run an executable on UNIX, we use the full file name, including the file

extension:

$ a.out

If we need to specify the file’s location, we’d use a “.” followed by a forward slash
to indicate that our executable is in the current directory:

$ ./a.out

The value returned from main is accessed in a system-dependent manner. On
both UNIX and Windows systems, after executing the program, you must issue an
appropriate echo command.

On UNIX systems, we obtain the status by writing

$ echo $?

To see the status on a Windows system, we write

$ echo %ERRORLEVEL%
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RUNNING THE GNU OR MICROSOFT COMPILERS

The command used to run the C++ compiler varies across compilers and operating
systems. The most common compilers are the GNU compiler and the Microsoft Visual
Studio compilers. By default, the command to run the GNU compiler is g++:

$ g++ -o prog1 prog1.cc

Here $ is the system prompt. The -o prog1 is an argument to the compiler and names
the file in which to put the executable file. This command generates an executable file
named prog1 or prog1.exe, depending on the operating system. On UNIX, exe-
cutable files have no suffix; on Windows, the suffix is .exe. If the -o prog1 is omit-
ted, the compiler generates an executable named a.out on UNIX systems and a.exe
on Windows. (Note: Depending on the release of the GNU compiler you are using,
you may need to specify -std=c++0x to turn on C++ 11 support.)

The command to run the Microsoft Visual Studio 2010 compiler is cl:

C:\Users\me\Programs> cl /EHsc prog1.cpp

Here C:\Users\me\Programs> is the system prompt and \Users\me\Programs is
the name of the current directory (aka the current folder). The cl command invokes
the compiler, and /EHsc is the compiler option that turns on standard exception han-
dling. The Microsoft compiler automatically generates an executable with a name that
corresponds to the first source file name. The executable has the suffix .exe and the
same name as the source file name. In this case, the executable is named prog1.exe.

Compilers usually include options to generate warnings about problematic con-
structs. It is usually a good idea to use these options. Our preference is to use -Wall
with the GNU compiler, and to use /W4 with the Microsoft compilers.

For further information consult your compiler’s user’s guide.

EXE R C I S E S SE C TI ON 1.1.1

Exercise 1.1: Review the documentation for your compiler and determine what file
naming convention it uses. Compile and run the main program from page 2.

Exercise 1.2: Change the program to return -1. A return value of -1 is often treated
as an indicator that the program failed. Recompile and rerun your program to see how
your system treats a failure indicator from main.

1.2 A First Look at Input/Output
The C++ language does not define any statements to do input or output (IO). In-
stead, C++ includes an extensive standard library that provides IO (and many
other facilities). For many purposes, including the examples in this book, one
needs to know only a few basic concepts and operations from the IO library.

Most of the examples in this book use the iostream library. Fundamental to
the iostream library are two types named istream and ostream, which repre-
sent input and output streams, respectively. A stream is a sequence of characters
read from or written to an IO device. The term stream is intended to suggest that
the characters are generated, or consumed, sequentially over time.
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Standard Input and Output Objects

The library defines four IO objects. To handle input, we use an object of type
istream named cin (pronounced see-in). This object is also referred to as the
standard input. For output, we use an ostream object named cout (pronounced
see-out). This object is also known as the standard output. The library also defines
two other ostream objects, named cerr and clog (pronounced see-err and see-
log, respectively). We typically use cerr, referred to as the standard error, for
warning and error messages and clog for general information about the execution
of the program.

Ordinarily, the system associates each of these objects with the window in
which the program is executed. So, when we read from cin, data are read from
the window in which the program is executing, and when we write to cout, cerr,
or clog, the output is written to the same window.

A Program That Uses the IO Library

In our bookstore problem, we’ll have several records that we’ll want to combine
into a single total. As a simpler, related problem, let’s look first at how we might
add two numbers. Using the IO library, we can extend our main program to
prompt the user to give us two numbers and then print their sum:

#include <iostream>
int main()
{

std::cout << "Enter two numbers:" << std::endl;
int v1 = 0, v2 = 0;
std::cin >> v1 >> v2;
std::cout << "The sum of " << v1 << " and " << v2

<< " is " << v1 + v2 << std::endl;
return 0;

}

This program starts by printing

Enter two numbers:

on the user’s screen and then waits for input from the user. If the user enters

3 7

followed by a newline, then the program produces the following output:

The sum of 3 and 7 is 10

The first line of our program

#include <iostream>

tells the compiler that we want to use the iostream library. The name inside
angle brackets (iostream in this case) refers to a header. Every program that
uses a library facility must include its associated header. The #include directive
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must be written on a single line—the name of the header and the #include must
appear on the same line. In general, #include directives must appear outside
any function. Typically, we put all the #include directives for a program at the
beginning of the source file.

Writing to a Stream

The first statement in the body of main executes an expression. In C++ an expres-
sion yields a result and is composed of one or more operands and (usually) an
operator. The expressions in this statement use the output operator (the « opera-
tor) to print a message on the standard output:

std::cout << "Enter two numbers:" << std::endl;

The << operator takes two operands: The left-hand operand must be an ostream
object; the right-hand operand is a value to print. The operator writes the given
value on the given ostream. The result of the output operator is its left-hand
operand. That is, the result is the ostream on which we wrote the given value.

Our output statement uses the << operator twice. Because the operator returns
its left-hand operand, the result of the first operator becomes the left-hand oper-
and of the second. As a result, we can chain together output requests. Thus, our
expression is equivalent to

(std::cout << "Enter two numbers:") << std::endl;

Each operator in the chain has the same object as its left-hand operand, in this case
std::cout. Alternatively, we can generate the same output using two statements:

std::cout << "Enter two numbers:";
std::cout << std::endl;

The first output operator prints a message to the user. That message is a string
literal, which is a sequence of characters enclosed in double quotation marks. The
text between the quotation marks is printed to the standard output.

The second operator prints endl, which is a special value called a manipula-
tor. Writing endl has the effect of ending the current line and flushing the buffer
associated with that device. Flushing the buffer ensures that all the output the
program has generated so far is actually written to the output stream, rather than
sitting in memory waiting to be written.

Programmers often add print statements during debugging. Such state-
ments should always flush the stream. Otherwise, if the program crashes,
output may be left in the buffer, leading to incorrect inferences about
where the program crashed.

Using Names from the Standard Library

Careful readers will note that this program uses std::cout and std::endl
rather than just cout and endl. The prefix std:: indicates that the names cout
and endl are defined inside the namespace named std. Namespaces allow us to
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avoid inadvertent collisions between the names we define and uses of those same
names inside a library. All the names defined by the standard library are in the
std namespace.

One side effect of the library’s use of a namespace is that when we use a name
from the library, we must say explicitly that we want to use the name from the std
namespace. Writing std::cout uses the scope operator (the :: operator) to say
that we want to use the name cout that is defined in the namespace std. § 3.1
(p. 82) will show a simpler way to access names from the library.

Reading from a Stream

Having asked the user for input, we next want to read that input. We start by
defining two variables named v1 and v2 to hold the input:

int v1 = 0, v2 = 0;

We define these variables as type int, which is a built-in type representing inte-
gers. We also initialize them to 0. When we initialize a variable, we give it the
indicated value at the same time as the variable is created.

The next statement

std::cin >> v1 >> v2;

reads the input. The input operator (the » operator) behaves analogously to the
output operator. It takes an istream as its left-hand operand and an object as its
right-hand operand. It reads data from the given istream and stores what was
read in the given object. Like the output operator, the input operator returns its
left-hand operand as its result. Hence, this expression is equivalent to

(std::cin >> v1) >> v2;

Because the operator returns its left-hand operand, we can combine a sequence of
input requests into a single statement. Our input operation reads two values from
std::cin, storing the first in v1 and the second in v2. In other words, our input
operation executes as

std::cin >> v1;
std::cin >> v2;

Completing the Program

What remains is to print our result:

std::cout << "The sum of " << v1 << " and " << v2
<< " is " << v1 + v2 << std::endl;

This statement, although longer than the one that prompted the user for input, is
conceptually similar. It prints each of its operands on the standard output. What
is interesting in this example is that the operands are not all the same kinds of
values. Some operands are string literals, such as "The sum of ". Others are
int values, such as v1, v2, and the result of evaluating the arithmetic expression
v1 + v2. The library defines versions of the input and output operators that handle
operands of each of these differing types.
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EXE R C I S E S SE C TI ON 1.2

Exercise 1.3: Write a program to print Hello, World on the standard output.

Exercise 1.4: Our program used the addition operator, +, to add two numbers. Write
a program that uses the multiplication operator, *, to print the product instead.

Exercise 1.5: We wrote the output in one large statement. Rewrite the program to use
a separate statement to print each operand.

Exercise 1.6: Explain whether the following program fragment is legal.

std::cout << "The sum of " << v1;
<< " and " << v2;
<< " is " << v1 + v2 << std::endl;

If the program is legal, what does it do? If the program is not legal, why not? How
would you fix it?

1.3 A Word about Comments
Before our programs get much more complicated, we should see how C++ handles
comments. Comments help the human readers of our programs. They are typically
used to summarize an algorithm, identify the purpose of a variable, or clarify an
otherwise obscure segment of code. The compiler ignores comments, so they have
no effect on the program’s behavior or performance.

Although the compiler ignores comments, readers of our code do not. Pro-
grammers tend to believe comments even when other parts of the system docu-
mentation are out of date. An incorrect comment is worse than no comment at all
because it may mislead the reader. When you change your code, be sure to update
the comments, too!

Kinds of Comments in C++

There are two kinds of comments in C++: single-line and paired. A single-line
comment starts with a double slash (//) and ends with a newline. Everything to
the right of the slashes on the current line is ignored by the compiler. A comment
of this kind can contain any text, including additional double slashes.

The other kind of comment uses two delimiters (/* and */) that are inherited
from C. Such comments begin with a /* and end with the next */. These com-
ments can include anything that is not a */, including newlines. The compiler
treats everything that falls between the /* and */ as part of the comment.

A comment pair can be placed anywhere a tab, space, or newline is permitted.
Comment pairs can span multiple lines of a program but are not required to do so.
When a comment pair does span multiple lines, it is often a good idea to indicate
visually that the inner lines are part of a multiline comment. Our style is to begin
each line in the comment with an asterisk, thus indicating that the entire range is
part of a multiline comment.

Programs typically contain a mixture of both comment forms. Comment pairs
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generally are used for multiline explanations, whereas double-slash comments
tend to be used for half-line and single-line remarks:

#include <iostream>

/*
* Simple main function:
* Read two numbers and write their sum
*/

int main()
{

// prompt user to enter two numbers
std::cout << "Enter two numbers:" << std::endl;
int v1 = 0, v2 = 0; // variables to hold the input we read
std::cin >> v1 >> v2; // read input
std::cout << "The sum of " << v1 << " and " << v2

<< " is " << v1 + v2 << std::endl;
return 0;

}

In this book, we italicize comments to make them stand out from the
normal program text. In actual programs, whether comment text is dis-
tinguished from the text used for program code depends on the sophis-
tication of the programming environment you are using.

Comment Pairs Do Not Nest

A comment that begins with /* ends with the next */. As a result, one comment
pair cannot appear inside another. The compiler error messages that result from
this kind of mistake can be mysterious and confusing. As an example, compile the
following program on your system:

/*
* comment pairs /* */ cannot nest.
* ‘‘cannot nest’’ is considered source code,
* as is the rest of the program
*/

int main()
{

return 0;
}

We often need to comment out a block of code during debugging. Because that
code might contain nested comment pairs, the best way to comment a block of
code is to insert single-line comments at the beginning of each line in the section
we want to ignore:

// /*
// * everything inside a single-line comment is ignored
// * including nested comment pairs
// */
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EXE R C I S E S SE C TI ON 1.3

Exercise 1.7: Compile a program that has incorrectly nested comments.

Exercise 1.8: Indicate which, if any, of the following output statements are legal:

std::cout << "/*";
std::cout << "*/";
std::cout << /* "*/" */;
std::cout << /* "*/" /* "/*" */;

After you’ve predicted what will happen, test your answers by compiling a program
with each of these statements. Correct any errors you encounter.

1.4 Flow of Control
Statements normally execute sequentially: The first statement in a block is exe-
cuted first, followed by the second, and so on. Of course, few programs—including
the one to solve our bookstore problem—can be written using only sequential ex-
ecution. Instead, programming languages provide various flow-of-control state-
ments that allow for more complicated execution paths.

1.4.1 The while Statement
A while statement repeatedly executes a section of code so long as a given con-
dition is true. We can use a while to write a program to sum the numbers from 1
through 10 inclusive as follows:

#include <iostream>

int main()
{

int sum = 0, val = 1;
// keep executing the while as long as val is less than or equal to 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}
std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;

return 0;
}

When we compile and execute this program, it prints

Sum of 1 to 10 inclusive is 55

As before, we start by including the iostream header and defining main. In-
side main we define two int variables: sum, which will hold our summation, and
val, which will represent each of the values from 1 through 10. We give sum an
initial value of 0 and start val off with the value 1.
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The new part of this program is the while statement. A while has the form

while (condition)
statement

A while executes by (alternately) testing the condition and executing the associ-
ated statement until the condition is false. A condition is an expression that yields a
result that is either true or false. So long as condition is true, statement is executed.
After executing statement, condition is tested again. If condition is again true, then
statement is again executed. The while continues, alternately testing the condition
and executing statement until the condition is false.

In this program, the while statement is

// keep executing the while as long as val is less than or equal to 10
while (val <= 10) {

sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

The condition uses the less-than-or-equal operator (the <= operator) to compare
the current value of val and 10. As long as val is less than or equal to 10, the
condition is true. If the condition is true, we execute the body of the while. In this
case, that body is a block with two statements:

{
sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

A block is a sequence of zero or more statements enclosed by curly braces. A
block is a statement and may be used wherever a statement is required. The first
statement in this block uses the compound assignment operator (the += operator).
This operator adds its right-hand operand to its left-hand operand and stores the
result in the left-hand operand. It has essentially the same effect as writing an
addition and an assignment:

sum = sum + val; // assign sum + val to sum

Thus, the first statement in the block adds the value of val to the current value of
sum and stores the result back into sum.

The next statement

++val; // add 1 to val

uses the prefix increment operator (the ++ operator). The increment operator adds
1 to its operand. Writing ++val is the same as writing val = val + 1.

After executing the while body, the loop evaluates the condition again. If the
(now incremented) value of val is still less than or equal to 10, then the body of the
while is executed again. The loop continues, testing the condition and executing
the body, until val is no longer less than or equal to 10.

Once val is greater than 10, the program falls out of the while loop and contin-
ues execution with the statement following the while. In this case, that statement
prints our output, followed by the return, which completes our main program.
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EXE R C I S E S SE C TI ON 1.4.1

Exercise 1.9: Write a program that uses a while to sum the numbers from 50 to 100.

Exercise 1.10: In addition to the ++ operator that adds 1 to its operand, there is a
decrement operator (--) that subtracts 1. Use the decrement operator to write a while
that prints the numbers from ten down to zero.

Exercise 1.11: Write a program that prompts the user for two integers. Print each
number in the range specified by those two integers.

1.4.2 The for Statement
In our while loop we used the variable val to control how many times we exe-
cuted the loop. We tested the value of val in the condition and incremented val
in the while body.

This pattern—using a variable in a condition and incrementing that variable
in the body—happens so often that the language defines a second statement, the
for statement, that abbreviates code that follows this pattern. We can rewrite this
program using a for loop to sum the numbers from 1 through 10 as follows:

#include <iostream>

int main()
{

int sum = 0;

// sum values from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val
std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;
return 0;

}

As before, we define sum and initialize it to zero. In this version, we define val as
part of the for statement itself:

for (int val = 1; val <= 10; ++val)
sum += val;

Each for statement has two parts: a header and a body. The header controls
how often the body is executed. The header itself consists of three parts: an init-
statement, a condition, and an expression. In this case, the init-statement

int val = 1;

defines anint object named val and gives it an initial value of 1. The variable val
exists only inside the for; it is not possible to use val after this loop terminates.
The init-statement is executed only once, on entry to the for. The condition

val <= 10
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compares the current value in val to 10. The condition is tested each time through
the loop. As long as val is less than or equal to 10, we execute the for body. The
expression is executed after the for body. Here, the expression

++val

uses the prefix increment operator, which adds 1 to the value of val. After execut-
ing the expression, the for retests the condition. If the new value of val is still less
than or equal to 10, then the for loop body is executed again. After executing the
body, val is incremented again. The loop continues until the condition fails.

In this loop, the for body performs the summation

sum += val; // equivalent to sum = sum + val

To recap, the overall execution flow of this for is:

1. Create val and initialize it to 1.

2. Test whether val is less than or equal to 10. If the test succeeds, execute the
for body. If the test fails, exit the loop and continue execution with the first
statement following the for body.

3. Increment val.

4. Repeat the test in step 2, continuing with the remaining steps as long as the
condition is true.

EXE R C I S E S SE C TI ON 1.4.2

Exercise 1.12: What does the following for loop do? What is the final value of sum?

int sum = 0;
for (int i = -100; i <= 100; ++i)

sum += i;

Exercise 1.13: Rewrite the first two exercises from § 1.4.1 (p. 13) using for loops.

Exercise 1.14: Compare and contrast the loops that used a for with those using a
while. Are there advantages or disadvantages to using either form?

Exercise 1.15: Write programs that contain the common errors discussed in the box
on page 16. Familiarize yourself with the messages the compiler generates.

1.4.3 Reading an Unknown Number of Inputs
In the preceding sections, we wrote programs that summed the numbers from 1
through 10. A logical extension of this program would be to ask the user to input
a set of numbers to sum. In this case, we won’t know how many numbers to add.
Instead, we’ll keep reading numbers until there are no more numbers to read:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 1.4 Flow of Control 15

#include <iostream>

int main()
{

int sum = 0, value = 0;

// read until end-of-file, calculating a running total of all values read
while (std::cin >> value)

sum += value; // equivalent to sum = sum + value

std::cout << "Sum is: " << sum << std::endl;
return 0;

}

If we give this program the input

3 4 5 6

then our output will be

Sum is: 18

The first line inside main defines two int variables, named sum and value,
which we initialize to 0. We’ll use value to hold each number as we read it from
the input. We read the data inside the condition of the while:

while (std::cin >> value)

Evaluating the while condition executes the expression

std::cin >> value

That expression reads the next number from the standard input and stores that
number in value. The input operator (§ 1.2, p. 8) returns its left operand, which
in this case is std::cin. This condition, therefore, tests std::cin.

When we use an istream as a condition, the effect is to test the state of the
stream. If the stream is valid—that is, if the stream hasn’t encountered an error—
then the test succeeds. An istream becomes invalid when we hit end-of-file or
encounter an invalid input, such as reading a value that is not an integer. An
istream that is in an invalid state will cause the condition to yield false.

Thus, our while executes until we encounter end-of-file (or an input error).
The while body uses the compound assignment operator to add the current value
to the evolving sum. Once the condition fails, the while ends. We fall through and
execute the next statement, which prints the sum followed by endl.

ENTERING AN END-OF-FILE FROM THE KEYBOARD

When we enter input to a program from the keyboard, different operating systems
use different conventions to allow us to indicate end-of-file. On Windows systems
we enter an end-of-file by typing a control-z—hold down the Ctrl key and press z—
followed by hitting either the Enter or Return key. On UNIX systems, including on
Mac OS X machines, end-of-file is usually control-d.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

16 Getting Started

COMPILATION REVISITED

Part of the compiler’s job is to look for errors in the program text. A compiler cannot
detect whether a program does what its author intends, but it can detect errors in the
form of the program. The following are the most common kinds of errors a compiler
will detect.

Syntax errors: The programmer has made a grammatical error in the C++ language.
The following program illustrates common syntax errors; each comment describes the
error on the following line:

// error: missing ) in parameter list for main
int main ( {

// error: used colon, not a semicolon, after endl
std::cout << "Read each file." << std::endl:

// error: missing quotes around string literal
std::cout << Update master. << std::endl;

// error: second output operator is missing
std::cout << "Write new master." std::endl;

// error: missing ; on return statement
return 0

}

Type errors: Each item of data in C++ has an associated type. The value 10, for example,
has a type of int (or, more colloquially, “is an int”). The word "hello", including
the double quotation marks, is a string literal. One example of a type error is passing
a string literal to a function that expects an int argument.

Declaration errors: Every name used in a C++ program must be declared before it is
used. Failure to declare a name usually results in an error message. The two most
common declaration errors are forgetting to use std:: for a name from the library
and misspelling the name of an identifier:

#include <iostream>

int main()
{

int v1 = 0, v2 = 0;
std::cin >> v >> v2; // error: uses "v" not "v1"

// error: cout not defined; should be std::cout
cout << v1 + v2 << std::endl;
return 0;

}

Error messages usually contain a line number and a brief description of what the
compiler believes we have done wrong. It is a good practice to correct errors in the
sequence they are reported. Often a single error can have a cascading effect and cause
a compiler to report more errors than actually are present. It is also a good idea to
recompile the code after each fix—or after making at most a small number of obvious
fixes. This cycle is known as edit-compile-debug.
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EXE R C I S E S SE C TI ON 1.4.3

Exercise 1.16: Write your own version of a program that prints the sum of a set of
integers read from cin.

1.4.4 The if Statement
Like most languages, C++ provides an if statement that supports conditional exe-
cution. We can use an if to write a program to count how many consecutive times
each distinct value appears in the input:

#include <iostream>

int main()
{

// currVal is the number we’re counting; we’ll read new values into val
int currVal = 0, val = 0;

// read first number and ensure that we have data to process
if (std::cin >> currVal) {

int cnt = 1; // store the count for the current value we’re processing
while (std::cin >> val) { // read the remaining numbers

if (val == currVal) // if the values are the same
++cnt; // add 1 to cnt

else { // otherwise, print the count for the previous value
std::cout << currVal << " occurs "

<< cnt << " times" << std::endl;
currVal = val; // remember the new value
cnt = 1; // reset the counter

}
} // while loop ends here
// remember to print the count for the last value in the file
std::cout << currVal << " occurs "

<< cnt << " times" << std::endl;
} // outermost if statement ends here
return 0;

}

If we give this program the following input:

42 42 42 42 42 55 55 62 100 100 100

then the output should be

42 occurs 5 times
55 occurs 2 times
62 occurs 1 times
100 occurs 3 times

Much of the code in this program should be familiar from our earlier programs.
We start by defining val and currVal: currValwill keep track of which number
we are counting; val will hold each number as we read it from the input. What’s
new are the two if statements. The first if
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if (std::cin >> currVal) {
// . . .

} // outermost if statement ends here

ensures that the input is not empty. Like a while, an if evaluates a condition. The
condition in the first if reads a value into currVal. If the read succeeds, then the
condition is true and we execute the block that starts with the open curly follow-
ing the condition. That block ends with the close curly just before the return
statement.

Once we know there are numbers to count, we define cnt, which will count
how often each distinct number occurs. We use a while loop similar to the one in
the previous section to (repeatedly) read numbers from the standard input.

The body of the while is a block that contains the second if statement:

if (val == currVal) // if the values are the same
++cnt; // add 1 to cnt

else { // otherwise, print the count for the previous value
std::cout << currVal << " occurs "

<< cnt << " times" << std::endl;
currVal = val; // remember the new value
cnt = 1; // reset the counter

}

The condition in this if uses the equality operator (the == operator) to test whether
val is equal to currVal. If so, we execute the statement that immediately fol-
lows the condition. That statement increments cnt, indicating that we have seen
currVal once more.

If the condition is false—that is, if val is not equal to currVal—then we ex-
ecute the statement following the else. This statement is a block consisting of
an output statement and two assignments. The output statement prints the count
for the value we just finished processing. The assignments reset cnt to 1 and
currVal to val, which is the number we just read.

C++ uses = for assignment and == for equality. Both operators can ap-
pear inside a condition. It is a common mistake to write = when you
mean == inside a condition.

EXE R C I S E S SE C TI ON 1.4.4

Exercise 1.17: What happens in the program presented in this section if the input val-
ues are all equal? What if there are no duplicated values?

Exercise 1.18: Compile and run the program from this section giving it only equal
values as input. Run it again giving it values in which no number is repeated.

Exercise 1.19: Revise the program you wrote for the exercises in § 1.4.1 (p. 13) that
printed a range of numbers so that it handles input in which the first number is smaller
than the second.
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KEY CONCEPT: INDENTATION AND FORMATTING OF C++ PROGRAMS

C++ programs are largely free-format, meaning that where we put curly braces, inden-
tation, comments, and newlines usually has no effect on what our programs mean. For
example, the curly brace that denotes the beginning of the body of main could be on
the same line as main; positioned as we have done, at the beginning of the next line;
or placed anywhere else we’d like. The only requirement is that the open curly must
be the first nonblank, noncomment character following main’s parameter list.

Although we are largely free to format programs as we wish, the choices we make
affect the readability of our programs. We could, for example, have written main on a
single long line. Such a definition, although legal, would be hard to read.

Endless debates occur as to the right way to format C or C++ programs. Our be-
lief is that there is no single correct style but that there is value in consistency. Most
programmers indent subsidiary parts of their programs, as we’ve done with the state-
ments inside main and the bodies of our loops. We tend to put the curly braces that
delimit functions on their own lines. We also indent compound IO expressions so
that the operators line up. Other indentation conventions will become clear as our
programs become more sophisticated.

The important thing to keep in mind is that other ways to format programs are
possible. When you choose a formatting style, think about how it affects readability
and comprehension. Once you’ve chosen a style, use it consistently.

1.5 Introducing Classes
The only remaining feature we need to understand before solving our bookstore
problem is how to define a data structure to represent our transaction data. In C++
we define our own data structures by defining a class. A class defines a type along
with a collection of operations that are related to that type. The class mechanism
is one of the most important features in C++. In fact, a primary focus of the design
of C++ is to make it possible to define class types that behave as naturally as the
built-in types.

In this section, we’ll describe a simple class that we can use in writing our
bookstore program. We’ll implement this class in later chapters as we learn more
about types, expressions, statements, and functions.

To use a class we need to know three things:

• What is its name?

• Where is it defined?

• What operations does it support?

For our bookstore problem, we’ll assume that the class is named Sales_item and
that it is already defined in a header named Sales_item.h.

As we’ve seen, to use a library facility, we must include the associated header.
Similarly, we use headers to access classes defined for our own applications. Con-
ventionally, header file names are derived from the name of a class defined in that
header. Header files that we write usually have a suffix of .h, but some program-
mers use .H, .hpp, or .hxx. The standard library headers typically have no suffix
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at all. Compilers usually don’t care about the form of header file names, but IDEs
sometimes do.

1.5.1 The Sales_item Class
The purpose of the Sales_item class is to represent the total revenue, number
of copies sold, and average sales price for a book. How these data are stored or
computed is not our concern. To use a class, we need not care about how it is
implemented. Instead, what we need to know is what operations objects of that
type can perform.

Every class defines a type. The type name is the same as the name of the class.
Hence, our Sales_item class defines a type named Sales_item. As with the
built-in types, we can define a variable of a class type. When we write

Sales_item item;

we are saying that item is an object of type Sales_item. We often contract the
phrase “an object of type Sales_item” to “a Sales_item object” or even more
simply to “a Sales_item.”

In addition to being able to define variables of type Sales_item, we can:

• Call a function named isbn to fetch the ISBN from a Sales_item object.

• Use the input (>>) and output (<<) operators to read and write objects of
type Sales_item.

• Use the assignment operator (=) to assign one Sales_item object to another.

• Use the addition operator (+) to add two Sales_item objects. The two ob-
jects must refer to the same ISBN. The result is a new Sales_item object
whose ISBN is that of its operands and whose number sold and revenue are
the sum of the corresponding values in its operands.

• Use the compound assignment operator (+=) to add one Sales_item object
into another.

KEY CONCEPT: CLASSES DEFINE BEHAVIOR

The important thing to keep in mind when you read these programs is that the author
of the Sales_item class defines all the actions that can be performed by objects of
this class. That is, the Sales_item class defines what happens when a Sales_item
object is created and what happens when the assignment, addition, or the input and
output operators are applied to Sales_items.

In general, the class author determines all the operations that can be used on ob-
jects of the class type. For now, the only operations we know we can perform on
Sales_item objects are the ones listed in this section.
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Reading and Writing Sales_items

Now that we know what operations we can use with Sales_item objects, we can
write programs that use the class. For example, the following program reads data
from the standard input into a Sales_item object and writes that Sales_item
back onto the standard output:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item book;

// read ISBN, number of copies sold, and sales price
std::cin >> book;
// write ISBN, number of copies sold, total revenue, and average price
std::cout << book << std::endl;

return 0;
}

If the input to this program is

0-201-70353-X 4 24.99

then the output will be

0-201-70353-X 4 99.96 24.99

Our input says that we sold four copies of the book at $24.99 each, and the output
indicates that the total sold was four, the total revenue was $99.96, and the average
price per book was $24.99.

This program starts with two #include directives, one of which uses a new
form. Headers from the standard library are enclosed in angle brackets (< >).
Those that are not part of the library are enclosed in double quotes (" ").

Inside main we define an object, named book, that we’ll use to hold the data
that we read from the standard input. The next statement reads into that object,
and the third statement prints it to the standard output followed by printing endl.

Adding Sales_items

A more interesting example adds two Sales_item objects:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2; // read a pair of transactions
std::cout << item1 + item2 << std::endl; // print their sum

return 0;
}
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If we give this program the following input

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

our output is

0-201-78345-X 5 110 22

This program starts by including the Sales_item and iostream headers.
Next we define two Sales_item objects to hold the transactions. We read data
into these objects from the standard input. The output expression does the addition
and prints the result.

It’s worth noting how similar this program looks to the one on page 6: We
read two inputs and write their sum. What makes this similarity noteworthy is
that instead of reading and printing the sum of two integers, we’re reading and
printing the sum of two Sales_item objects. Moreover, the whole idea of “sum”
is different. In the case of ints we are generating a conventional sum—the re-
sult of adding two numeric values. In the case of Sales_item objects we use a
conceptually new meaning for sum—the result of adding the components of two
Sales_item objects.

USING FILE REDIRECTION

It can be tedious to repeatedly type these transactions as input to the programs you
are testing. Most operating systems support file redirection, which lets us associate a
named file with the standard input and the standard output:

$ addItems <infile >outfile

Assuming $ is the system prompt and our addition program has been compiled into
an executable file named addItems.exe (or addItems on UNIX systems), this com-
mand will read transactions from a file named infile and write its output to a file
named outfile in the current directory.

EXE R C I S E S SE C TI ON 1.5.1

Exercise 1.20: http://www.informit.com/title/0321714113 contains a copy
of Sales_item.h in the Chapter 1 code directory. Copy that file to your working
directory. Use it to write a program that reads a set of book sales transactions, writing
each transaction to the standard output.

Exercise 1.21: Write a program that reads two Sales_item objects that have the
same ISBN and produces their sum.

Exercise 1.22: Write a program that reads several transactions for the same ISBN.
Write the sum of all the transactions that were read.
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1.5.2 A First Look at Member Functions
Our program that adds two Sales_items should check whether the objects have
the same ISBN. We’ll do so as follows:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item item1, item2;

std::cin >> item1 >> item2;
// first check that item1 and item2 represent the same book
if (item1.isbn() == item2.isbn()) {

std::cout << item1 + item2 << std::endl;
return 0; // indicate success

} else {
std::cerr << "Data must refer to same ISBN"

<< std::endl;
return -1; // indicate failure

}
}

The difference between this program and the previous version is the if and its
associated else branch. Even without understanding the if condition, we know
what this program does. If the condition succeeds, then we write the same output
as before and return 0, indicating success. If the condition fails, we execute the
block following the else, which prints a message and returns an error indicator.

What Is a Member Function?

The if condition

item1.isbn() == item2.isbn()

calls a member function named isbn. A member function is a function that is
defined as part of a class. Member functions are sometimes referred to as methods.

Ordinarily, we call a member function on behalf of an object. For example, the
first part of the left-hand operand of the equality expression

item1.isbn

uses the dot operator (the “.” operator) to say that we want “the isbn member
of the object named item1.” The dot operator applies only to objects of class type.
The left-hand operand must be an object of class type, and the right-hand operand
must name a member of that type. The result of the dot operator is the member
named by the right-hand operand.

When we use the dot operator to access a member function, we usually do so
to call that function. We call a function using the call operator (the () operator).
The call operator is a pair of parentheses that enclose a (possibly empty) list of
arguments. The isbn member function does not take an argument. Thus,

item1.isbn()
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calls the isbn function that is a member of the object named item1. This function
returns the ISBN stored in item1.

The right-hand operand of the equality operator executes in the same way—it
returns the ISBN stored in item2. If the ISBNs are the same, the condition is true;
otherwise it is false.

EXE R C I S E S SE C TI ON 1.5.2

Exercise 1.23: Write a program that reads several transactions and counts how many
transactions occur for each ISBN.

Exercise 1.24: Test the previous program by giving multiple transactions representing
multiple ISBNs. The records for each ISBN should be grouped together.

1.6 The Bookstore Program
We are now ready to solve our original bookstore problem. We need to read a
file of sales transactions and produce a report that shows, for each book, the total
number of copies sold, the total revenue, and the average sales price. We’ll assume
that all the transactions for each ISBN are grouped together in the input.

Our program will combine the data for each ISBN in a variable named total.
We’ll use a second variable named trans to hold each transaction we read. If
trans and total refer to the same ISBN, we’ll update total. Otherwise we’ll
print total and reset it using the transaction we just read:

#include <iostream>
#include "Sales_item.h"

int main()
{

Sales_item total; // variable to hold data for the next transaction

// read the first transaction and ensure that there are data to process
if (std::cin >> total) {

Sales_item trans; // variable to hold the running sum
// read and process the remaining transactions
while (std::cin >> trans) {

// if we’re still processing the same book
if (total.isbn() == trans.isbn())

total += trans; // update the running total
else {

// print results for the previous book
std::cout << total << std::endl;
total = trans; // total now refers to the next book

}
}
std::cout << total << std::endl; // print the last transaction

} else {
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// no input! warn the user
std::cerr << "No data?!" << std::endl;
return -1; // indicate failure

}

return 0;
}

This program is the most complicated one we’ve seen so far, but it uses only
facilities that we have already seen.

As usual, we begin by including the headers that we use, iostream from the
library and our own Sales_item.h. Inside main we define an object named
total, which we’ll use to sum the data for a given ISBN. We start by reading the
first transaction into total and testing whether the read was successful. If the
read fails, then there are no records and we fall through to the outermost else
branch, which tells the user that there was no input.

Assuming we have successfully read a record, we execute the block following
the outermost if. That block starts by defining the object named trans, which
will hold our transactions as we read them. The while statement will read all the
remaining records. As in our earlier programs, the while condition reads a value
from the standard input. In this case, we read a Sales_item object into trans.
As long as the read succeeds, we execute the body of the while.

The body of the while is a single if statement. The if checks whether the
ISBNs are equal. If so, we use the compound assignment operator to add trans
to total. If the ISBNs are not equal, we print the value stored in total and reset
total by assigning trans to it. After executing the if, we return to the condition
in the while, reading the next transaction, and so on until we run out of records.

When the while terminates, total contains the data for the last ISBN in the
file. We write the data for the last ISBN in the last statement of the block that
concludes the outermost if statement.

EXE R C I S E S SE C TI ON 1.6

Exercise 1.25: Using the Sales_item.h header from the Web site, compile and exe-
cute the bookstore program presented in this section.
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CH A P T E R SU M M A R Y
This chapter introduced enough of C++ to let you compile and execute simple
C++ programs. We saw how to define a main function, which is the function that
the operating system calls to execute our program. We also saw how to define
variables, how to do input and output, and how to write if, for, and while
statements. The chapter closed by introducing the most fundamental facility in
C++: the class. In this chapter, we saw how to create and use objects of a class that
someone else has defined. Later chapters will show how to define our own classes.

DEFINED TERMS

argument Value passed to a function.

assignment Obliterates an object’s current
value and replaces that value by a new one.

block Sequence of zero or more statements
enclosed in curly braces.

buffer A region of storage used to hold
data. IO facilities often store input (or out-
put) in a buffer and read or write the buffer
independently from actions in the program.
Output buffers can be explicitly flushed to
force the buffer to be written. By default,
reading cin flushes cout; cout is also
flushed when the program ends normally.

built-in type Type, such as int, defined by
the language.

cerr ostream object tied to the standard
error, which often writes to the same device
as the standard output. By default, writes to
cerr are not buffered. Usually used for er-
ror messages or other output that is not part
of the normal logic of the program.

character string literal Another term for
string literal.

cin istream object used to read from the
standard input.

class Facility for defining our own data
structures together with associated opera-
tions. The class is one of the most funda-
mental features in C++. Library types, such
as istream and ostream, are classes.

class type A type defined by a class. The
name of the type is the class name.

clog ostream object tied to the standard
error. By default, writes to clog are
buffered. Usually used to report informa-
tion about program execution to a log file.

comments Program text that is ignored by
the compiler. C++ has two kinds of com-
ments: single-line and paired. Single-line
comments start with a //. Everything from
the // to the end of the line is a comment.
Paired comments begin with a /* and in-
clude all text up to the next */.

condition An expression that is evaluated
as true or false. A value of zero is false; any
other value yields true.

cout ostream object used to write to the
standard output. Ordinarily used to write
the output of a program.

curly brace Curly braces delimit blocks.
An open curly ({) starts a block; a close
curly (}) ends one.

data structure A logical grouping of data
and operations on that data.

edit-compile-debug The process of get-
ting a program to execute properly.

end-of-file System-specific marker that in-
dicates that there is no more input in a file.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Defined Terms 27

expression The smallest unit of computa-
tion. An expression consists of one or more
operands and usually one or more opera-
tors. Expressions are evaluated to produce
a result. For example, assuming i and j are
ints, then i + j is an expression and yields
the sum of the two int values.

for statement Iteration statement that pro-
vides iterative execution. Often used to re-
peat a calculation a fixed number of times.

function Named unit of computation.

function body Block that defines the ac-
tions performed by a function.

function name Name by which a function
is known and can be called.

header Mechanism whereby the defini-
tions of a class or other names are made
available to multiple programs. A program
uses a header through a #include direc-
tive.

if statement Conditional execution based
on the value of a specified condition. If the
condition is true, the if body is executed.
If not, the else body is executed if there is
one.

initialize Give an object a value at the same
time that it is created.

iostream Header that provides the library
types for stream-oriented input and output.

istream Library type providing stream-
oriented input.

library type Type, such as istream, de-
fined by the standard library.

main Function called by the operating sys-
tem to execute a C++ program. Each pro-
gram must have one and only one function
named main.

manipulator Object, such as std::endl,
that when read or written “manipulates”
the stream itself.

member function Operation defined by a
class. Member functions ordinarily are
called to operate on a specific object.

method Synonym for member function.

namespace Mechanism for putting names
defined by a library into a single place.
Namespaces help avoid inadvertent name
clashes. The names defined by the C++ li-
brary are in the namespace std.

ostream Library type providing stream-
oriented output.

parameter list Part of the definition of a
function. Possibly empty list that speci-
fies what arguments can be used to call the
function.

return type Type of the value returned by
a function.

source file Term used to describe a file that
contains a C++ program.

standard error Output stream used for er-
ror reporting. Ordinarily, the standard out-
put and the standard error are tied to the
window in which the program is executed.

standard input Input stream usually asso-
ciated with the window in which the pro-
gram executes.

standard library Collection of types and
functions that every C++ compiler must
support. The library provides the types that
support IO. C++ programmers tend to talk
about “the library,” meaning the entire stan-
dard library. They also tend to refer to par-
ticular parts of the library by referring to
a library type, such as the “iostream li-
brary,” meaning the part of the standard li-
brary that defines the IO classes.

standard output Output stream usually
associated with the window in which the
program executes.

statement A part of a program that spec-
ifies an action to take place when the pro-
gram is executed. An expression followed
by a semicolon is a statement; other kinds
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of statements include blocks and if, for,
and while statements, all of which contain
other statements within themselves.

std Name of the namespace used by the
standard library. std::cout indicates that
we’re using the name cout defined in the
std namespace.

string literal Sequence of zero or more
characters enclosed in double quotes
("a string literal").

uninitialized variable Variable that is not
given an initial value. Variables of class type
for which no initial value is specified are ini-
tialized as specified by the class definition.
Variables of built-in type defined inside a
function are uninitialized unless explicitly
initialized. It is an error to try to use the
value of an uninitialized variable. Uninitial-
ized variables are a rich source of bugs.

variable A named object.

while statement Iteration statement that
provides iterative execution so long as a
specified condition is true. The body is exe-
cuted zero or more times, depending on the
truth value of the condition.

() operator Call operator. A pair of paren-
theses “()” following a function name. The
operator causes a function to be invoked.
Arguments to the function may be passed
inside the parentheses.

++ operator Increment operator. Adds 1
to the operand; ++i is equivalent to i = i
+ 1.

+= operator Compound assignment oper-
ator that adds the right-hand operand to
the left and stores the result in the left-hand
operand; a += b is equivalent to a = a + b.

. operator Dot operator. Left-hand oper-
and must be an object of class type and the
right-hand operand must be the name of a
member of that object. The operator yields
the named member of the given object.

:: operator Scope operator. Among other
uses, the scope operator is used to ac-
cess names in a namespace. For example,

std::cout denotes the name cout from
the namespace std.

= operator Assigns the value of the right-
hand operand to the object denoted by the
left-hand operand.

-- operator Decrement operator. Sub-
tracts 1 from the operand; --i is equivalent
to i = i - 1.

<< operator Output operator. Writes the
right-hand operand to the output stream
indicated by the left-hand operand: cout
<< "hi" writes hi to the standard output.
Output operations can be chained together:
cout << "hi" << "bye" writes hibye.

>> operator Input operator. Reads from
the input stream specified by the left-hand
operand into the right-hand operand: cin
>> i reads the next value on the stan-
dard input into i. Input operations can be
chained together: cin >> i >> j reads first
into i and then into j.

#include Directive that makes code in a
header available to a program.

== operator The equality operator. Tests
whether the left-hand operand is equal to
the right-hand operand.

!= operator The inequality operator. Tests
whether the left-hand operand is not equal
to the right-hand operand.

<= operator The less-than-or-equal opera-
tor. Tests whether the left-hand operand is
less than or equal to the right-hand oper-
and.

< operator The less-than operator. Tests
whether the left-hand operand is less than
the right-hand operand.

>= operator Greater-than-or-equal opera-
tor. Tests whether the left-hand operand is
greater than or equal to the right-hand oper-
and.

> operator Greater-than operator. Tests
whether the left-hand operand is greater
than the right-hand operand.
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Every widely used programming language provides a common set
of features, which differ in detail from one language to another. Un-
derstanding the details of how a language provides these features is
the first step toward understanding the language. Among the most
fundamental of these common features are

• Built-in types such as integers, characters, and so forth

• Variables, which let us give names to the objects we use

• Expressions and statements to manipulate values of these types

• Control structures, such as if or while, that allow us to condi-
tionally or repeatedly execute a set of actions

• Functions that let us define callable units of computation

Most programming languages supplement these basic features in
two ways: They let programmers extend the language by defining
their own types, and they provide library routines that define useful
functions and types not otherwise built into the language.
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In C++, as in most programming languages, the type of an object
determines what operations can be performed on it. Whether a par-
ticular expression is legal depends on the type of the objects in that
expression. Some languages, such as Smalltalk and Python, check
types at run time. In contrast, C++ is a statically typed language;
type checking is done at compile time. As a consequence, the com-
piler must know the type of every name used in the program.

C++ provides a set of built-in types, operators to manipulate those
types, and a small set of statements for program flow control. These
elements form an alphabet from which we can write large, compli-
cated, real-world systems. At this basic level, C++ is a simple lan-
guage. Its expressive power arises from its support for mechanisms
that allow the programmer to define new data structures. Using
these facilities, programmers can shape the language to their own
purposes without the language designers having to anticipate the
programmers’ needs.

Perhaps the most important feature in C++ is the class, which lets
programmers define their own types. In C++ such types are some-
times called “class types” to distinguish them from the types that
are built into the language. Some languages let programmers define
types that specify only what data make up the type. Others, like C++,
allow programmers to define types that include operations as well as
data. A major design goal of C++ is to let programmers define their
own types that are as easy to use as the built-in types. The Standard
C++ library uses these features to implement a rich library of class
types and associated functions.

The first step in mastering C++—learning the basics of the lan-
guage and library—is the topic of Part I. Chapter 2 covers the built-
in types and looks briefly at the mechanisms for defining our own
new types. Chapter 3 introduces two of the most fundamental li-
brary types: string and vector. That chapter also covers arrays,
which are a lower-level data structure built into C++ and many other
languages. Chapters 4 through 6 cover expressions, statements, and
functions. This part concludes in Chapter 7, which describes the ba-
sics of building our own class types. As we’ll see, defining our own
types brings together all that we’ve learned before, because writing
a class entails using the facilities covered in Part I.
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Types are fundamental to any program: They tell us what our data
mean and what operations we can perform on those data.

C++ has extensive support for types. The language defines several
primitive types (characters, integers, floating-point numbers, etc.)
and provides mechanisms that let us define our own data types.
The library uses these mechanisms to define more complicated types
such as variable-length character strings, vectors, and so on. This
chapter covers the built-in types and begins our coverage of how
C++ supports more complicated types.
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Types determine the meaning of the data and operations in our programs. The
meaning of even as simple a statement as

i = i + j;

depends on the types of i and j. If i and j are integers, this statement has the
ordinary, arithmetic meaning of +. However, if i and j are Sales_item objects
(§ 1.5.1, p. 20), this statement adds the components of these two objects.

2.1 Primitive Built-in Types
C++ defines a set of primitive types that include the arithmetic types and a special
type named void. The arithmetic types represent characters, integers, boolean
values, and floating-point numbers. The void type has no associated values and
can be used in only a few circumstances, most commonly as the return type for
functions that do not return a value.

2.1.1 Arithmetic Types
The arithmetic types are divided into two categories: integral types (which include
character and boolean types) and floating-point types.

The size of—that is, the number of bits in—the arithmetic types varies across
machines. The standard guarantees minimum sizes as listed in Table 2.1. However,
compilers are allowed to use larger sizes for these types. Because the number of
bits varies, the largest (or smallest) value that a type can represent also varies.

Table 2.1: C++: Arithmetic Types

Type Meaning Minimum Size

bool boolean NA
char character 8 bits
wchar_t wide character 16 bits
char16_t Unicode character 16 bits
char32_t Unicode character 32 bits
short short integer 16 bits
int integer 16 bits
long long integer 32 bits
long long long integer 64 bits
float single-precision floating-point 6 significant digits
double double-precision floating-point 10 significant digits
long double extended-precision floating-point 10 significant digits

The bool type represents the truth values true and false.
There are several character types, most of which exist to support international-

ization. The basic character type is char. A char is guaranteed to be big enough to
hold numeric values corresponding to the characters in the machine’s basic char-
acter set. That is, a char is the same size as a single machine byte.
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The remaining character types—wchar_t, char16_t, and char32_t—are
used for extended character sets. The wchar_t type is guaranteed to be large
enough to hold any character in the machine’s largest extended character set. The
types char16_t and char32_t are intended for Unicode characters. (Unicode is
a standard for representing characters used in essentially any natural language.)

The remaining integral types represent integer values of (potentially) different
sizes. The language guarantees that an int will be at least as large as short, a
long at least as large as an int, and long long at least as large as long. The
type long long was introduced by the new standard.

MACHINE-LEVEL REPRESENTATION OF THE BUILT-IN TYPES

Computers store data as a sequence of bits, each holding a 0 or 1, such as

00011011011100010110010000111011 ...

Most computers deal with memory as chunks of bits of sizes that are powers of 2. The
smallest chunk of addressable memory is referred to as a “byte.” The basic unit of
storage, usually a small number of bytes, is referred to as a “word.” In C++ a byte has
at least as many bits as are needed to hold a character in the machine’s basic character
set. On most machines a byte contains 8 bits and a word is either 32 or 64 bits, that is,
4 or 8 bytes.

Most computers associate a number (called an “address”) with each byte in mem-
ory. On a machine with 8-bit bytes and 32-bit words, we might view a word of memory
as follows

736424 0 0 1 1 1 0 1 1

736425 0 0 0 1 1 0 1 1

736426 0 1 1 1 0 0 0 1

736427 0 1 1 0 0 1 0 0

Here, the byte’s address is on the left, with the 8 bits of the byte following the address.
We can use an address to refer to any of several variously sized collections of bits

starting at that address. It is possible to speak of the word at address 736424 or the
byte at address 736427. To give meaning to memory at a given address, we must know
the type of the value stored there. The type determines how many bits are used and
how to interpret those bits.

If the object at location 736424 has type float and if floats on this machine are
stored in 32 bits, then we know that the object at that address spans the entire word.
The value of that float depends on the details of how the machine stores floating-
point numbers. Alternatively, if the object at location 736424 is an unsigned char on
a machine using the ISO-Latin-1 character set, then the byte at that address represents
a semicolon.

The floating-point types represent single-, double-, and extended-precision val-
ues. The standard specifies a minimum number of significant digits. Most compil-
ers provide more precision than the specified minimum. Typically, floats are rep-
resented in one word (32 bits), doubles in two words (64 bits), and long doubles
in either three or four words (96 or 128 bits). The float and double types typi-
cally yield about 7 and 16 significant digits, respectively. The type long double
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is often used as a way to accommodate special-purpose floating-point hardware;
its precision is more likely to vary from one implementation to another.

Signed and Unsigned Types

Except for bool and the extended character types, the integral types may be signed
or unsigned. A signed type represents negative or positive numbers (including
zero); an unsigned type represents only values greater than or equal to zero.

The types int, short, long, and long long are all signed. We obtain the
corresponding unsigned type by adding unsigned to the type, such as unsigned
long. The type unsigned int may be abbreviated as unsigned.

Unlike the other integer types, there are three distinct basic character types:
char, signed char, and unsigned char. In particular, char is not the same
type as signed char. Although there are three character types, there are only
two representations: signed and unsigned. The (plain) char type uses one of these
representations. Which of the other two character representations is equivalent to
char depends on the compiler.

In an unsigned type, all the bits represent the value. For example, an 8-bit
unsigned char can hold the values from 0 through 255 inclusive.

The standard does not define how signed types are represented, but does spec-
ify that the range should be evenly divided between positive and negative values.
Hence, an 8-bit signed char is guaranteed to be able to hold values from –127
through 127; most modern machines use representations that allow values from
–128 through 127.

ADVICE: DECIDING WHICH TYPE TO USE

C++, like C, is designed to let programs get close to the hardware when necessary.
The arithmetic types are defined to cater to the peculiarities of various kinds of hard-
ware. Accordingly, the number of arithmetic types in C++ can be bewildering. Most
programmers can (and should) ignore these complexities by restricting the types they
use. A few rules of thumb can be useful in deciding which type to use:

• Use an unsigned type when you know that the values cannot be negative.

• Use int for integer arithmetic. short is usually too small and, in practice, long
often has the same size as int. If your data values are larger than the minimum
guaranteed size of an int, then use long long.

• Do not use plain char or bool in arithmetic expressions. Use them only to hold
characters or truth values. Computations using char are especially problematic
because char is signed on some machines and unsigned on others. If you
need a tiny integer, explicitly specify either signed char or unsigned char.

• Use double for floating-point computations; float usually does not have
enough precision, and the cost of double-precision calculations versus single-
precision is negligible. In fact, on some machines, double-precision operations
are faster than single. The precision offered by long double usually is unnec-
essary and often entails considerable run-time cost.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 2.1 Primitive Built-in Types 35

EXE R C I S E S SE C TI ON 2.1.1

Exercise 2.1: What are the differences between int, long, long long, and short?
Between an unsigned and a signed type? Between a float and a double?

Exercise 2.2: To calculate a mortgage payment, what types would you use for the rate,
principal, and payment? Explain why you selected each type.

2.1.2 Type Conversions
The type of an object defines the data that an object might contain and what oper-
ations that object can perform. Among the operations that many types support is
the ability to convert objects of the given type to other, related types.

Type conversions happen automatically when we use an object of one type
where an object of another type is expected. We’ll have more to say about conver-
sions in § 4.11 (p. 159), but for now it is useful to understand what happens when
we assign a value of one type to an object of another type.

When we assign one arithmetic type to another:

bool b = 42; // b is true
int i = b; // i has value 1
i = 3.14; // i has value 3
double pi = i; // pi has value 3.0
unsigned char c = -1; // assuming 8-bit chars, c has value 255
signed char c2 = 256; // assuming 8-bit chars, the value of c2 is undefined

what happens depends on the range of the values that the types permit:

• When we assign one of the nonbool arithmetic types to a bool object, the
result is false if the value is 0 and true otherwise.

• When we assign a bool to one of the other arithmetic types, the resulting
value is 1 if the bool is true and 0 if the bool is false.

• When we assign a floating-point value to an object of integral type, the value
is truncated. The value that is stored is the part before the decimal point.

• When we assign an integral value to an object of floating-point type, the frac-
tional part is zero. Precision may be lost if the integer has more bits than the
floating-point object can accommodate.

• If we assign an out-of-range value to an object of unsigned type, the result is
the remainder of the value modulo the number of values the target type can
hold. For example, an 8-bit unsigned char can hold values from 0 through
255, inclusive. If we assign a value outside this range, the compiler assigns
the remainder of that value modulo 256. Therefore, assigning –1 to an 8-bit
unsigned char gives that object the value 255.

• If we assign an out-of-range value to an object of signed type, the result is
undefined. The program might appear to work, it might crash, or it might
produce garbage values.
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ADVICE: AVOID UNDEFINED AND IMPLEMENTATION-DEFINED BEHAVIOR

Undefined behavior results from errors that the compiler is not required (and some-
times is not able) to detect. Even if the code compiles, a program that executes an
undefined expression is in error.

Unfortunately, programs that contain undefined behavior can appear to execute
correctly in some circumstances and/or on some compilers. There is no guarantee that
the same program, compiled under a different compiler or even a subsequent release
of the same compiler, will continue to run correctly. Nor is there any guarantee that
what works with one set of inputs will work with another.

Similarly, programs usually should avoid implementation-defined behavior, such
as assuming that the size of an int is a fixed and known value. Such programs are
said to be nonportable. When the program is moved to another machine, code that
relied on implementation-defined behavior may fail. Tracking down these sorts of
problems in previously working programs is, mildly put, unpleasant.

The compiler applies these same type conversions when we use a value of one
arithmetic type where a value of another arithmetic type is expected. For example,
when we use a nonbool value as a condition (§ 1.4.1, p. 12), the arithmetic value is
converted to bool in the same way that it would be converted if we had assigned
that arithmetic value to a bool variable:

int i = 42;
if (i) // condition will evaluate as true

i = 0;

If the value is 0, then the condition is false; all other (nonzero) values yield true.
By the same token, when we use a bool in an arithmetic expression, its value

always converts to either 0 or 1. As a result, using a bool in an arithmetic expres-
sion is almost surely incorrect.

Expressions Involving Unsigned Types

Although we are unlikely to intentionally assign a negative value to an object of
unsigned type, we can (all too easily) write code that does so implicitly. For ex-
ample, if we use both unsigned and int values in an arithmetic expression, the
int value ordinarily is converted to unsigned. Converting an int to unsigned
executes the same way as if we assigned the int to an unsigned:

unsigned u = 10;
int i = -42;
std::cout << i + i << std::endl; // prints -84
std::cout << u + i << std::endl; // if 32-bit ints, prints 4294967264

In the first expression, we add two (negative) int values and obtain the expected
result. In the second expression, the int value -42 is converted to unsigned
before the addition is done. Converting a negative number to unsigned behaves
exactly as if we had attempted to assign that negative value to an unsigned object.
The value “wraps around” as described above.

Regardless of whether one or both operands are unsigned, if we subtract a
value from an unsigned, we must be sure that the result cannot be negative:
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unsigned u1 = 42, u2 = 10;
std::cout << u1 - u2 << std::endl; // ok: result is 32
std::cout << u2 - u1 << std::endl; // ok: but the result will wrap around

The fact that an unsigned cannot be less than zero also affects how we write loops.
For example, in the exercises to § 1.4.1 (p. 13), you were to write a loop that used
the decrement operator to print the numbers from 10 down to 0. The loop you
wrote probably looked something like

for (int i = 10; i >= 0; --i)
std::cout << i << std::endl;

We might think we could rewrite this loop using an unsigned. After all, we don’t
plan to print negative numbers. However, this simple change in type means that
our loop will never terminate:

// WRONG: u can never be less than 0; the condition will always succeed
for (unsigned u = 10; u >= 0; --u)

std::cout << u << std::endl;

Consider what happens when u is 0. On that iteration, we’ll print 0 and then
execute the expression in the for loop. That expression, --u, subtracts 1 from u.
That result, -1, won’t fit in an unsigned value. As with any other out-of-range
value, -1 will be transformed to an unsigned value. Assuming 32-bit ints, the
result of --u, when u is 0, is 4294967295.

One way to write this loop is to use a while instead of a for. Using a while
lets us decrement before (rather than after) printing our value:

unsigned u = 11; // start the loop one past the first element we want to print
while (u > 0) {

--u; // decrement first, so that the last iteration will print 0
std::cout << u << std::endl;

}

This loop starts by decrementing the value of the loop control variable. On the last
iteration, u will be 1 on entry to the loop. We’ll decrement that value, meaning
that we’ll print 0 on this iteration. When we next test u in the while condition, its
value will be 0 and the loop will exit. Because we start by decrementing u, we have
to initialize u to a value one greater than the first value we want to print. Hence,
we initialize u to 11, so that the first value printed is 10.

CAUTION: DON’T MIX SIGNED AND UNSIGNED TYPES

Expressions that mix signed and unsigned values can yield surprising results when
the signed value is negative. It is essential to remember that signed values are auto-
matically converted to unsigned. For example, in an expression like a * b, if a is -1
and b is 1, then if both a and b are ints, the value is, as expected -1. However, if a is
int and b is an unsigned, then the value of this expression depends on how many
bits an int has on the particular machine. On our machine, this expression yields
4294967295.
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EXE R C I S E S SE C TI ON 2.1.2

Exercise 2.3: What output will the following code produce?

unsigned u = 10, u2 = 42;
std::cout << u2 - u << std::endl;
std::cout << u - u2 << std::endl;

int i = 10, i2 = 42;
std::cout << i2 - i << std::endl;
std::cout << i - i2 << std::endl;

std::cout << i - u << std::endl;
std::cout << u - i << std::endl;

Exercise 2.4: Write a program to check whether your predictions were correct. If not,
study this section until you understand what the problem is.

2.1.3 Literals
A value, such as 42, is known as a literal because its value self-evident. Every
literal has a type. The form and value of a literal determine its type.

Integer and Floating-Point Literals

We can write an integer literal using decimal, octal, or hexadecimal notation. Inte-
ger literals that begin with 0 (zero) are interpreted as octal. Those that begin with
either 0x or 0X are interpreted as hexadecimal. For example, we can write the
value 20 in any of the following three ways:

20 /* decimal */ 024 /* octal */ 0x14 /* hexadecimal */

The type of an integer literal depends on its value and notation. By default, deci-
mal literals are signed whereas octal and hexadecimal literals can be either signed
or unsigned types. A decimal literal has the smallest type of int, long, or long
long (i.e., the first type in this list) in which the literal’s value fits. Octal and hex-
adecimal literals have the smallest type of int, unsigned int, long, unsigned
long, long long, or unsigned long long in which the literal’s value fits. It is
an error to use a literal that is too large to fit in the largest related type. There are
no literals of type short. We’ll see in Table 2.2 (p. 40) that we can override these
defaults by using a suffix.

Although integer literals may be stored in signed types, technically speaking,
the value of a decimal literal is never a negative number. If we write what appears
to be a negative decimal literal, for example, -42, the minus sign is not part of the
literal. The minus sign is an operator that negates the value of its (literal) operand.

Floating-point literals include either a decimal point or an exponent specified
using scientific notation. Using scientific notation, the exponent is indicated by
either E or e:

3.14159 3.14159E0 0. 0e0 .001
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By default, floating-point literals have type double. We can override the default
using a suffix from Table 2.2 (overleaf).

Character and Character String Literals

A character enclosed within single quotes is a literal of type char. Zero or more
characters enclosed in double quotation marks is a string literal:

’a’ // character literal
"Hello World!" // string literal

The type of a string literal is array of constant chars, a type we’ll discuss in § 3.5.4
(p. 122). The compiler appends a null character (’\0’) to every string literal. Thus,
the actual size of a string literal is one more than its apparent size. For example,
the literal ’A’ represents the single character A, whereas the string literal "A" rep-
resents an array of two characters, the letter A and the null character.

Two string literals that appear adjacent to one another and that are separated
only by spaces, tabs, or newlines are concatenated into a single literal. We use this
form of literal when we need to write a literal that would otherwise be too large to
fit comfortably on a single line:

// multiline string literal
std::cout << "a really, really long string literal "

"that spans two lines" << std::endl;

Escape Sequences

Some characters, such as backspace or control characters, have no visible image.
Such characters are nonprintable. Other characters (single and double quotation
marks, question mark, and backslash) have special meaning in the language. Our
programs cannot use any of these characters directly. Instead, we use an escape se-
quence to represent such characters. An escape sequence begins with a backslash.
The language defines several escape sequences:

newline \n horizontal tab \t alert (bell) \a
vertical tab \v backspace \b double quote \"
backslash \\ question mark \? single quote \’
carriage return \r formfeed \f

We use an escape sequence as if it were a single character:

std::cout << ’\n’; // prints a newline
std::cout << "\tHi!\n"; // prints a tab followd by "Hi!" and a newline

We can also write a generalized escape sequence, which is \x followed by one or
more hexadecimal digits or a \ followed by one, two, or three octal digits. The
value represents the numerical value of the character. Some examples (assuming
the Latin-1 character set):

\7 (bell) \12 (newline) \40 (blank)
\0 (null) \115 (’M’) \x4d (’M’)
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As with an escape sequence defined by the language, we use these escape se-
quences as we would any other character:

std::cout << "Hi \x4dO\115!\n"; // prints Hi MOM! followed by a newline
std::cout << ’\115’ << ’\n’; // prints M followed by a newline

Note that if a \ is followed by more than three octal digits, only the first three are
associated with the \. For example, "\1234" represents two characters: the char-
acter represented by the octal value 123 and the character 4. In contrast, \x uses
up all the hex digits following it; "\x1234" represents a single, 16-bit character
composed from the bits corresponding to these four hexadecimal digits. Because
most machines have 8-bit chars, such values are unlikely to be useful. Ordinarily,
hexadecimal characters with more than 8 bits are used with extended characters
sets using one of the prefixes from Table 2.2.

Specifying the Type of a Literal

We can override the default type of an integer, floating- point, or character literal
by supplying a suffix or prefix as listed in Table 2.2.

L’a’ // wide character literal, type is wchar_t
u8"hi!" // utf-8 string literal (utf-8 encodes a Unicode character in 8 bits)
42ULL // unsigned integer literal, type is unsigned long long
1E-3F // single-precision floating-point literal, type is float
3.14159L // extended-precision floating-point literal, type is long double

When you write a long literal, use the uppercaseL; the lowercase letter
l is too easily mistaken for the digit 1.

Table 2.2: Specifying the Type of a Literal

Character and Character String Literals
Prefix Meaning Type
u Unicode 16 character char16_t
U Unicode 32 character char32_t
L wide character wchar_t
u8 utf-8 (string literals only) char

Integer Literals Floating-Point Literals
Suffix Minimum Type Suffix Type
u or U unsigned f or F float
l or L long l or L long double
ll or LL long long

We can independently specify the signedness and size of an integral literal. If
the suffix contains a U, then the literal has an unsigned type, so a decimal, oc-
tal, or hexadecimal literal with a U suffix has the smallest type of unsigned int,
unsigned long, or unsigned long long in which the literal’s value fits. If the
suffix contains an L, then the literal’s type will be at least long; if the suffix con-
tains LL, then the literal’s type will be either long long or unsigned long long.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 2.2 Variables 41

We can combine U with either L or LL. For example, a literal with a suffix of UL
will be either unsigned long or unsigned long long, depending on whether
its value fits in unsigned long.

Boolean and Pointer Literals

The words true and false are literals of type bool:

bool test = false;

The word nullptr is a pointer literal. We’ll have more to say about pointers and
nullptr in § 2.3.2 (p. 52).

EXE R C I S E S SE C TI ON 2.1.3

Exercise 2.5: Determine the type of each of the following literals. Explain the differ-
ences among the literals in each of the four examples:

(a) ’a’, L’a’, "a", L"a"
(b) 10, 10u, 10L, 10uL, 012, 0xC
(c) 3.14, 3.14f, 3.14L
(d) 10, 10u, 10., 10e-2

Exercise 2.6: What, if any, are the differences between the following definitions:

int month = 9, day = 7;
int month = 09, day = 07;

Exercise 2.7: What values do these literals represent? What type does each have?

(a) "Who goes with F\145rgus?\012"
(b) 3.14e1L (c) 1024f (d) 3.14L

Exercise 2.8: Using escape sequences, write a program to print 2M followed by a new-
line. Modify the program to print 2, then a tab, then an M, followed by a newline.

2.2 Variables
A variable provides us with named storage that our programs can manipulate.
Each variable in C++ has a type. The type determines the size and layout of the
variable’s memory, the range of values that can be stored within that memory, and
the set of operations that can be applied to the variable. C++ programmers tend to
refer to variables as “variables” or “objects” interchangeably.

2.2.1 Variable Definitions
A simple variable definition consists of a type specifier, followed by a list of one or
more variable names separated by commas, and ends with a semicolon. Each name
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in the list has the type defined by the type specifier. A definition may (optionally)
provide an initial value for one or more of the names it defines:

int sum = 0, value, // sum, value, and units_sold have type int
units_sold = 0; // sum and units_sold have initial value 0

Sales_item item; // item has type Sales_item (see § 1.5.1 (p. 20))
// string is a library type, representing a variable-length sequence of characters
std::string book("0-201-78345-X"); // book initialized from string literal

The definition of book uses the std::string library type. Like iostream
(§ 1.2, p. 7), string is defined in namespace std. We’ll have more to say about
the string type in Chapter 3. For now, what’s useful to know is that a string is a
type that represents a variable-length sequence of characters. The string library
gives us several ways to initialize string objects. One of these ways is as a copy
of a string literal (§ 2.1.3, p. 39). Thus, book is initialized to hold the characters
0-201-78345-X.

TERMINOLOGY: WHAT IS AN OBJECT?

C++ programmers tend to be cavalier in their use of the term object. Most generally,
an object is a region of memory that can contain data and has a type.

Some use the term object only to refer to variables or values of class types. Others
distinguish between named and unnamed objects, using the term variable to refer to
named objects. Still others distinguish between objects and values, using the term
object for data that can be changed by the program and the term value for data that are
read-only.

In this book, we’ll follow the more general usage that an object is a region of mem-
ory that has a type. We will freely use the term object regardless of whether the object
has built-in or class type, is named or unnamed, or can be read or written.

Initializers

An object that is initialized gets the specified value at the moment it is created.
The values used to initialize a variable can be arbitrarily complicated expressions.
When a definition defines two or more variables, the name of each object becomes
visible immediately. Thus, it is possible to initialize a variable to the value of one
defined earlier in the same definition.

// ok: price is defined and initialized before it is used to initialize discount
double price = 109.99, discount = price * 0.16;

// ok: call applyDiscount and use the return value to initialize salePrice
double salePrice = applyDiscount(price, discount);

Initialization in C++ is a surprisingly complicated topic and one we will return
to again and again. Many programmers are confused by the use of the = symbol to
initialize a variable. It is tempting to think of initialization as a form of assignment,
but initialization and assignment are different operations in C++. This concept
is particularly confusing because in many languages the distinction is irrelevant
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and can be ignored. Moreover, even in C++ the distinction often doesn’t matter.
Nonetheless, it is a crucial concept and one we will reiterate throughout the text.

Initialization is not assignment. Initialization happens when a variable
is given a value when it is created. Assignment obliterates an object’s
current value and replaces that value with a new one.

List Initialization

One way in which initialization is a complicated topic is that the language de-
fines several different forms of initialization. For example, we can use any of the
following four different ways to define an int variable named units_sold and
initialize it to 0:

int units_sold = 0;
int units_sold = {0};
int units_sold{0};
int units_sold(0);

The generalized use of curly braces for initialization was introduced as part of
the new standard. This form of initialization previously had been allowed only in
more restricted ways. For reasons we’ll learn about in § 3.3.1 (p. 98), this form of
initialization is referred to as list initialization. Braced lists of initializers can now
be used whenever we initialize an object and in some cases when we assign a new
value to an object.

When used with variables of built-in type, this form of initialization has one
important property: The compiler will not let us list initialize variables of built-in
type if the initializer might lead to the loss of information:

long double ld = 3.1415926536;

int a{ld}, b = {ld}; // error: narrowing conversion required
int c(ld), d = ld; // ok: but value will be truncated

The compiler rejects the initializations of a and b because using a long double to
initialize an int is likely to lose data. At a minimum, the fractional part of ld will
be truncated. In addition, the integer part in ld might be too large to fit in an int.

As presented here, the distinction might seem trivial—after all, we’d be un-
likely to directly initialize an int from a long double. However, as we’ll see
in Chapter 16, such initializations might happen unintentionally. We’ll say more
about these forms of initialization in § 3.2.1 (p. 84) and § 3.3.1 (p. 98).

Default Initialization

When we define a variable without an initializer, the variable is default initialized.
Such variables are given the “default” value. What that default value is depends
on the type of the variable and may also depend on where the variable is defined.

The value of an object of built-in type that is not explicitly initialized depends
on where it is defined. Variables defined outside any function body are initialized
to zero. With one exception, which we cover in § 6.1.1 (p. 205), variables of built-in
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type defined inside a function are uninitialized. The value of an uninitialized vari-
able of built-in type is undefined (§ 2.1.2, p. 36). It is an error to copy or otherwise
try to access the value of a variable whose value is undefined.

Each class controls how we initialize objects of that class type. In particular, it
is up to the class whether we can define objects of that type without an initializer.
If we can, the class determines what value the resulting object will have.

Most classes let us define objects without explicit initializers. Such classes sup-
ply an appropriate default value for us. For example, as we’ve just seen, the library
string class says that if we do not supply an initializer, then the resulting string
is the empty string:

std::string empty; // empty implicitly initialized to the empty string
Sales_item item; // default-initialized Sales_item object

Some classes require that every object be explicitly initialized. The compiler
will complain if we try to create an object of such a class with no initializer.

Uninitialized objects of built-in type defined inside a function body
have undefined value. Objects of class type that we do not explicitly
initialize have a value that is defined by the class.

EXE R C I S E S SE C TI ON 2.2.1

Exercise 2.9: Explain the following definitions. For those that are illegal, explain
what’s wrong and how to correct it.

(a) std::cin >> int input_value; (b) int i = { 3.14 };
(c) double salary = wage = 9999.99; (d) int i = 3.14;

Exercise 2.10: What are the initial values, if any, of each of the following variables?

std::string global_str;
int global_int;

int main()
{

int local_int;
std::string local_str;

}

2.2.2 Variable Declarations and Definitions
To allow programs to be written in logical parts, C++ supports what is commonly
known as separate compilation. Separate compilation lets us split our programs
into several files, each of which can be compiled independently.

When we separate a program into multiple files, we need a way to share code
across those files. For example, code defined in one file may need to use a vari-
able defined in another file. As a concrete example, consider std::cout and
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CAUTION: UNINITIALIZED VARIABLES CAUSE RUN-TIME PROBLEMS

An uninitialized variable has an indeterminate value. Trying to use the value of an
uninitialized variable is an error that is often hard to debug. Moreover, the compiler
is not required to detect such errors, although most will warn about at least some uses
of uninitialized variables.

What happens when we use an uninitialized variable is undefined. Sometimes,
we’re lucky and our program crashes as soon as we access the object. Once we track
down the location of the crash, it is usually easy to see that the variable was not prop-
erly initialized. Other times, the program completes but produces erroneous results.
Even worse, the results may appear correct on one run of our program but fail on a
subsequent run. Moreover, adding code to the program in an unrelated location can
cause what we thought was a correct program to start producing incorrect results.

We recommend initializing every object of built-in type. It is not always
necessary, but it is easier and safer to provide an initializer until you can
be certain it is safe to omit the initializer.

std::cin. These are objects defined somewhere in the standard library, yet our
programs can use these objects.

To support separate compilation, C++ distinguishes between declarations and
definitions. A declaration makes a name known to the program. A file that wants
to use a name defined elsewhere includes a declaration for that name. A definition
creates the associated entity.

A variable declaration specifies the type and name of a variable. A variable
definition is a declaration. In addition to specifying the name and type, a definition
also allocates storage and may provide the variable with an initial value.

To obtain a declaration that is not also a definition, we add the extern key-
word and may not provide an explicit initializer:

extern int i; // declares but does not define i
int j; // declares and defines j

Any declaration that includes an explicit initializer is a definition. We can pro-
vide an initializer on a variable defined as extern, but doing so overrides the
extern. An extern that has an initializer is a definition:

extern double pi = 3.1416; // definition

It is an error to provide an initializer on an extern inside a function.

Variables must be defined exactly once but can be declared many times.

The distinction between a declaration and a definition may seem obscure at this
point but is actually important. To use a variable in more than one file requires dec-
larations that are separate from the variable’s definition. To use the same variable
in multiple files, we must define that variable in one—and only one—file. Other
files that use that variable must declare—but not define—that variable.
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We’ll have more to say about how C++ supports separate compilation in § 2.6.3
(p. 76) and § 6.1.3 (p. 207).

EXE R C I S E S SE C TI ON 2.2.2

Exercise 2.11: Explain whether each of the following is a declaration or a definition:

(a) extern int ix = 1024;
(b) int iy;
(c) extern int iz;

KEY CONCEPT: STATIC TYPING

C++ is a statically typed language, which means that types are checked at compile
time. The process by which types are checked is referred to as type checking.

As we’ve seen, the type of an object constrains the operations that the object can
perform. In C++, the compiler checks whether the operations we write are supported
by the types we use. If we try to do things that the type does not support, the compiler
generates an error message and does not produce an executable file.

As our programs get more complicated, we’ll see that static type checking can help
find bugs. However, a consequence of static checking is that the type of every entity
we use must be known to the compiler. As one example, we must declare the type of
a variable before we can use that variable.

2.2.3 Identifiers
Identifiers in C++ can be composed of letters, digits, and the underscore character.
The language imposes no limit on name length. Identifiers must begin with either a
letter or an underscore. Identifiers are case-sensitive; upper- and lowercase letters
are distinct:

// defines four different int variables
int somename, someName, SomeName, SOMENAME;

The language reserves a set of names, listed in Tables 2.3 and Table 2.4, for its
own use. These names may not be used as identifiers.

The standard also reserves a set of names for use in the standard library. The
identifiers we define in our own programs may not contain two consecutive un-
derscores, nor can an identifier begin with an underscore followed immediately
by an uppercase letter. In addition, identifiers defined outside a function may not
begin with an underscore.

Conventions for Variable Names

There are a number of generally accepted conventions for naming variables. Fol-
lowing these conventions can improve the readability of a program.
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• An identifier should give some indication of its meaning.

• Variable names normally are lowercase—index, not Index or INDEX.

• Like Sales_item, classes we define usually begin with an uppercase letter.

• Identifiers with multiple words should visually distinguish each word, for
example, student_loan or studentLoan, not studentloan.

Naming conventions are most useful when followed consistently.

Table 2.3: C++ Keywords

alignas continue friend register true
alignof decltype goto reinterpret_cast try
asm default if return typedef
auto delete inline short typeid
bool do int signed typename
break double long sizeof union
case dynamic_cast mutable static unsigned
catch else namespace static_assert using
char enum new static_cast virtual
char16_t explicit noexcept struct void
char32_t export nullptr switch volatile
class extern operator template wchar_t
const false private this while
constexpr float protected thread_local
const_cast for public throw

Table 2.4: C++ Alternative Operator Names

and bitand compl not_eq or_eq xor_eq
and_eq bitor not or xor

EXE R C I S E S SE C TI ON 2.2.3

Exercise 2.12: Which, if any, of the following names are invalid?

(a) int double = 3.14; (b) int _;
(c) int catch-22; (d) int 1_or_2 = 1;
(e) double Double = 3.14;
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2.2.4 Scope of a Name
At any particular point in a program, each name that is in use refers to a specific
entity—a variable, function, type, and so on. However, a given name can be reused
to refer to different entities at different points in the program.

A scope is a part of the program in which a name has a particular meaning.
Most scopes in C++ are delimited by curly braces.

The same name can refer to different entities in different scopes. Names are
visible from the point where they are declared until the end of the scope in which
the declaration appears.

As an example, consider the program from § 1.4.2 (p. 13):

#include <iostream>
int main()
{

int sum = 0;
// sum values from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val
std::cout << "Sum of 1 to 10 inclusive is "

<< sum << std::endl;
return 0;

}

This program defines three names—main, sum, and val—and uses the namespace
name std, along with two names from that namespace—cout and endl.

The name main is defined outside any curly braces. The name main—like most
names defined outside a function—has global scope. Once declared, names at the
global scope are accessible throughout the program. The name sum is defined
within the scope of the block that is the body of the main function. It is accessible
from its point of declaration throughout the rest of the main function but not out-
side of it. The variable sum has block scope. The name val is defined in the scope
of the for statement. It can be used in that statement but not elsewhere in main.

ADVICE: DEFINE VARIABLES WHERE YOU FIRST USE THEM

It is usually a good idea to define an object near the point at which the object is first
used. Doing so improves readability by making it easy to find the definition of the
variable. More importantly, it is often easier to give the variable a useful initial value
when the variable is defined close to where it is first used.

Nested Scopes

Scopes can contain other scopes. The contained (or nested) scope is referred to as
an inner scope, the containing scope is the outer scope.

Once a name has been declared in a scope, that name can be used by scopes
nested inside that scope. Names declared in the outer scope can also be redefined
in an inner scope:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 2.2 Variables 49

#include <iostream>

// Program for illustration purposes only: It is bad style for a function
// to use a global variable and also define a local variable with the same name

int reused = 42; // reused has global scope

int main()
{

int unique = 0; // unique has block scope

// output #1: uses global reused; prints 42 0
std::cout << reused << " " << unique << std::endl;

int reused = 0; // new, local object named reused hides global reused

// output #2: uses local reused; prints 0 0
std::cout << reused << " " << unique << std::endl;

// output #3: explicitly requests the global reused; prints 42 0
std::cout << ::reused << " " << unique << std::endl;

return 0;
}

Output #1 appears before the local definition of reused. Therefore, this output
statement uses the name reused that is defined in the global scope. This statement
prints 42 0. Output #2 occurs after the local definition of reused. The local
reused is now in scope. Thus, this second output statement uses the local object
named reused rather than the global one and prints 0 0. Output #3 uses the
scope operator (§ 1.2, p. 8) to override the default scoping rules. The global scope
has no name. Hence, when the scope operator has an empty left-hand side, it is a
request to fetch the name on the right-hand side from the global scope. Thus, this
expression uses the global reused and prints 42 0.

It is almost always a bad idea to define a local variable with the same
name as a global variable that the function uses or might use.

EXE R C I S E S SE C TI ON 2.2.4

Exercise 2.13: What is the value of j in the following program?

int i = 42;
int main()
{

int i = 100;
int j = i;

}

Exercise 2.14: Is the following program legal? If so, what values are printed?

int i = 100, sum = 0;
for (int i = 0; i != 10; ++i)

sum += i;
std::cout << i << " " << sum << std::endl;
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2.3 Compound Types
A compound type is a type that is defined in terms of another type. C++ has
several compound types, two of which—references and pointers—we’ll cover in
this chapter.

Defining variables of compound type is more complicated than the declarations
we’ve seen so far. In § 2.2 (p. 41) we said that simple declarations consist of a type
followed by a list of variable names. More generally, a declaration is a base type
followed by a list of declarators. Each declarator names a variable and gives the
variable a type that is related to the base type.

The declarations we have seen so far have declarators that are nothing more
than variable names. The type of such variables is the base type of the declaration.
More complicated declarators specify variables with compound types that are built
from the base type of the declaration.

2.3.1 References

The new standard introduced a new kind of reference: an “rvalue ref-
erence,” which we’ll cover in § 13.6.1 (p. 532). These references are pri-
marily intended for use inside classes. Technically speaking, when we
use the term reference, we mean “lvalue reference.”

A reference defines an alternative name for an object. A reference type “refers
to” another type. We define a reference type by writing a declarator of the form
&d, where d is the name being declared:

int ival = 1024;
int &refVal = ival; // refVal refers to (is another name for) ival
int &refVal2; // error: a reference must be initialized

Ordinarily, when we initialize a variable, the value of the initializer is copied into
the object we are creating. When we define a reference, instead of copying the ini-
tializer’s value, we bind the reference to its initializer. Once initialized, a reference
remains bound to its initial object. There is no way to rebind a reference to refer to
a different object. Because there is no way to rebind a reference, references must be
initialized.

A Reference Is an Alias

A reference is not an object. Instead, a reference is just another name for
an already existing object.

After a reference has been defined, all operations on that reference are actually
operations on the object to which the reference is bound:

refVal = 2; // assigns 2 to the object to which refVal refers, i.e., to ival
int ii = refVal; // same as ii = ival
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When we assign to a reference, we are assigning to the object to which the reference
is bound. When we fetch the value of a reference, we are really fetching the value
of the object to which the reference is bound. Similarly, when we use a reference
as an initializer, we are really using the object to which the reference is bound:

// ok: refVal3 is bound to the object to which refVal is bound, i.e., to ival
int &refVal3 = refVal;

// initializes i from the value in the object to which refVal is bound
int i = refVal; // ok: initializes i to the same value as ival

Because references are not objects, we may not define a reference to a reference.

Reference Definitions

We can define multiple references in a single definition. Each identifier that is a
reference must be preceded by the & symbol:

int i = 1024, i2 = 2048; // i and i2 are both ints

int &r = i, r2 = i2; // r is a reference bound to i; r2 is an int
int i3 = 1024, &ri = i3; // i3 is an int; ri is a reference bound to i3
int &r3 = i3, &r4 = i2; // both r3 and r4 are references

With two exceptions that we’ll cover in § 2.4.1 (p. 61) and § 15.2.3 (p. 601), the
type of a reference and the object to which the reference refers must match exactly.
Moreover, for reasons we’ll explore in § 2.4.1, a reference may be bound only to an
object, not to a literal or to the result of a more general expression:

int &refVal4 = 10; // error: initializer must be an object

double dval = 3.14;
int &refVal5 = dval; // error: initializer must be an int object

EXE R C I S E S SE C TI ON 2.3.1

Exercise 2.15: Which of the following definitions, if any, are invalid? Why?

(a) int ival = 1.01; (b) int &rval1 = 1.01;
(c) int &rval2 = ival; (d) int &rval3;

Exercise 2.16: Which, if any, of the following assignments are invalid? If they are
valid, explain what they do.

int i = 0, &r1 = i; double d = 0, &r2 = d;
(a) r2 = 3.14159; (b) r2 = r1;
(c) i = r2; (d) r1 = d;

Exercise 2.17: What does the following code print?

int i, &ri = i;
i = 5; ri = 10;
std::cout << i << " " << ri << std::endl;
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2.3.2 Pointers
A pointer is a compound type that “points to” another type. Like references, point-
ers are used for indirect access to other objects. Unlike a reference, a pointer is an
object in its own right. Pointers can be assigned and copied; a single pointer can
point to several different objects over its lifetime. Unlike a reference, a pointer
need not be initialized at the time it is defined. Like other built-in types, pointers
defined at block scope have undefined value if they are not initialized.

Pointers are often hard to understand. Debugging problems due to
pointer errors bedevil even experienced programmers.

We define a pointer type by writing a declarator of the form *d, where d is the
name being defined. The * must be repeated for each pointer variable:

int *ip1, *ip2; // both ip1 and ip2 are pointers to int
double dp, *dp2; // dp2 is a pointer to double; dp is a double

Taking the Address of an Object

A pointer holds the address of another object. We get the address of an object by
usin the address-of operator (the & operator):

int ival = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival

The second statement defines p as a pointer to int and initializes p to point to
the int object named ival. Because references are not objects, they don’t have
addresses. Hence, we may not define a pointer to a reference.

With two exceptions, which we cover in § 2.4.2 (p. 62) and § 15.2.3 (p. 601), the
types of the pointer and the object to which it points must match:

double dval;
double *pd = &dval; // ok: initializer is the address of a double
double *pd2 = pd; // ok: initializer is a pointer to double

int *pi = pd; // error: types of pi and pd differ
pi = &dval; // error: assigning the address of a double to a pointer to int

The types must match because the type of the pointer is used to infer the type of
the object to which the pointer points. If a pointer addressed an object of another
type, operations performed on the underlying object would fail.

Pointer Value

The value (i.e., the address) stored in a pointer can be in one of four states:

1. It can point to an object.

2. It can point to the location just immediately past the end of an object.

3. It can be a null pointer, indicating that it is not bound to any object.

4. It can be invalid; values other than the preceding three are invalid.
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It is an error to copy or otherwise try to access the value of an invalid pointer. As
when we use an uninitialized variable, this error is one that the compiler is unlikely
to detect. The result of accessing an invalid pointer is undefined. Therefore, we
must always know whether a given pointer is valid.

Although pointers in cases 2 and 3 are valid, there are limits on what we can
do with such pointers. Because these pointers do not point to any object, we may
not use them to access the (supposed) object to which the pointer points. If we do
attempt to access an object through such pointers, the behavior is undefined.

Using a Pointer to Access an Object

When a pointer points to an object, we can use the dereference operator (the *
operator) to access that object:

int ival = 42;
int *p = &ival; // p holds the address of ival; p is a pointer to ival
cout << *p; // * yields the object to which p points; prints 42

Dereferencing a pointer yields the object to which the pointer points. We can assign
to that object by assigning to the result of the dereference:

*p = 0; // * yields the object; we assign a new value to ival through p
cout << *p; // prints 0

When we assign to *p, we are assigning to the object to which p points.

We may dereference only a valid pointer that points to an object.

KEY CONCEPT: SOME SYMBOLS HAVE MULTIPLE MEANINGS

Some symbols, such as & and *, are used as both an operator in an expression and
as part of a declaration. The context in which a symbol is used determines what the
symbol means:

int i = 42;
int &r = i; // & follows a type and is part of a declaration; r is a reference
int *p; // * follows a type and is part of a declaration; p is a pointer
p = &i; // & is used in an expression as the address-of operator
*p = i; // * is used in an expression as the dereference operator
int &r2 = *p; // & is part of the declaration; * is the dereference operator

In declarations, & and * are used to form compound types. In expressions, these same
symbols are used to denote an operator. Because the same symbol is used with very
different meanings, it can be helpful to ignore appearances and think of them as if
they were different symbols.

Null Pointers

A null pointer does not point to any object. Code can check whether a pointer is
null before attempting to use it. There are several ways to obtain a null pointer:
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int *p1 = nullptr; // equivalent to int *p1 = 0;
int *p2 = 0; // directly initializes p2 from the literal constant 0
// must #include cstdlib
int *p3 = NULL; // equivalent to int *p3 = 0;

The most direct approach is to initialize the pointer using the literal nullptr,
which was introduced by the new standard. nullptr is a literal that has a special
type that can be converted (§ 2.1.2, p. 35) to any other pointer type. Alternatively,
we can initialize a pointer to the literal 0, as we do in the definition of p2.

Older programs sometimes use a preprocessor variable named NULL, which
the cstdlib header defines as 0.

We’ll describe the preprocessor in a bit more detail in § 2.6.3 (p. 77). What’s
useful to know now is that the preprocessor is a program that runs before the
compiler. Preprocessor variables are managed by the preprocessor, and are not
part of the std namespace. As a result, we refer to them directly without the
std:: prefix.

When we use a preprocessor variable, the preprocessor automatically replaces
the variable by its value. Hence, initializing a pointer to NULL is equivalent to
initializing it to 0. Modern C++ programs generally should avoid using NULL and
use nullptr instead.

It is illegal to assign an int variable to a pointer, even if the variable’s value
happens to be 0.

int zero = 0;
pi = zero; // error: cannot assign an int to a pointer

ADVICE: INITIALIZE ALL POINTERS

Uninitialized pointers are a common source of run-time errors.
As with any other uninitialized variable, what happens when we use an uninitial-

ized pointer is undefined. Using an uninitialized pointer almost always results in a
run-time crash. However, debugging the resulting crashes can be surprisingly hard.

Under most compilers, when we use an uninitialized pointer, the bits in the mem-
ory in which the pointer resides are used as an address. Using an uninitialized pointer
is a request to access a supposed object at that supposed location. There is no way to
distinguish a valid address from an invalid one formed from the bits that happen to
be in the memory in which the pointer was allocated.

Our recommendation to initialize all variables is particularly important for point-
ers. If possible, define a pointer only after the object to which it should point has
been defined. If there is no object to bind to a pointer, then initialize the pointer to
nullptr or zero. That way, the program can detect that the pointer does not point to
an object.

Assignment and Pointers

Both pointers and references give indirect access to other objects. However, there
are important differences in how they do so. The most important is that a reference
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is not an object. Once we have defined a reference, there is no way to make that
reference refer to a different object. When we use a reference, we always get the
object to which the reference was initially bound.

There is no such identity between a pointer and the address that it holds. As
with any other (nonreference) variable, when we assign to a pointer, we give the
pointer itself a new value. Assignment makes the pointer point to a different object:

int i = 42;
int *pi = 0; // pi is initialized but addresses no object
int *pi2 = &i; // pi2 initialized to hold the address of i
int *pi3; // if pi3 is defined inside a block, pi3 is uninitialized

pi3 = pi2; // pi3 and pi2 address the same object, e.g., i
pi2 = 0; // pi2 now addresses no object

It can be hard to keep straight whether an assignment changes the pointer or
the object to which the pointer points. The important thing to keep in mind is that
assignment changes its left-hand operand. When we write

pi = &ival; // value in pi is changed; pi now points to ival

we assign a new value to pi, which changes the address that pi holds. On the
other hand, when we write

*pi = 0; // value in ival is changed; pi is unchanged

then *pi (i.e., the value to which pi points) is changed.

Other Pointer Operations

So long as the pointer has a valid value, we can use a pointer in a condition. Just
as when we use an arithmetic value in a condition (§ 2.1.2, p. 35), if the pointer is
0, then the condition is false:

int ival = 1024;
int *pi = 0; // pi is a valid, null pointer
int *pi2 = &ival; // pi2 is a valid pointer that holds the address of ival
if (pi) // pi has value 0, so condition evaluates as false

// . . .
if (pi2) // pi2 points to ival, so it is not 0; the condition evaluates as true

// . . .

Any nonzero pointer evaluates as true
Given two valid pointers of the same type, we can compare them using the

equality (==) or inequality (!=) operators. The result of these operators has type
bool. Two pointers are equal if they hold the same address and unequal other-
wise. Two pointers hold the same address (i.e., are equal) if they are both null, if
they address the same object, or if they are both pointers one past the same object.
Note that it is possible for a pointer to an object and a pointer one past the end of
a different object to hold the same address. Such pointers will compare equal.

Because these operations use the value of the pointer, a pointer used in a con-
dition or in a comparsion must be a valid pointer. Using an invalid pointer as a
condition or in a comparison is undefined.

§ 3.5.3 (p. 117) will cover additional pointer operations.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

56 Variables and Basic Types

void* Pointers

The type void* is a special pointer type that can hold the address of any object.
Like any other pointer, a void* pointer holds an address, but the type of the object
at that address is unknown:

double obj = 3.14, *pd = &obj;

// ok: void* can hold the address value of any data pointer type
void *pv = &obj; // obj can be an object of any type
pv = pd; // pv can hold a pointer to any type

There are only a limited number of things we can do with a void* pointer: We can
compare it to another pointer, we can pass it to or return it from a function, and
we can assign it to another void* pointer. We cannot use a void* to operate on
the object it addresses—we don’t know that object’s type, and the type determines
what operations we can perform on the object.

Generally, we use a void* pointer to deal with memory as memory, rather
than using the pointer to access the object stored in that memory. We’ll cover using
void* pointers in this way in § 19.1.1 (p. 821). § 4.11.3 (p. 163) will show how we
can retrieve the address stored in a void* pointer.

EXE R C I S E S SE C TI ON 2.3.2

Exercise 2.18: Write code to change the value of a pointer. Write code to change the
value to which the pointer points.

Exercise 2.19: Explain the key differences between pointers and references.

Exercise 2.20: What does the following program do?

int i = 42;
int *p1 = &i;

*p1 = *p1 * *p1;

Exercise 2.21: Explain each of the following definitions. Indicate whether any are il-
legal and, if so, why.

int i = 0;
(a) double* dp = &i; (b) int *ip = i; (c) int *p = &i;

Exercise 2.22: Assuming p is a pointer to int, explain the following code:

if (p) // ...
if (*p) // ...

Exercise 2.23: Given a pointer p, can you determine whether p points to a valid object?
If so, how? If not, why not?

Exercise 2.24: Why is the initialization of p legal but that of lp illegal?

int i = 42; void *p = &i; long *lp = &i;
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2.3.3 Understanding Compound Type Declarations
As we’ve seen, a variable definition consists of a base type and a list of declarators.
Each declarator can relate its variable to the base type differently from the other
declarators in the same definition. Thus, a single definition might define variables
of different types:

// i is an int; p is a pointer to int; r is a reference to int
int i = 1024, *p = &i, &r = i;

Many programmers are confused by the interaction between the base
type and the type modification that may be part of a declarator.

Defining Multiple Variables

It is a common misconception to think that the type modifier (* or &) applies to all
the variables defined in a single statement. Part of the problem arises because we
can put whitespace between the type modifier and the name being declared:

int* p; // legal but might be misleading

We say that this definition might be misleading because it suggests that int* is
the type of each variable declared in that statement. Despite appearances, the base
type of this declaration is int, not int*. The * modifies the type of p. It says
nothing about any other objects that might be declared in the same statement:

int* p1, p2; // p1 is a pointer to int; p2 is an int

There are two common styles used to define multiple variables with pointer or
reference type. The first places the type modifier adjacent to the identifier:

int *p1, *p2; // both p1 and p2 are pointers to int

This style emphasizes that the variable has the indicated compound type.
The second places the type modifier with the type but defines only one variable

per statement:

int* p1; // p1 is a pointer to int
int* p2; // p2 is a pointer to int

This style emphasizes that the declaration defines a compound type.

There is no single right way to define pointers or references. The im-
portant thing is to choose a style and use it consistently.

In this book we use the first style and place the * (or the &) with the variable name.

Pointers to Pointers

In general, there are no limits to how many type modifiers can be applied to a
declarator. When there is more than one modifier, they combine in ways that are
logical but not always obvious. As one example, consider a pointer. A pointer is
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an object in memory, so like any object it has an address. Therefore, we can store
the address of a pointer in another pointer.

We indicate each pointer level by its own *. That is, we write ** for a pointer
to a pointer, *** for a pointer to a pointer to a pointer, and so on:

int ival = 1024;
int *pi = &ival; // pi points to an int
int **ppi = &pi; // ppi points to a pointer to an int

Here pi is a pointer to an int and ppi is a pointer to a pointer to an int. We
might represent these objects as

ppi pi ival

1024� �

Just as dereferencing a pointer to an int yields an int, dereferencing a pointer
to a pointer yields a pointer. To access the underlying object, we must dereference
the original pointer twice:

cout << "The value of ival\n"
<< "direct value: " << ival << "\n"
<< "indirect value: " << *pi << "\n"
<< "doubly indirect value: " << **ppi
<< endl;

This program prints the value of ival three different ways: first, directly; then,
through the pointer to int in pi; and finally, by dereferencing ppi twice to get to
the underlying value in ival.

References to Pointers

A reference is not an object. Hence, we may not have a pointer to a reference.
However, because a pointer is an object, we can define a reference to a pointer:

int i = 42;
int *p; // p is a pointer to int
int *&r = p; // r is a reference to the pointer p

r = &i; // r refers to a pointer; assigning &i to r makes p point to i
*r = 0; // dereferencing r yields i, the object to which p points; changes i to 0

The easiest way to understand the type of r is to read the definition right to left.
The symbol closest to the name of the variable (in this case the & in &r) is the one
that has the most immediate effect on the variable’s type. Thus, we know that r is
a reference. The rest of the declarator determines the type to which r refers. The
next symbol, * in this case, says that the type r refers to is a pointer type. Finally,
the base type of the declaration says that r is a reference to a pointer to an int.

It can be easier to understand complicated pointer or reference declara-
tions if you read them from right to left.
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EXE R C I S E S SE C TI ON 2.3.3

Exercise 2.25: Determine the types and values of each of the following variables.

(a) int* ip, i, &r = i; (b) int i, *ip = 0; (c) int* ip, ip2;

2.4 const Qualifier
Sometimes we want to define a variable whose value we know cannot be changed.
For example, we might want to use a variable to refer to the size of a buffer size.
Using a variable makes it easy for us to change the size of the buffer if we de-
cided the original size wasn’t what we needed. On the other hand, we’d also like
to prevent code from inadvertently giving a new value to the variable we use to
represent the buffer size. We can make a variable unchangeable by defining the
variable’s type as const:

const int bufSize = 512; // input buffer size

defines bufSize as a constant. Any attempt to assign to bufSize is an error:

bufSize = 512; // error: attempt to write to const object

Because we can’t change the value of a const object after we create it, it must be
initialized. As usual, the initializer may be an arbitrarily complicated expression:

const int i = get_size(); // ok: initialized at run time
const int j = 42; // ok: initialized at compile time
const int k; // error: k is uninitialized const

Initialization and const

As we have observed many times, the type of an object defines the operations that
can be performed by that object. A const type can use most but not all of the
same operations as its nonconst version. The one restriction is that we may use
only those operations that cannot change an object. So, for example, we can use a
const int in arithmetic expressions in exactly the same way as a plain, nonconst
int. A const int converts to bool the same way as a plain int, and so on.

Among the operations that don’t change the value of an object is initialization—
when we use an object to initialize another object, it doesn’t matter whether either
or both of the objects are consts:

int i = 42;
const int ci = i; // ok: the value in i is copied into ci
int j = ci; // ok: the value in ci is copied into j

Although ci is a const int, the value in ci is an int. The constness of ci
matters only for operations that might change ci. When we copy ci to initialize
j, we don’t care that ci is a const. Copying an object doesn’t change that object.
Once the copy is made, the new object has no further access to the original object.
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By Default, const Objects Are Local to a File

When a const object is initialized from a compile-time constant, such as in our
definition of bufSize:

const int bufSize = 512; // input buffer size

the compiler will usually replace uses of the variable with its corresponding value
during compilation. That is, the compiler will generate code using the value 512
in the places that our code uses bufSize.

To substitute the value for the variable, the compiler has to see the variable’s
initializer. When we split a program into multiple files, every file that uses the
const must have access to its initializer. In order to see the initializer, the variable
must be defined in every file that wants to use the variable’s value (§ 2.2.2, p. 45).
To support this usage, yet avoid multiple definitions of the same variable, const
variables are defined as local to the file. When we define a const with the same
name in multiple files, it is as if we had written definitions for separate variables
in each file.

Sometimes we have a const variable that we want to share across multiple
files but whose initializer is not a constant expression. In this case, we don’t want
the compiler to generate a separate variable in each file. Instead, we want the
const object to behave like other (nonconst) variables. We want to define the
const in one file, and declare it in the other files that use that object.

To define a single instance of a const variable, we use the keyword extern
on both its definition and declaration(s):

// file_1.cc defines and initializes a const that is accessible to other files
extern const int bufSize = fcn();

// file_1.h
extern const int bufSize; // same bufSize as defined in file_1.cc

In this program, file_1.cc defines and initializes bufSize. Because this dec-
laration includes an initializer, it is (as usual) a definition. However, because
bufSize is const, we must specify extern in order for bufSize to be used
in other files.

The declaration in file_1.h is also extern. In this case, the extern signifies
that bufSize is not local to this file and that its definition will occur elsewhere.

To share a const object among multiple files, you must define the vari-
able as extern.

EXE R C I S E S SE C TI ON 2.4

Exercise 2.26: Which of the following are legal? For those that are illegal, explain why.

(a) const int buf; (b) int cnt = 0;
(c) const int sz = cnt; (d) ++cnt; ++sz;
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2.4.1 References to const
As with any other object, we can bind a reference to an object of a const type.
To do so we use a reference to const, which is a reference that refers to a const
type. Unlike an ordinary reference, a reference to const cannot be used to change
the object to which the reference is bound:

const int ci = 1024;

const int &r1 = ci; // ok: both reference and underlying object are const
r1 = 42; // error: r1 is a reference to const
int &r2 = ci; // error: nonconst reference to a const object

Because we cannot assign directly to ci, we also should not be able to use a refer-
ence to change ci. Therefore, the initialization of r2 is an error. If this initialization
were legal, we could use r2 to change the value of its underlying object.

TERMINOLOGY: CONST REFERENCE IS A REFERENCE TO CONST

C++ programmers tend to abbreviate the phrase “reference to const” as “const ref-
erence.” This abbreviation makes sense—if you remember that it is an abbreviation.

Technically speaking, there are no const references. A reference is not an object,
so we cannot make a reference itself const. Indeed, because there is no way to make
a reference refer to a different object, in some sense all references are const. Whether
a reference refers to a const or nonconst type affects what we can do with that ref-
erence, not whether we can alter the binding of the reference itself.

Initialization and References to const

In § 2.3.1 (p. 51) we noted that there are two exceptions to the rule that the type
of a reference must match the type of the object to which it refers. The first excep-
tion is that we can initialize a reference to const from any expression that can be
converted (§ 2.1.2, p. 35) to the type of the reference. In particular, we can bind a
reference to const to a nonconst object, a literal, or a more general expression:

int i = 42;
const int &r1 = i; // we can bind a const int& to a plain int object
const int &r2 = 42; // ok: r1 is a reference to const
const int &r3 = r1 * 2; // ok: r3 is a reference to const
int &r4 = r * 2; // error: r4 is a plain, nonconst reference

The easiest way to understand this difference in initialization rules is to consider
what happens when we bind a reference to an object of a different type:

double dval = 3.14;
const int &ri = dval;

Here ri refers to an int. Operations on ri will be integer operations, but dval
is a floating-point number, not an integer. To ensure that the object to which ri is
bound is an int, the compiler transforms this code into something like

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

62 Variables and Basic Types

const int temp = dval; // create a temporary const int from the double
const int &ri = temp; // bind ri to that temporary

In this case, ri is bound to a temporary object. A temporary object is an unnamed
object created by the compiler when it needs a place to store a result from evaluat-
ing an expression. C++ programmers often use the word temporary as an abbrevi-
ation for temporary object.

Now consider what could happen if this initialization were allowed but ri
was not const. If ri weren’t const, we could assign to ri. Doing so would
change the object to which ri is bound. That object is a temporary, not dval. The
programmer who made ri refer to dval would probably expect that assigning to
ri would change dval. After all, why assign to ri unless the intent is to change
the object to which ri is bound? Because binding a reference to a temporary is
almost surely not what the programmer intended, the language makes it illegal.

A Reference to const May Refer to an Object That Is Not const

It is important to realize that a reference to const restricts only what we can do
through that reference. Binding a reference to const to an object says nothing
about whether the underlying object itself is const. Because the underlying object
might be nonconst, it might be changed by other means:

int i = 42;
int &r1 = i; // r1 bound to i
const int &r2 = i; // r2 also bound to i; but cannot be used to change i
r1 = 0; // r1 is not const; i is now 0
r2 = 0; // error: r2 is a reference to const

Binding r2 to the (nonconst) int i is legal. However, we cannot use r2 to change
i. Even so, the value in i still might change. We can change i by assigning to it
directly, or by assigning to another reference bound to i, such as r1.

2.4.2 Pointers and const
As with references, we can define pointers that point to either const or nonconst
types. Like a reference to const, a pointer to const (§ 2.4.1, p. 61) may not be
used to change the object to which the pointer points. We may store the address of
a const object only in a pointer to const:

const double pi = 3.14; // pi is const; its value may not be changed
double *ptr = &pi; // error: ptr is a plain pointer
const double *cptr = &pi; // ok: cptr may point to a double that is const
*cptr = 42; // error: cannot assign to *cptr

In § 2.3.2 (p. 52) we noted that there are two exceptions to the rule that the types
of a pointer and the object to which it points must match. The first exception is that
we can use a pointer to const to point to a nonconst object:

double dval = 3.14; // dval is a double; its value can be changed
cptr = &dval; // ok: but can’t change dval through cptr
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Like a reference to const, a pointer to const says nothing about whether the
object to which the pointer points is const. Defining a pointer as a pointer to
const affects only what we can do with the pointer. It is important to remember
that there is no guarantee that an object pointed to by a pointer to const won’t
change.

It may be helpful to think of pointers and references to const as point-
ers or references ”that think they point or refer to const.”

const Pointers

Unlike references, pointers are objects. Hence, as with any other object type, we
can have a pointer that is itself const. Like any other const object, a const
pointer must be initialized, and once initialized, its value (i.e., the address that it
holds) may not be changed. We indicate that the pointer is const by putting the
const after the *. This placement indicates that it is the pointer, not the pointed-to
type, that is const:

int errNumb = 0;
int *const curErr = &errNumb; // curErr will always point to errNumb
const double pi = 3.14159;
const double *const pip = &pi; // pip is a const pointer to a const object

As we saw in § 2.3.3 (p. 58), the easiest way to understand these declarations is to
read them from right to left. In this case, the symbol closest to curErr is const,
which means that curErr itself will be a const object. The type of that object
is formed from the rest of the declarator. The next symbol in the declarator is
*, which means that curErr is a const pointer. Finally, the base type of the
declaration completes the type of curErr, which is a const pointer to an object
of type int. Similarly, pip is a const pointer to an object of type const double.

The fact that a pointer is itself const says nothing about whether we can use
the pointer to change the underlying object. Whether we can change that object
depends entirely on the type to which the pointer points. For example, pip is a
const pointer to const. Neither the value of the object addressed by pip nor the
address stored in pip can be changed. On the other hand, curErr addresses a
plain, nonconst int. We can use curErr to change the value of errNumb:

*pip = 2.72; // error: pip is a pointer to const
// if the object to which curErr points (i.e., errNumb) is nonzero
if (*curErr) {

errorHandler();

*curErr = 0; // ok: reset the value of the object to which curErr is bound
}

2.4.3 Top-Level const
As we’ve seen, a pointer is an object that can point to a different object. As a
result, we can talk independently about whether a pointer is const and whether
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EXE R C I S E S SE C TI ON 2.4.2

Exercise 2.27: Which of the following initializations are legal? Explain why.

(a) int i = -1, &r = 0; (b) int *const p2 = &i2;
(c) const int i = -1, &r = 0; (d) const int *const p3 = &i2;
(e) const int *p1 = &i2; (f) const int &const r2;
(g) const int i2 = i, &r = i;

Exercise 2.28: Explain the following definitions. Identify any that are illegal.

(a) int i, *const cp; (b) int *p1, *const p2;
(c) const int ic, &r = ic; (d) const int *const p3;
(e) const int *p;

Exercise 2.29: Uing the variables in the previous exercise, which of the following as-
signments are legal? Explain why.

(a) i = ic; (b) p1 = p3;
(c) p1 = &ic; (d) p3 = &ic;
(e) p2 = p1; (f) ic = *p3;

the objects to which it can point are const. We use the term top-level const to
indicate that the pointer itself is a const. When a pointer can point to a const
object, we refer to that const as a low-level const.

More generally, top-level const indicates that an object itself is const. Top-
level const can appear in any object type, i.e., one of the built-in arithmetic types,
a class type, or a pointer type. Low-level const appears in the base type of com-
pound types such as pointers or references. Note that pointer types, unlike most
other types, can have both top-level and low-level const independently:

int i = 0;
int *const p1 = &i; // we can’t change the value of p1; const is top-level
const int ci = 42; // we cannot change ci; const is top-level
const int *p2 = &ci; // we can change p2; const is low-level
const int *const p3 = p2; // right-most const is top-level, left-most is not
const int &r = ci; // const in reference types is always low-level

The distinction between top-level and low-level matters when we copy an ob-
ject. When we copy an object, top-level consts are ignored:

i = ci; // ok: copying the value of ci; top-level const in ci is ignored
p2 = p3; // ok: pointed-to type matches; top-level const in p3 is ignored

Copying an object doesn’t change the copied object. As a result, it is immaterial
whether the object copied from or copied into is const.

On the other hand, low-level const is never ignored. When we copy an object,
both objects must have the same low-level const qualification or there must be
a conversion between the types of the two objects. In general, we can convert a
nonconst to const but not the other way round:
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int *p = p3; // error: p3 has a low-level const but p doesn’t
p2 = p3; // ok: p2 has the same low-level const qualification as p3
p2 = &i; // ok: we can convert int* to const int*
int &r = ci; // error: can’t bind an ordinary int& to a const int object
const int &r2 = i; // ok: can bind const int& to plain int

p3 has both a top-level and low-level const. When we copy p3, we can ignore its
top-level const but not the fact that it points to a const type. Hence, we cannot
use p3 to initialize p, which points to a plain (nonconst) int. On the other hand,
we can assign p3 to p2. Both pointers have the same (low-level const) type. The
fact that p3 is a const pointer (i.e., that it has a top-level const) doesn’t matter.

EXE R C I S E S SE C TI ON 2.4.3

Exercise 2.30: For each of the following declarations indicate whether the object being
declared has top-level or low-level const.

const int v2 = 0; int v1 = v2;
int *p1 = &v1, &r1 = v1;
const int *p2 = &v2, *const p3 = &i, &r2 = v2;

Exercise 2.31: Given the declarations in the previous exercise determine whether the
following assignments are legal. Explain how the top-level or low-level const applies
in each case.

r1 = v2;
p1 = p2; p2 = p1;
p1 = p3; p2 = p3;

2.4.4 constexpr and Constant Expressions
A constant expression is an expression whose value cannot change and that can
be evaluated at compile time. A literal is a constant expression. A const object
that is initialized from a constant expression is also a constant expression. As we’ll
see, there are several contexts in the language that require constant expressions.

Whether a given object (or expression) is a constant expression depends on the
types and the initializers. For example:

const int max_files = 20; // max_files is a constant expression
const int limit = max_files + 1; // limit is a constant expression
int staff_size = 27; // staff_size is not a constant expression
const int sz = get_size(); // sz is not a constant expression

Although staff_size is initialized from a literal, it is not a constant expression
because it is a plain int, not a const int. On the other hand, even though sz is
a const, the value of its initializer is not known until run time. Hence, sz is not a
constant expression.
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constexpr Variables

In a large system, it can be difficult to determine (for certain) that an initializer is a
constant expression. We might define a const variable with an initializer that we
think is a constant expression. However, when we use that variable in a context
that requires a constant expression we may discover that the initializer was not a
constant expression. In general, the definition of an object and its use in such a
context can be widely separated.

Under the new standard, we can ask the compiler to verify that a variable is a
constant expression by declaring the variable in a constexpr declaration. Vari-
ables declared as constexpr are implicitly const and must be initialized by con-
stant expressions:

constexpr int mf = 20; // 20 is a constant expression
constexpr int limit = mf + 1; // mf + 1 is a constant expression
constexpr int sz = size(); // ok only if size is a constexpr function

Although we cannot use an ordinary function as an initializer for a constexpr
variable, we’ll see in § 6.5.2 (p. 239) that the new standard lets us define certain
functions as constexpr. Such functions must be simple enough that the com-
piler can evaluate them at compile time. We can use constexpr functions in the
initializer of a constexpr variable.

Generally, it is a good idea to use constexpr for variables that you
intend to use as constant expressions.

Literal Types

Because a constant expression is one that can be evaluated at compile time, there
are limits on the types that we can use in a constexpr declaration. The types
we can use in a constexpr are known as “literal types” because they are simple
enough to have literal values.

Of the types we have used so far, the arithmetic, reference, and pointer types
are literal types. Our Sales_item class and the library IO and string types are
not literal types. Hence, we cannot define variables of these types as constexprs.
We’ll see other kinds of literal types in § 7.5.6 (p. 299) and § 19.3 (p. 832).

Although we can define both pointers and reference as constexprs, the ob-
jects we use to initialize them are strictly limited. We can initialize a constexpr
pointer from the nullptr literal or the literal (i.e., constant expression) 0. We can
also point to (or bind to) an object that remains at a fixed address.

For reasons we’ll cover in § 6.1.1 (p. 204), variables defined inside a function
ordinarily are not stored at a fixed address. Hence, we cannot use a constexpr
pointer to point to such variables. On the other hand, the address of an object
defined outside of any function is a constant expression, and so may be used to
initialize a constexpr pointer. We’ll see in § 6.1.1 (p. 205), that functions may
define variables that exist across calls to that function. Like an object defined out-
side any function, these special local objects also have fixed addresses. Therefore,
a constexpr reference may be bound to, and a constexpr pointer may address,
such variables.
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Pointers and constexpr

It is important to understand that when we define a pointer in a constexpr dec-
laration, the constexpr specifier applies to the pointer, not the type to which the
pointer points:

const int *p = nullptr; // p is a pointer to a const int
constexpr int *q = nullptr; // q is a const pointer to int

Despite appearances, the types of p and q are quite different; p is a pointer to
const, whereas q is a constant pointer. The difference is a consequence of the fact
that constexpr imposes a top-level const (§ 2.4.3, p. 63) on the objects it defines.

Like any other constant pointer, a constexpr pointer may point to a const
or a nonconst type:

constexpr int *np = nullptr; // np is a constant pointer to int that is null
int j = 0;
constexpr int i = 42; // type of i is const int
// i and j must be defined outside any function
constexpr const int *p = &i; // p is a constant pointer to the const int i
constexpr int *p1 = &j; // p1 is a constant pointer to the int j

EXE R C I S E S SE C TI ON 2.4.4

Exercise 2.32: Is the following code legal or not? If not, how might you make it legal?

int null = 0, *p = null;

2.5 Dealing with Types
As our programs get more complicated, we’ll see that the types we use also get
more complicated. Complications in using types arise in two different ways. Some
types are hard to “spell.” That is, they have forms that are tedious and error-prone
to write. Moreover, the form of a complicated type can obscure its purpose or
meaning. The other source of complication is that sometimes it is hard to deter-
mine the exact type we need. Doing so can require us to look back into the context
of the program.

2.5.1 Type Aliases
A type alias is a name that is a synonym for another type. Type aliases let us sim-
plify complicated type definitions, making those types easier to use. Type aliases
also let us emphasize the purpose for which a type is used.

We can define a type alias in one of two ways. Traditionally, we use a typedef:

typedef double wages; // wages is a synonym for double
typedef wages base, *p; // base is a synonym for double, p for double*
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The keyword typedef may appear as part of the base type of a declaration (§ 2.3,
p. 50). Declarations that include typedefdefine type aliases rather than variables.
As in any other declaration, the declarators can include type modifiers that define
compound types built from the base type of the definition.

The new standard introduced a second way to define a type alias, via an alias
declaration:

using SI = Sales_item; // SI is a synonym for Sales_item

An alias declaration starts with the keyword using followed by the alias name
and an =. The alias declaration defines the name on the left-hand side of the = as
an alias for the type that appears on the right-hand side.

A type alias is a type name and can appear wherever a type name can appear:

wages hourly, weekly; // same as double hourly, weekly;
SI item; // same as Sales_item item

Pointers, const, and Type Aliases

Declarations that use type aliases that represent compound types and const can
yield surprising results. For example, the following declarations use the type
pstring, which is an alias for the the type char*:

typedef char *pstring;
const pstring cstr = 0; // cstr is a constant pointer to char
const pstring *ps; // ps is a pointer to a constant pointer to char

The base type in these declarations is const pstring. As usual, a const that
appears in the base type modifies the given type. The type of pstring is “pointer
to char.” So, const pstring is a constant pointer to char—not a pointer to
const char.

It can be tempting, albeit incorrect, to interpret a declaration that uses a type
alias by conceptually replacing the alias with its corresponding type:

const char *cstr = 0; // wrong interpretation of const pstring cstr

However, this interpretation is wrong. When we use pstring in a declaration,
the base type of the declaration is a pointer type. When we rewrite the declaration
using char*, the base type is char and the * is part of the declarator. In this case,
const char is the base type. This rewrite declares cstr as a pointer to const
char rather than as a const pointer to char.

2.5.2 The auto Type Specifier
It is not uncommon to want to store the value of an expression in a variable. To
declare the variable, we have to know the type of that expression. When we write
a program, it can be surprisingly difficult—and sometimes even impossible—to
determine the type of an expression. Under the new standard, we can let the com-
piler figure out the type for us by using the auto type specifier. Unlike type speci-
fiers, such as double, that name a specific type, auto tells the compiler to deduce
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the type from the initializer. By implication, a variable that uses auto as its type
specifier must have an initializer:

// the type of item is deduced from the type of the result of adding val1 and val2
auto item = val1 + val2; // item initialized to the result of val1 + val2

Here the compiler will deduce the type of item from the type returned by applying
+ to val1 and val2. If val1 and val2 are Sales_item objects (§ 1.5, p. 19), item
will have type Sales_item. If those variables are type double, then item has
type double, and so on.

As with any other type specifier, we can define multiple variables using auto.
Because a declaration can involve only a single base type, the initializers for all the
variables in the declaration must have types that are consistent with each other:

auto i = 0, *p = &i; // ok: i is int and p is a pointer to int
auto sz = 0, pi = 3.14; // error: inconsistent types for sz and pi

Compound Types, const, and auto

The type that the compiler infers for auto is not always exactly the same as the
initializer’s type. Instead, the compiler adjusts the type to conform to normal ini-
tialization rules.

First, as we’ve seen, when we use a reference, we are really using the object to
which the reference refers. In particular, when we use a reference as an initializer,
the initializer is the corresponding object. The compiler uses that object’s type for
auto’s type deduction:

int i = 0, &r = i;
auto a = r; // a is an int (r is an alias for i, which has type int)

Second, auto ordinarily ignores top-level consts (§ 2.4.3, p. 63). As usual in ini-
tializations, low-level consts, such as when an initializer is a pointer to const,
are kept:

const int ci = i, &cr = ci;
auto b = ci; // b is an int (top-level const in ci is dropped)
auto c = cr; // c is an int (cr is an alias for ci whose const is top-level)
auto d = &i; // d is an int* (& of an int object is int*)
auto e = &ci; // e is const int* (& of a const object is low-level const)

If we want the deduced type to have a top-level const, we must say so explicitly:

const auto f = ci; // deduced type of ci is int; f has type const int

We can also specify that we want a reference to the auto-deduced type. Normal
initialization rules still apply:

auto &g = ci; // g is a const int& that is bound to ci
auto &h = 42; // error: we can’t bind a plain reference to a literal
const auto &j = 42; // ok: we can bind a const reference to a literal
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When we ask for a reference to an auto-deduced type, top-level consts in the
initializer are not ignored. As usual, consts are not top-level when we bind a
reference to an initializer.

When we define several variables in the same statement, it is important to re-
member that a reference or pointer is part of a particular declarator and not part of
the base type for the declaration. As usual, the initializers must provide consistent
auto-deduced types:

auto k = ci, &l = i; // k is int; l is int&
auto &m = ci, *p = &ci; // m is a const int&; p is a pointer to const int
// error: type deduced from i is int; type deduced from &ci is const int
auto &n = i, *p2 = &ci;

EXE R C I S E S SE C TI ON 2.5.2

Exercise 2.33: Using the variable definitions from this section, determine what hap-
pens in each of these assignments:

a = 42; b = 42; c = 42;
d = 42; e = 42; g = 42;

Exercise 2.34: Write a program containing the variables and assignments from the
previous exercise. Print the variables before and after the assignments to check
whether your predictions in the previous exercise were correct. If not, study the exam-
ples until you can convince yourself you know what led you to the wrong conclusion.

Exercise 2.35: Determine the types deduced in each of the following definitions. Once
you’ve figured out the types, write a program to see whether you were correct.

const int i = 42;
auto j = i; const auto &k = i; auto *p = &i;
const auto j2 = i, &k2 = i;

2.5.3 The decltype Type Specifier
Sometimes we want to define a variable with a type that the compiler deduces
from an expression but do not want to use that expression to initialize the variable.
For such cases, the new standard introduced a second type specifier, decltype,
which returns the type of its operand. The compiler analyzes the expression to
determine its type but does not evaluate the expression:

decltype(f()) sum = x; // sum has whatever type f returns

Here, the compiler does not call f, but it uses the type that such a call would return
as the type for sum. That is, the compiler gives sum the same type as the type that
would be returned if we were to call f.

The way decltype handles top-level const and references differs subtly from
the way auto does. When the expression to which we apply decltype is a vari-
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able, decltype returns the type of that variable, including top-level const and
references:

const int ci = 0, &cj = ci;
decltype(ci) x = 0; // x has type const int
decltype(cj) y = x; // y has type const int& and is bound to x
decltype(cj) z; // error: z is a reference and must be initialized

Because cj is a reference, decltype(cj) is a reference type. Like any other ref-
erence, z must be initialized.

It is worth noting that decltype is the only context in which a variable defined
as a reference is not treated as a synonym for the object to which it refers.

decltype and References

When we apply decltype to an expression that is not a variable, we get the type
that that expression yields. As we’ll see in § 4.1.1 (p. 135), some expressions will
cause decltype to yield a reference type. Generally speaking, decltype returns
a reference type for expressions that yield objects that can stand on the left-hand
side of the assignment:

// decltype of an expression can be a reference type
int i = 42, *p = &i, &r = i;
decltype(r + 0) b; // ok: addition yields an int; b is an (uninitialized) int
decltype(*p) c; // error: c is int& and must be initialized

Here r is a reference, so decltype(r) is a reference type. If we want the type to
which r refers, we can use r in an expression, such as r + 0, which is an expression
that yields a value that has a nonreference type.

On the other hand, the dereference operator is an example of an expression
for which decltype returns a reference. As we’ve seen, when we dereference a
pointer, we get the object to which the pointer points. Moreover, we can assign to
that object. Thus, the type deduced by decltype(*p) is int&, not plain int.

Another important difference between decltype and auto is that the deduc-
tion done by decltype depends on the form of its given expression. What can be
confusing is that enclosing the name of a variable in parentheses affects the type
returned by decltype. When we apply decltype to a variable without any
parentheses, we get the type of that variable. If we wrap the variable’s name in one
or more sets of parentheses, the compiler will evaluate the operand as an expres-
sion. A variable is an expression that can be the left-hand side of an assignment.
As a result, decltype on such an expression yields a reference:

// decltype of a parenthesized variable is always a reference
decltype((i)) d; // error: d is int& and must be initialized
decltype(i) e; // ok: e is an (uninitialized) int

Remember that decltype((variable)) (note, double parentheses) is al-
ways a reference type, but decltype(variable) is a reference type only
if variable is a reference.
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EXE R C I S E S SE C TI ON 2.5.3

Exercise 2.36: In the following code, determine the type of each variable and the value
each variable has when the code finishes:

int a = 3, b = 4;
decltype(a) c = a;
decltype((b)) d = a;
++c;
++d;

Exercise 2.37: Assignment is an example of an expression that yields a reference type.
The type is a reference to the type of the left-hand operand. That is, if i is an int, then
the type of the expression i = x is int&. Using that knowledge, determine the type
and value of each variable in this code:

int a = 3, b = 4;
decltype(a) c = a;
decltype(a = b) d = a;

Exercise 2.38: Describe the differences in type deduction between decltype and
auto. Give an example of an expression where auto and decltype will deduce
the same type and an example where they will deduce differing types.

2.6 Defining Our Own Data Structures
At the most basic level, a data structure is a way to group together related data
elements and a strategy for using those data. As one example, our Sales_item
class groups an ISBN, a count of how many copies of that book had been sold, and
the revenue associated with those sales. It also provides a set of operations such as
the isbn function and the >>, <<, +, and += operators.

In C++ we define our own data types by defining a class. The library types
string, istream, and ostream are all defined as classes, as is the Sales_item
type we used in Chapter 1. C++ support for classes is extensive—in fact, Parts III
and IV are largely devoted to describing class-related features. Even though the
Sales_item class is pretty simple, we won’t be able to fully define that class until
we learn how to write our own operators in Chapter 14.

2.6.1 Defining the Sales_data Type
Although we can’t yet write our Sales_item class, we can write a more concrete
class that groups the same data elements. Our strategy for using this class is that
users will be able to access the data elements directly and must implement needed
operations for themselves.

Because our data structure does not support any operations, we’ll name our
version Sales_data to distinguish it from Sales_item. We’ll define our class
as follows:
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struct Sales_data {
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};

Our class begins with the keyword struct, followed by the name of the class and
a (possibly empty) class body. The class body is surrounded by curly braces and
forms a new scope (§ 2.2.4, p. 48). The names defined inside the class must be
unique within the class but can reuse names defined outside the class.

The close curly that ends the class body must be followed by a semicolon. The
semicolon is needed because we can define variables after the class body:

struct Sales_data { /* ... */ } accum, trans, *salesptr;
// equivalent, but better way to define these objects
struct Sales_data { /* ... */ };
Sales_data accum, trans, *salesptr;

The semicolon marks the end of the (usually empty) list of declarators. Ordinarily,
it is a bad idea to define an object as part of a class definition. Doing so obscures
the code by combining the definitions of two different entities—the class and a
variable—in a single statement.

It is a common mistake among new programmers to forget the semicolon
at the end of a class definition.

Class Data Members

The class body defines the members of the class. Our class has only data mem-
bers. The data members of a class define the contents of the objects of that class
type. Each object has its own copy of the class data members. Modifying the data
members of one object does not change the data in any other Sales_data object.

We define data members the same way that we define normal variables: We
specify a base type followed by a list of one or more declarators. Our class has
three data members: a member of type string named bookNo, an unsigned
member named units_sold, and a member of type double named revenue.
Each Sales_data object will have these three data members.

Under the new standard, we can supply an in-class initializer for a data mem-
ber. When we create objects, the in-class initializers will be used to initialize the
data members. Members without an initializer are default initialized (§ 2.2.1, p. 43).
Thus, when we define Sales_data objects, units_sold and revenue will be
initialized to 0, and bookNo will be initialized to the empty string.

In-class initializers are restricted as to the form (§ 2.2.1, p. 43) we can use: They
must either be enclosed inside curly braces or follow an = sign. We may not specify
an in-class initializer inside parentheses.

In § 7.2 (p. 268), we’ll see that C++ has a second keyword, class, that can be
used to define our own data structures. We’ll explain in that section why we use
struct here. Until we cover additional class-related features in Chapter 7, you
should use struct to define your own data structures.
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EXE R C I S E S SE C TI ON 2.6.1

Exercise 2.39: Compile the following program to see what happens when you forget
the semicolon after a class definition. Remember the message for future reference.

struct Foo { /* empty */ } // Note: no semicolon
int main()
{

return 0;
}

Exercise 2.40: Write your own version of the Sales_data class.

2.6.2 Using the Sales_data Class
Unlike the Sales_item class, our Sales_data class does not provide any oper-
ations. Users of Sales_data have to write whatever operations they need. As an
example, we’ll write a version of the program from § 1.5.2 (p. 23) that printed the
sum of two transactions. The input to our program will be transactions such as

0-201-78345-X 3 20.00
0-201-78345-X 2 25.00

Each transaction holds an ISBN, the count of how many books were sold, and the
price at which each book was sold.

Adding Two Sales_data Objects

Because Sales_data provides no operations, we will have to write our own
code to do the input, output, and addition operations. We’ll assume that our
Sales_data class is defined inside Sales_data.h. We’ll see how to define this
header in § 2.6.3 (p. 76).

Because this program will be longer than any we’ve written so far, we’ll explain
it in separate parts. Overall, our program will have the following structure:

#include <iostream>
#include <string>
#include "Sales_data.h"

int main()
{

Sales_data data1, data2;
// code to read into data1 and data2
// code to check whether data1 and data2 have the same ISBN
// and if so print the sum of data1 and data2

}

As in our original program, we begin by including the headers we’ll need and
define variables to hold the input. Note that unlike the Sales_item version, our
new program includes the string header. We need that header because our code
will have to manage the bookNo member, which has type string.
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Reading Data into a Sales_data Object

Although we won’t describe the library string type in detail until Chapters 3
and 10, we need to know only a little bit about strings in order to define and use
our ISBN member. The string type holds a sequence of characters. Its operations
include the >>, <<, and == operators to read, write, and compare strings, respec-
tively. With this knowledge we can write the code to read the first transaction:

double price = 0; // price per book, used to calculate total revenue
// read the first transactions: ISBN, number of books sold, price per book
std::cin >> data1.bookNo >> data1.units_sold >> price;
// calculate total revenue from price and units_sold
data1.revenue = data1.units_sold * price;

Our transactions contain the price at which each book was sold but our data struc-
ture stores the total revenue. We’ll read the transaction data into a double named
price, from which we’ll calculate the revenue member. The input statement

std::cin >> data1.bookNo >> data1.units_sold >> price;

uses the dot operator (§ 1.5.2, p. 23) to read into the bookNo and units_sold
members of the object named data1.

The last statement assigns the product of data1.units_sold and price into
the revenue member of data1.

Our program will next repeat the same code to read data into data2:

// read the second transaction
std::cin >> data2.bookNo >> data2.units_sold >> price;
data2.revenue = data2.units_sold * price;

Printing the Sum of Two Sales_data Objects

Our other task is to check that the transactions are for the same ISBN. If so, we’ll
print their sum, otherwise, we’ll print an error message:

if (data1.bookNo == data2.bookNo) {
unsigned totalCnt = data1.units_sold + data2.units_sold;
double totalRevenue = data1.revenue + data2.revenue;
// print: ISBN, total sold, total revenue, average price per book
std::cout << data1.bookNo << " " << totalCnt

<< " " << totalRevenue << " ";
if (totalCnt != 0)

std::cout << totalRevenue/totalCnt << std::endl;
else

std::cout << "(no sales)" << std::endl;
return 0; // indicate success

} else { // transactions weren’t for the same ISBN
std::cerr << "Data must refer to the same ISBN"

<< std::endl;
return -1; // indicate failure

}
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In the first if we compare the bookNo members of data1 and data2. If those
members are the same ISBN, we execute the code inside the curly braces. That
code adds the components of our two variables. Because we’ll need to print the
average price, we start by computing the total of units_sold and revenue and
store those in totalCnt and totalRevenue, respectively. We print those values.
Next we check that there were books sold and, if so, print the computed average
price per book. If there were no sales, we print a message noting that fact.

EXE R C I S E S SE C TI ON 2.6.2

Exercise 2.41: Use your Sales_data class to rewrite the exercises in § 1.5.1 (p. 22),
§ 1.5.2 (p. 24), and § 1.6 (p. 25). For now, you should define your Sales_data class in
the same file as your main function.

2.6.3 Writing Our Own Header Files
Although as we’ll see in § 19.7 (p. 852), we can define a class inside a function, such
classes have limited functionality. As a result, classes ordinarily are not defined
inside functions. When we define a class outside of a function, there may be only
one definition of that class in any given source file. In addition, if we use a class in
several different files, the class’ definition must be the same in each file.

In order to ensure that the class definition is the same in each file, classes are
usually defined in header files. Typically, classes are stored in headers whose name
derives from the name of the class. For example, the string library type is de-
fined in the string header. Similarly, as we’ve already seen, we will define our
Sales_data class in a header file named Sales_data.h.

Headers (usually) contain entities (such as class definitions and const and
constexpr variables (§ 2.4, p. 60)) that can be defined only once in any given
file. However, headers often need to use facilities from other headers. For exam-
ple, because our Sales_data class has a string member, Sales_data.h must
#include the string header. As we’ve seen, programs that use Sales_data
also need to include the string header in order to use the bookNo member. As
a result, programs that use Sales_data will include the string header twice:
once directly and once as a side effect of including Sales_data.h. Because a
header might be included more than once, we need to write our headers in a way
that is safe even if the header is included multiple times.

Whenever a header is updated, the source files that use that header must
be recompiled to get the new or changed declarations.

A Brief Introduction to the Preprocessor

The most common technique for making it safe to include a header multiple times
relies on the preprocessor. The preprocessor—which C++ inherits from C—is a
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program that runs before the compiler and changes the source text of our pro-
grams. Our programs already rely on one preprocessor facility, #include. When
the preprocessor sees a #include, it replaces the #include with the contents of
the specified header.

C++ programs also use the preprocessor to define header guards. Header
guards rely on preprocessor variables (§ 2.3.2, p. 53). Preprocessor variables have
one of two possible states: defined or not defined. The #define directive takes a
name and defines that name as a preprocessor variable. There are two other direc-
tives that test whether a given preprocessor variable has or has not been defined:
#ifdef is true if the variable has been defined, and #ifndef is true if the variable
has not been defined. If the test is true, then everything following the #ifdef or
#ifndef is processed up to the matching #endif.

We can use these facilities to guard against multiple inclusion as follows:

#ifndef SALES_DATA_H
#define SALES_DATA_H

#include <string>

struct Sales_data {
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};
#endif

The first time Sales_data.h is included, the #ifndef test will succeed. The
preprocessor will process the lines following #ifndef up to the #endif. As a
result, the preprocessor variable SALES_DATA_H will be defined and the contents
of Sales_data.hwill be copied into our program. If we include Sales_data.h
later on in the same file, the #ifndef directive will be false. The lines between it
and the #endif directive will be ignored.

Preprocessor variable names do not respect C++ scoping rules.

Preprocessor variables, including names of header guards, must be unique
throughout the program. Typically we ensure uniqueness by basing the guard’s
name on the name of a class in the header. To avoid name clashes with other enti-
ties in our programs, preprocessor variables usually are written in all uppercase.

Headers should have guards, even if they aren’t (yet) included by an-
other header. Header guards are trivial to write, and by habitually
defining them you don’t need to decide whether they are needed.

EXE R C I S E S SE C TI ON 2.6.3

Exercise 2.42: Write your own version of the Sales_data.h header and use it to
rewrite the exercise from § 2.6.2 (p. 76).
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CH A P T E R SU M M A R Y
Types are fundamental to all programming in C++.

Each type defines the storage requirements and the operations that may be per-
formed on objects of that type. The language provides a set of fundamental built-in
types such as int and char, which are closely tied to their representation on the
machine’s hardware. Types can be nonconst or const; a const object must be
initialized and, once initialized, its value may not be changed. In addition, we can
define compound types, such as pointers or references. A compound type is one
that is defined in terms of another type.

The language lets us define our own types by defining classes. The library uses
the class facility to provide a set of higher-level abstractions such as the IO and
string types.

DEFINED TERMS

address Number by which a byte in mem-
ory can be found.

alias declaration Defines a synonym for
another type: using name = type declares
name as a synonym for the type type.

arithmetic types Built-in types represent-
ing boolean values, characters, integers, and
floating-point numbers.

array Data structure that holds a collection
of unnamed objects that are accessed by an
index. Section 3.5 covers arrays in detail.

auto Type specifier that deduces the type
of a variable from its initializer.

base type type specifier, possibly qualified
by const, that precedes the declarators in
a declaration. The base type provides the
common type on which the declarators in a
declaration can build.

bind Associating a name with a given en-
tity so that uses of the name are uses of the
underlying entity. For example, a reference
is a name that is bound to an object.

byte Smallest addressable unit of memory.
On most machines a byte is 8 bits.

class member Part of a class.

compound type A type that is defined in
terms of another type.

const Type qualifier used to define objects
that may not be changed. const objects
must be initialized, because there is no way
to give them a value after they are defined.

const pointer Pointer that is const.

const reference Colloquial synonym for
reference to const.

constant expression Expression that can
be evaluated at compile time.

constexpr Variable that represents a con-
stant expression. § 6.5.2 (p. 239) covers
constexpr functions.

conversion Process whereby a value of
one type is transformed into a value of an-
other type. The language defines conver-
sions among the built-in types.

data member Data elements that consti-
tute an object. Every object of a given
class has its own copies of the class’ data
members. Data members may be initialized
when declared inside the class.

declaration Asserts the existence of a vari-
able, function, or type defined elsewhere.
Names may not be used until they are de-
fined or declared.
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declarator The part of a declaration that
includes the name being defined and an op-
tional type modifier.

decltype Type specifier that deduces the
type of a variable or an expression.

default initialization How objects are ini-
tialized when no explicit initializer is given.
How class type objects are initialized is con-
trolled by the class. Objects of built-in type
defined at global scope are initialized to 0;
those defined at local scope are uninitial-
ized and have undefined values.

definition Allocates storage for a variable
of a specified type and optionally initializes
the variable. Names may not be used until
they are defined or declared.

escape sequence Alternative mechanism
for representing characters, particularly for
those without printable representations. An
escape sequence is a backslash followed by
a character, three or fewer octal digits, or an
x followed by a hexadecimal number.

global scope The scope that is outside all
other scopes.

header guard Preprocessor variable used
to prevent a header from being included
more than once in a single file.

identifier Sequence of characters that make
up a name. Identifiers are case-sensitive.

in-class initializer Initializer provided as
part of the declaration of a class data mem-
ber. In-class initializers must follow an =
symbol or be enclosed inside curly braces.

in scope Name that is visible from the cur-
rent scope.

initialized A variable given an initial value
when it is defined. Variables usually should
be initialized.

inner scope Scope that is nested inside an-
other scope.

integral types See arithmetic type.

list initialization Form of initialization that
uses curly braces to enclose one or more ini-
tializers.

literal A value such as a number, a char-
acter, or a string of characters. The value
cannot be changed. Literal characters are
enclosed in single quotes, literal strings in
double quotes.

local scope Colloquial synonym for block
scope.

low-level const A const that is not top-
level. Such consts are integral to the type
and are never ignored.

member Part of a class.

nonprintable character A character with
no visible representation, such as a control
character, a backspace, newline, and so on.

null pointer Pointer whose value is 0. A
null pointer is valid but does not point to
any object.

nullptr Literal constant that denotes the
null pointer.

object A region of memory that has a type.
A variable is an object that has a name.

outer scope Scope that encloses another
scope.

pointer An object that can hold the address
of an object, the address one past the end of
an object, or zero.

pointer to const Pointer that can hold the
address of a const object. A pointer to
const may not be used to change the value
of the object to which it points.

preprocessor Program that runs as part of
compilation of a C++ program.

preprocessor variable Variable managed
by the preprocessor. The preprocessor re-
places each preprocessor variable by its
value before our program is compiled.

reference An alias for another object.
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reference to const A reference that may
not change the value of the object to which it
refers. A reference to const may be bound
to a const object, a nonconst object, or the
result of an expression.

scope The portion of a program in which
names have meaning. C++ has several lev-
els of scope:

global—names defined outside any
other scope

class—names defined inside a class

namespace—names defined inside a
namespace

block—names defined inside a block

Scopes nest. Once a name is declared, it
is accessible until the end of the scope in
which it was declared.

separate compilation Ability to split a
program into multiple separate source files.

signed Integer type that holds negative or
positive values, including zero.

string Library type representing variable-
length sequences of characters.

struct Keyword used to define a class.

temporary Unnamed object created by the
compiler while evaluating an expression. A
temporary exists until the end of the largest
expression that encloses the expression for
which it was created.

top-level const The const that specifies
that an object may not be changed.

type alias A name that is a synonym for
another type. Defined through either a
typedef or an alias declaration.

type checking Term used to describe the
process by which the compiler verifies that
the way objects of a given type are used is
consistent with the definition of that type.

type specifier The name of a type.

typedef Defines an alias for another type.
When typedef appears in the base type of
a declaration, the names defined in the dec-
laration are type names.

undefined Usage for which the language
does not specify a meaning. Knowingly or
unknowingly relying on undefined behav-
ior is a great source of hard-to-track run-
time errors, security problems, and porta-
bility problems.

uninitialized Variable defined without an
initial value. In general, trying to access the
value of an uninitialized variable results in
undefined behavior.

unsigned Integer type that holds only val-
ues greater than or equal to zero.

variable A named object or reference. In
C++, variables must be declared before they
are used.

void* Pointer type that can point to any
nonconst type. Such pointers may not be
dereferenced.

void type Special-purpose type that has no
operations and no value. It is not possible
to define a variable of type void.

word The natural unit of integer computa-
tion on a given machine. Usually a word is
large enough to hold an address. On a 32-bit
machine a word is typically 4 bytes.

& operator Address-of operator. Yields the
address of the object to which it is applied.

* operator Dereference operator. Derefer-
encing a pointer returns the object to which
the pointer points. Assigning to the result
of a dereference assigns a new value to the
underlying object.

#define Preprocessor directive that defines
a preprocessor variable.

#endif Preprocessor directive that ends an
#ifdef or #ifndef region.

#ifdef Preprocessor directive that deter-
mines whether a given variable is defined.

#ifndef Preprocessor directive that deter-
mines whether a given variable is not de-
fined.
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In addition to the built-in types covered in Chapter 2, C++ defines
a rich library of abstract data types. Among the most important li-
brary types are string, which supports variable-length character
strings, and vector, which defines variable-size collections. Asso-
ciated with string and vector are companion types known as it-
erators, which are used to access the characters in a string or the
elements in a vector.

The string and vector types defined by the library are abstrac-
tions of the more primitive built-in array type. This chapter covers
arrays and introduces the library vector and string types.
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The built-in types that we covered in Chapter 2 are defined directly by the
C++ language. These types represent facilities present in most computer hard-
ware, such as numbers or characters. The standard library defines a number of
additional types of a higher-level nature that computer hardware usually does not
implement directly.

In this chapter, we’ll introduce two of the most important library types: string
and vector. A string is a variable-length sequence of characters. A vector
holds a variable-length sequence of objects of a given type. We’ll also cover the
built-in array type. Like other built-in types, arrays represent facilities of the hard-
ware. As a result, arrays are less convenient to use than the library string and
vector types.

Before beginning our exploration of the library types, we’ll look at a mechanism
for simplifying access to the names defined in the library.

3.1 Namespace using Declarations
Up to now, our programs have explicitly indicated that each library name we use
is in the std namespace. For example, to read from the standard input, we write
std::cin. These names use the scope operator (::) (§ 1.2, p. 8), which says that
the compiler should look in the scope of the left-hand operand for the name of the
right-hand operand. Thus, std::cin says that we want to use the name cin from
the namespace std.

Referring to library names with this notation can be cumbersome. Fortunately,
there are easier ways to use namespace members. The safest way is a using dec-
laration. § 18.2.2 (p. 793) covers another way to use names from a namespace.

A using declaration lets us use a name from a namespace without qualifying
the name with a namespace_name:: prefix. A using declaration has the form

using namespace::name;

Once the using declaration has been made, we can access name directly:

#include <iostream>

// using declaration; when we use the name cin, we get the one from the namespace std
using std::cin;

int main()
{

int i;
cin >> i; // ok: cin is a synonym for std::cin
cout << i; // error: no using declaration; we must use the full name
std::cout << i; // ok: explicitly use cout from namepsace std
return 0;

}

A Separate using Declaration Is Required for Each Name

Each using declaration introduces a single namespace member. This behavior
lets us be specific about which names we’re using. As an example, we’ll rewrite
the program from § 1.2 (p. 6) with using declarations for the library names it uses:
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#include <iostream>

// using declarations for names from the standard library
using std::cin;
using std::cout; using std::endl;
int main()
{

cout << "Enter two numbers:" << endl;
int v1, v2;
cin >> v1 >> v2;
cout << "The sum of " << v1 << " and " << v2

<< " is " << v1 + v2 << endl;
return 0;

}

The using declarations for cin, cout, and endl mean that we can use those
names without the std:: prefix. Recall that C++ programs are free-form, so we
can put each using declaration on its own line or combine several onto a single
line. The important part is that there must be a using declaration for each name
we use, and each declaration must end in a semicolon.

Headers Should Not Include using Declarations

Code inside headers (§ 2.6.3, p. 76) ordinarily should not use using declarations.
The reason is that the contents of a header are copied into the including program’s
text. If a header has a using declaration, then every program that includes that
header gets that same using declaration. As a result, a program that didn’t intend
to use the specified library name might encounter unexpected name conflicts.

A Note to the Reader

From this point on, our examples will assume that using declarations have been
made for the names we use from the standard library. Thus, we will refer to cin,
not std::cin, in the text and in code examples.

Moreover, to keep the code examples short, we won’t show the using declara-
tions, nor will we show the necessary #include directives. Table A.1 (p. 866) in
Appendix A lists the names and corresponding headers for standard library names
we use in this Primer.

Readers should be aware that they must add appropriate #include and
using declarations to our examples before compiling them.

EXE R C I S E S SE C TI ON 3.1

Exercise 3.1: Rewrite the exercises from § 1.4.1 (p. 13) and § 2.6.2 (p. 76) with appro-
priate using declarations.
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3.2 Library string Type
A string is a variable-length sequence of characters. To use the string type,
we must include the string header. Because it is part of the library, string is
defined in the std namespace. Our examples assume the following code:

#include <string>
using std::string;

This section describes the most common string operations; § 9.5 (p. 360) will
cover additional operations.

In addition to specifying the operations that the library types provide,
the standard also imposes efficiency requirements on implementors. As
a result, library types are efficient enough for general use.

3.2.1 Defining and Initializing strings
Each class defines how objects of its type can be initialized. A class may define
many different ways to initialize objects of its type. Each way must be distin-
guished from the others either by the number of initializers that we supply, or by
the types of those initializers. Table 3.1 lists the most common ways to initialize
strings. Some examples:

string s1; // default initialization; s1 is the empty string
string s2 = s1; // s2 is a copy of s1
string s3 = "hiya"; // s3 is a copy of the string literal
string s4(10, ’c’); // s4 is cccccccccc

We can default initialize a string (§ 2.2.1, p. 44), which creates an empty string;
that is, a stringwith no characters. When we supply a string literal (§ 2.1.3, p. 39),
the characters from that literal—up to but not including the null character at the
end of the literal—are copied into the newly created string. When we supply a
count and a character, the string contains that many copies of the given character.

Direct and Copy Forms of Initialization

In § 2.2.1 (p. 43) we saw that C++ has several different forms of initialization. Using
strings, we can start to understand how these forms differ from one another.
When we initialize a variable using =, we are asking the compiler to copy initialize
the object by copying the initializer on the right-hand side into the object being
created. Otherwise, when we omit the =, we use direct initialization.

When we have a single initializer, we can use either the direct or copy form of
initialization. When we initialize a variable from more than one value, such as in
the initialization of s4 above, we must use the direct form of initialization:

string s5 = "hiya"; // copy initialization
string s6("hiya"); // direct initialization
string s7(10, ’c’); // direct initialization; s7 is cccccccccc
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When we want to use several values, we can indirectly use the copy form of ini-
tialization by explicitly creating a (temporary) object to copy:

string s8 = string(10, ’c’); // copy initialization; s8 is cccccccccc

The initializer of s8—string(10, ’c’)—creates a string of the given size and
character value and then copies that value into s8. It is as if we had written

string temp(10, ’c’); // temp is cccccccccc
string s8 = temp; // copy temp into s8

Although the code used to initialize s8 is legal, it is less readable and offers no
compensating advantage over the way we initialized s7.

Table 3.1: Ways to Initialize a string

string s1 Default initialization; s1 is the empty string.
string s2(s1) s2 is a copy of s1.
string s2 = s1 Equivalent to s2(s1), s2 is a copy of s1.
string s3("value") s3 is a copy of the string literal, not including the null.
string s3 = "value" Equivalent to s3("value"), s3 is a copy of the string literal.

string s4(n, ’c’) Initialize s4 with n copies of the character ’c’.

3.2.2 Operations on strings
Along with defining how objects are created and initialized, a class also defines
the operations that objects of the class type can perform. A class can define opera-
tions that are called by name, such as the isbn function of our Sales_item class
(§ 1.5.2, p. 23). A class also can define what various operator symbols, such as <<
or +, mean when applied to objects of the class’ type. Table 3.2 (overleaf) lists the
most common string operations.

Reading and Writing strings

As we saw in Chapter 1, we use the iostream library to read and write values of
built-in types such as int, double, and so on. We use the same IO operators to
read and write strings:

// Note: #include and using declarations must be added to compile this code
int main()
{

string s; // empty string
cin >> s; // read a whitespace-separated string into s
cout << s << endl; // write s to the output
return 0;

}

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

86 Strings, Vectors, and Arrays

Table 3.2: string Operations

os << s Writes s onto output stream os. Returns os.
is >> s Reads whitespace-separated string from is into s. Returns is.
getline(is, s) Reads a line of input from is into s. Returns is.
s.empty() Returns true if s is empty; otherwise returns false.
s.size() Returns the number of characters in s.
s[n] Returns a reference to the char at position n in s; positions start at 0.
s1 + s2 Returns a string that is the concatenation of s1 and s2.
s1 = s2 Replaces characters in s1 with a copy of s2.
s1 == s2
s1 != s2

The strings s1 and s2 are equal if they contain the same characters.
Equality is case-sensitive.

<, <=, >, >= Comparisons are case-sensitive and use dictionary ordering.

This program begins by defining an empty string named s. The next line reads
the standard input, storing what is read in s. The string input operator reads
and discards any leading whitespace (e.g., spaces, newlines, tabs). It then reads
characters until the next whitespace character is encountered.

So, if the input to this program is Hello World! (note leading and
trailing spaces), then the output will be Hello with no extra spaces.

Like the input and output operations on the built-in types, the string oper-
ators return their left-hand operand as their result. Thus, we can chain together
multiple reads or writes:

string s1, s2;

cin >> s1 >> s2; // read first input into s1, second into s2
cout << s1 << s2 << endl; // write both strings

If we give this version of the program the same input, Hello World! ,
our output would be “HelloWorld!”

Reading an Unknown Number of strings

In § 1.4.3 (p. 14) we wrote a program that read an unknown number of int values.
We can write a similar program that reads strings instead:

int main()
{

string word;
while (cin >> word) // read until end-of-file

cout << word << endl; // write each word followed by a new line
return 0;

}

In this program, we read into a string, not an int. Otherwise, the while con-
dition executes similarly to the one in our previous program. The condition tests
the stream after the read completes. If the stream is valid—it hasn’t hit end-of-file
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or encountered an invalid input—then the body of the while is executed. The
body prints the value we read on the standard output. Once we hit end-of-file (or
invalid input), we fall out of the while.

Using getline to Read an Entire Line

Sometimes we do not want to ignore the whitespace in our input. In such cases,
we can use the getline function instead of the >> operator. The getline func-
tion takes an input stream and a string. This function reads the given stream
up to and including the first newline and stores what it read—not including the
newline—in its string argument. After getline sees a newline, even if it is the
first character in the input, it stops reading and returns. If the first character in the
input is a newline, then the resulting string is the empty string.

Like the input operator, getline returns its istream argument. As a result,
we can use getline as a condition just as we can use the input operator as a
condition (§ 1.4.3, p. 14). For example, we can rewrite the previous program that
wrote one word per line to write a line at a time instead:

int main()
{

string line;

// read input a line at a time until end-of-file
while (getline(cin, line))

cout << line << endl;
return 0;

}

Because line does not contain a newline, we must write our own. As usual, we
use endl to end the current line and flush the buffer.

The newline that causes getline to return is discarded; the newline is
not stored in the string.

The string empty and size Operations

The empty function does what one would expect: It returns a bool (§ 2.1, p. 32)
indicating whether the string is empty. Like the isbn member of Sales_item
(§ 1.5.2, p. 23), empty is a member function of string. To call this function, we use
the dot operator to specify the object on which we want to run the empty function.

We can revise the previous program to only print lines that are not empty:

// read input a line at a time and discard blank lines
while (getline(cin, line))

if (!line.empty())
cout << line << endl;

The condition uses the logical NOT operator (the !operator). This operator returns
the inverse of the bool value of its operand. In this case, the condition is true if
str is not empty.
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The size member returns the length of a string (i.e., the number of charac-
ters in it). We can use size to print only lines longer than 80 characters:

string line;

// read input a line at a time and print lines that are longer than 80 characters
while (getline(cin, line))

if (line.size() > 80)
cout << line << endl;

The string::size_type Type

It might be logical to expect that size returns an int or, thinking back to § 2.1.1
(p. 34), an unsigned. Instead, size returns a string::size_type value. This
type requires a bit of explanation.

The string class—and most other library types—defines several compan-
ion types. These companion types make it possible to use the library types in a
machine-independent manner. The type size_type is one of these companion
types. To use the size_type defined by string, we use the scope operator to
say that the name size_type is defined in the string class.

Although we don’t know the precise type of string::size_type, we do
know that it is an unsigned type (§ 2.1.1, p. 32) big enough to hold the size of any
string. Any variable used to store the result from the string size operation
should be of type string::size_type.

Admittedly, it can be tedious to type string::size_type. Under the new
standard, we can ask the compiler to provide the appropriate type by using auto
or decltype (§ 2.5.2, p. 68):

auto len = line.size(); // len has type string::size_type

Because size returns an unsigned type, it is essential to remember that expres-
sions that mix signed and unsigned data can have surprising results (§ 2.1.2, p. 36).
For example, if n is an int that holds a negative value, then s.size() < n will
almost surely evaluate as true. It yields true because the negative value in n will
convert to a large unsigned value.

You can avoid problems due to conversion between unsigned and
int by not using ints in expressions that use size().

Comparing strings

The string class defines several operators that compare strings. These oper-
ators work by comparing the characters of the strings. The comparisons are
case-sensitive—upper- and lowercase versions of a letter are different characters.

The equality operators (== and !=) test whether two strings are equal or
unequal, respectively. Two strings are equal if they are the same length and
contain the same characters. The relational operators <, <=, >, >= test whether one
string is less than, less than or equal to, greater than, or greater than or equal to
another. These operators use the same strategy as a (case-sensitive) dictionary:
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1. If two strings have different lengths and if every character in the shorter
string is equal to the corresponding character of the longer string, then
the shorter string is less than the longer one.

2. If any characters at corresponding positions in the two strings differ, then
the result of the string comparison is the result of comparing the first char-
acter at which the strings differ.

As an example, consider the following strings:

string str = "Hello";
string phrase = "Hello World";
string slang = "Hiya";

Using rule 1, we see that str is less than phrase. By applying rule 2, we see that
slang is greater than both str and phrase.

Assignment for strings

In general, the library types strive to make it as easy to use a library type as it is to
use a built-in type. To this end, most of the library types support assignment. In
the case of strings, we can assign one string object to another:

string st1(10, ’c’), st2; // st1 is cccccccccc; st2 is an empty string

st1 = st2; // assignment: replace contents of st1 with a copy of st2
// both st1 and st2 are now the empty string

Adding Two strings

Adding two strings yields a new string that is the concatenation of the left-
hand followed by the right-hand operand. That is, when we use the plus operator
(+) on strings, the result is a new stringwhose characters are a copy of those in
the left-hand operand followed by those from the right-hand operand. The com-
pound assignment operator (+=) (§ 1.4.1, p. 12) appends the right-hand operand to
the left-hand string:

string s1 = "hello, ", s2 = "world\n";
string s3 = s1 + s2; // s3 is hello, world\n
s1 += s2; // equivalent to s1 = s1 + s2

Adding Literals and strings

As we saw in § 2.1.2 (p. 35), we can use one type where another type is expected if
there is a conversion from the given type to the expected type. The string library
lets us convert both character literals and character string literals (§ 2.1.3, p. 39) to
strings. Because we can use these literals where a string is expected, we can
rewrite the previous program as follows:

string s1 = "hello", s2 = "world"; // no punctuation in s1 or s2
string s3 = s1 + ", " + s2 + ’\n’;

When we mix strings and string or character literals, at least one operand to each
+ operator must be of string type:
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string s4 = s1 + ", "; // ok: adding a string and a literal
string s5 = "hello" + ", "; // error: no string operand

string s6 = s1 + ", " + "world"; // ok: each + has a string operand
string s7 = "hello" + ", " + s2; // error: can’t add string literals

The initializations of s4 and s5 involve only a single operation each, so it is easy
to see whether the initialization is legal. The initialization of s6 may appear sur-
prising, but it works in much the same way as when we chain together input or
output expressions (§ 1.2, p. 7). This initialization groups as

string s6 = (s1 + ", ") + "world";

The subexpression s1 + ", " returns a string, which forms the left-hand oper-
and of the second + operator. It is as if we had written

string tmp = s1 + ", "; // ok: + has a string operand
s6 = tmp + "world"; // ok: + has a string operand

On the other hand, the initialization of s7 is illegal, which we can see if we paren-
thesize the expression:

string s7 = ("hello" + ", ") + s2; // error: can’t add string literals

Now it should be easy to see that the first subexpression adds two string literals.
There is no way to do so, and so the statement is in error.

For historical reasons, and for compatibility with C, string literals are not
standard library strings. It is important to remember that these types
differ when you use string literals and library strings.

EXE R C I S E S SE C TI ON 3.2.2

Exercise 3.2: Write a program to read the standard input a line at a time. Modify your
program to read a word at a time.

Exercise 3.3: Explain how whitespace characters are handled in the string input op-
erator and in the getline function.

Exercise 3.4: Write a program to read two strings and report whether the strings
are equal. If not, report which of the two is larger. Now, change the program to report
whether the strings have the same length, and if not, report which is longer.

Exercise 3.5: Write a program to read strings from the standard input, concatenat-
ing what is read into one large string. Print the concatenated string. Next, change
the program to separate adjacent input strings by a space.

3.2.3 Dealing with the Characters in a string
Often we need to deal with the individual characters in a string. We might want
to check to see whether a string contains any whitespace, or to change the char-
acters to lowercase, or to see whether a given character is present, and so on.
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One part of this kind of processing involves how we gain access to the char-
acters themselves. Sometimes we need to process every character. Other times
we need to process only a specific character, or we can stop processing once some
condition is met. It turns out that the best way to deal with these cases involves
different language and library facilities.

The other part of processing characters is knowing and/or changing the char-
acteristics of a character. This part of the job is handled by a set of library func-
tions, described in Table 3.3 (overleaf). These functions are defined in the cctype
header.

ADVICE: USE THE C++ VERSIONS OF C LIBRARY HEADERS

In addition to facilities defined specifically for C++, the C++ library incorporates the
C library. Headers in C have names of the form name.h. The C++ versions of these
headers are named cname—they remove the .h suffix and precede the name with the
letter c. The c indicates that the header is part of the C library.

Hence, cctype has the same contents as ctype.h, but in a form that is appropriate
for C++ programs. In particular, the names defined in the cname headers are defined
inside the std namespace, whereas those defined in the .h versions are not.

Ordinarily, C++ programs should use the cname versions of headers and not the
name.h versions. That way names from the standard library are consistently found
in the std namespace. Using the .h headers puts the burden on the programmer to
remember which library names are inherited from C and which are unique to C++.

Processing Every Character? Use Range-Based for

If we want to do something to every character in a string, by far the best ap-
proach is to use a statement introduced by the new standard: the range for state-
ment. This statement iterates through the elements in a given sequence and per-
forms some operation on each value in that sequence. The syntactic form is

for (declaration : expression)
statement

where expression is an object of a type that represents a sequence, and declaration de-
fines the variable that we’ll use to access the underlying elements in the sequence.
On each iteration, the variable in declaration is initialized from the value of the next
element in expression.

A string represents a sequence of characters, so we can use a string as the
expression in a range for. As a simple example, we can use a range for to print
each character from a string on its own line of output:

string str("some string");

// print the characters in str one character to a line
for (auto c : str) // for every char in str

cout << c << endl; // print the current character followed by a newline

The for loop associates the variable c with str. We define the loop control vari-
able the same way we do any other variable. In this case, we use auto (§ 2.5.2,
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p. 68) to let the compiler determine the type of c, which in this case will be char.
On each iteration, the next character in str will be copied into c. Thus, we can
read this loop as saying, “For every character c in the string str,” do some-
thing. The “something” in this case is to print the character followed by a newline.

As a somewhat more complicated example, we’ll use a range for and the
ispunct function to count the number of punctuation characters in a string:

string s("Hello World!!!");
// punct_cnt has the same type that s.size returns; see § 2.5.3 (p. 70)
decltype(s.size()) punct_cnt = 0;

// count the number of punctuation characters in s
for (auto c : s) // for every char in s

if (ispunct(c)) // if the character is punctuation
++punct_cnt; // increment the punctuation counter

cout << punct_cnt
<< " punctuation characters in " << s << endl;

The output of this program is

3 punctuation characters in Hello World!!!

Here we use decltype (§ 2.5.3, p. 70) to declare our counter, punct_cnt. Its type
is the type returned by calling s.size, which is string::size_type. We use a
range for to process each character in the string. This time we check whether
each character is punctuation. If so, we use the increment operator (§ 1.4.1, p. 12)
to add 1 to the counter. When the range for completes, we print the result.

Table 3.3: cctype Functions

isalnum(c) true if c is a letter or a digit.
isalpha(c) true if c is a letter.
iscntrl(c) true if c is a control character.
isdigit(c) true if c is a digit.
isgraph(c) true if c is not a space but is printable.
islower(c) true if c is a lowercase letter.
isprint(c) true if c is a printable character (i.e., a space or a character that has a

visible representation).
ispunct(c) true if c is a punctuation character (i.e., a character that is not a control

character, a digit, a letter, or a printable whitespace).
isspace(c) true if c is whitespace (i.e., a space, tab, vertical tab, return, newline, or

formfeed).
isupper(c) true if c is an uppercase letter.
isxdigit(c) true if c is a hexadecimal digit.
tolower(c) If c is an uppercase letter, returns its lowercase equivalent; otherwise

returns c unchanged.

toupper(c) If c is a lowercase letter, returns its uppercase equivalent; otherwise returns
c unchanged.
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Using a Range for to Change the Characters in a string

If we want to change the value of the characters in a string, we must define the
loop variable as a reference type (§ 2.3.1, p. 50). Remember that a reference is just
another name for a given object. When we use a reference as our control variable,
that variable is bound to each element in the sequence in turn. Using the reference,
we can change the character to which the reference is bound.

Suppose that instead of counting punctuation, we wanted to convert a string
to all uppercase letters. To do so we can use the library toupper function, which
takes a character and returns the uppercase version of that character. To convert
the whole string we need to call toupper on each character and put the result
back in that character:

string s("Hello World!!!");
// convert s to uppercase
for (auto &c : s) // for every char in s (note: c is a reference)

c = toupper(c); // c is a reference, so the assignment changes the char in s
cout << s << endl;

The output of this code is

HELLO WORLD!!!

On each iteration, c refers to the next character in s. When we assign to c, we are
changing the underlying character in s. So, when we execute

c = toupper(c); // c is a reference, so the assignment changes the char in s

we’re changing the value of the character to which c is bound. When this loop
completes, all the characters in str will be uppercase.

Processing Only Some Characters?

A range forworks well when we need to process every character. However, some-
times we need to access only a single character or to access characters until some
condition is reached. For example, we might want to capitalize only the first char-
acter or only the first word in a string.

There are two ways to access individual characters in a string: We can use a
subscript or an iterator. We’ll have more to say about iterators in § 3.4 (p. 106) and
in Chapter 9.

The subscript operator (the [] operator) takes a string::size_type (§ 3.2.2,
p. 88) value that denotes the position of the character we want to access. The
operator returns a reference to the character at the given position.

Subscripts for strings start at zero; if s is a string with at least two charac-
ters, then s[0] is the first character, s[1] is the second, and the last character is in
s[s.size() - 1].

The values we use to subscript a string must be >= 0 and < size().
The result of using an index outside this range is undefined.
By implication, subscripting an empty string is undefined.
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The value in the subscript is referred to as “a subscript” or “an index.” The
index we supply can be any expression that yields an integral value. However, if
our index has a signed type, its value will be converted to the unsigned type that
string::size_type represents (§ 2.1.2, p. 36).

The following example uses the subscript operator to print the first character
in a string:

if (!s.empty()) // make sure there’s a character to print
cout << s[0] << endl; // print the first character in s

Before accessing the character, we check that s is not empty. Any time we use a
subscript, we must ensure that there is a value at the given location. If s is empty,
then s[0] is undefined.

So long as the string is not const (§ 2.4, p. 59), we can assign a new value
to the character that the subscript operator returns. For example, we can capitalize
the first letter as follows:

string s("some string");
if (!s.empty()) // make sure there’s a character in s[0]

s[0] = toupper(s[0]); // assign a new value to the first character in s

The output of this program is

Some string

Using a Subscript for Iteration

As a another example, we’ll change the first word in s to all uppercase:

// process characters in s until we run out of characters or we hit a whitespace
for (decltype(s.size()) index = 0;

index != s.size() && !isspace(s[index]); ++index)
s[index] = toupper(s[index]); // capitalize the current character

This program generates

SOME string

Our for loop (§ 1.4.2, p. 13) uses index to subscript s. We use decltype to give
index the appropriate type. We initialize index to 0 so that the first iteration will
start on the first character in s. On each iteration we increment index to look at
the next character in s. In the body of the loop we capitalize the current letter.

The new part in this loop is the condition in the for. That condition uses the
logical AND operator (the && operator). This operator yields true if both operands
are true and false otherwise. The important part about this operator is that
we are guaranteed that it evaluates its right-hand operand only if the left-hand
operand is true. In this case, we are guaranteed that we will not subscript s
unless we know that index is in range. That is, s[index] is executed only if
index is not equal to s.size(). Because index is never incremented beyond
the value of s.size(), we know that index will always be less than s.size().
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CAUTION: SUBSCRIPTS ARE UNCHECKED

When we use a subscript, we must ensure that the subscript is in range. That is, the
subscript must be >= 0 and < the size() of the string. One way to simplify code
that uses subscripts is always to use a variable of type string::size_type as the
subscript. Because that type is unsigned, we ensure that the subscript cannot be less
than zero. When we use a size_type value as the subscript, we need to check only
that our subscript is less than value returned by size().

The library is not required to check the value of an subscript. The result of
using an out-of-range subscript is undefined.

Using a Subscript for Random Access

In the previous example we advanced our subscript one position at a time to cap-
italize each character in sequence. We can also calculate an subscript and directly
fetch the indicated character. There is no need to access characters in sequence.

As an example, let’s assume we have a number between 0 and 15 and we want
to generate the hexadecimal representation of that number. We can do so using a
string that is initialized to hold the 16 hexadecimal “digits”:

const string hexdigits = "0123456789ABCDEF"; // possible hex digits

cout << "Enter a series of numbers between 0 and 15"
<< " separated by spaces. Hit ENTER when finished: "
<< endl;

string result; // will hold the resulting hexify’d string

string::size_type n; // hold numbers from the input
while (cin >> n)

if (n < hexdigits.size()) // ignore invalid input
result += hexdigits[n]; // fetch the indicated hex digit

cout << "Your hex number is: " << result << endl;

If we give this program the input

12 0 5 15 8 15

the output will be

Your hex number is: C05F8F

We start by initializing hexdigits to hold the hexadecimal digits 0 through F.
We make that string const (§ 2.4, p. 59) because we do not want these values
to change. Inside the loop we use the input value n to subscript hexdigits. The
value of hexdigits[n] is the char that appears at position n in hexdigits.
For example, if n is 15, then the result is F; if it’s 12, the result is C; and so on. We
append that digit to result, which we print once we have read all the input.

Whenever we use a subscript, we should think about how we know that it is in
range. In this program, our subscript, n, is a string::size_type, which as we
know is an unsigned type. As a result, we know that n is guaranteed to be greater
than or equal to 0. Before we use n to subscript hexdigits, we verify that it is
less than the size of hexdigits.
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EXE R C I S E S SE C TI ON 3.2.3

Exercise 3.6: Use a range for to change all the characters in a string to X.

Exercise 3.7: What would happen if you define the loop control variable in the previ-
ous exercise as type char? Predict the results and then change your program to use a
char to see if you were right.

Exercise 3.8: Rewrite the program in the first exercise, first using a while and again
using a traditional for loop. Which of the three approaches do you prefer and why?

Exercise 3.9: What does the following program do? Is it valid? If not, why not?

string s;
cout << s[0] << endl;

Exercise 3.10: Write a program that reads a string of characters including punctuation
and writes what was read but with the punctuation removed.

Exercise 3.11: Is the following range for legal? If so, what is the type of c?

const string s = "Keep out!";
for (auto &c : s) { /* ... */ }

3.3 Library vector Type
A vector is a collection of objects, all of which have the same type. Every object in
the collection has an associated index, which gives access to that object. A vector
is often referred to as a container because it “contains” other objects. We’ll have
much more to say about containers in Part II.

To use a vector, we must include the appropriate header. In our examples,
we also assume that an appropriate using declaration is made:

#include <vector>
using std::vector;

A vector is a class template. C++ has both class and function templates. Writ-
ing a template requires a fairly deep understanding of C++. Indeed, we won’t see
how to create our own templates until Chapter 16! Fortunately, we can use tem-
plates without knowing how to write them.

Templates are not themselves functions or classes. Instead, they can be thought
of as instructions to the compiler for generating classes or functions. The process
that the compiler uses to create classes or functions from templates is called in-
stantiation. When we use a template, we specify what kind of class or function we
want the compiler to instantiate.

For a class template, we specify which class to instantiate by supplying addi-
tional information, the nature of which depends on the template. How we specify
the information is always the same: We supply it inside a pair of angle brackets
following the template’s name.

In the case of vector, the additional information we supply is the type of the
objects the vector will hold:
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vector<int> ivec; // ivec holds objects of type int
vector<Sales_item> Sales_vec; // holds Sales_items
vector<vector<string>> file; // vector whose elements are vectors

In this example, the compiler generates three distinct types from the vector tem-
plate: vector<int>, vector<Sales_item>, and vector<vector<string>>.

vector is a template, not a type. Types generated from vector must
include the element type, for example, vector<int>.

We can define vectors to hold objects of most any type. Because references are
not objects (§ 2.3.1, p. 50), we cannot have a vector of references. However, we
can have vectors of most other (nonreference) built-in types and most class types.
In particular, we can have vectors whose elements are themselves vectors.

It is worth noting that earlier versions of C++ used a slightly different syntax
to define a vector whose elements are themselves vectors (or another template
type). In the past, we had to supply a space between the closing angle bracket
of the outer vector and its element type—vector<vector<int> > rather than
vector<vector<int>>.

Some compilers may require the old-style declarations for a vector of
vectors, for example, vector<vector<int> >.

3.3.1 Defining and Initializing vectors
As with any class type, the vector template controls how we define and initialize
vectors. Table 3.4 (p. 99) lists the most common ways to define vectors.

We can default initialize a vector (§ 2.2.1, p. 44), which creates an empty
vector of the specified type:

vector<string> svec; // default initialization; svec has no elements

It might seem that an empty vector would be of little use. However, as we’ll see
shortly, we can (efficiently) add elements to a vector at run time. Indeed, the
most common way of using vectors is to define an initially empty vector to
which elements are added as their values become known at run time.

We can also supply initial value(s) for the element(s) when we define a vector.
For example, we can copy elements from another vector. When we copy a
vector, each element in the new vector is a copy of the corresponding element
in the original vector. The two vectors must be the same type:

vector<int> ivec; // initially empty
// give ivec some values
vector<int> ivec2(ivec); // copy elements of ivec into ivec2
vector<int> ivec3 = ivec; // copy elements of ivec into ivec3
vector<string> svec(ivec2); // error: svec holds strings, not ints
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List Initializing a vector

Another way to provide element values, is that under the new standard, we can
list initialize (§ 2.2.1, p. 43) a vector from a list of zero or more initial element
values enclosed in curly braces:

vector<string> articles = {"a", "an", "the"};

The resulting vector has three elements; the first holds the string "a", the sec-
ond holds "an", and the last is "the".

As we’ve seen, C++ provides several forms of initialization (§ 2.2.1, p. 43). In
many, but not all, cases we can use these forms of initialization interchangably. So
far, we have seen two examples where the form of initialization matters: when we
use the copy initialization form (i.e., when we use =) (§ 3.2.1, p. 84), we can supply
only a single initializer; and when we supply an in-class initializer (§ 2.6.1, p. 73),
we must either use copy initialization or use curly braces. A third restriction is
that we can supply a list of element values only by using list initialization in which
the initializers are enclosed in curly braces. We cannot supply a list of initializers
using parentheses:

vector<string> v1{"a", "an", "the"}; // list initialization
vector<string> v2("a", "an", "the"); // error

Creating a Specified Number of Elements

We can also initialize a vector from a count and an element value. The count de-
termines how many elements the vector will have; the value provides the initial
value for each of those elements:

vector<int> ivec(10, -1); // ten int elements, each initialized to -1
vector<string> svec(10, "hi!"); // ten strings; each element is "hi!"

Value Initialization

We can usually omit the value and supply only a size. In this case the library cre-
ates a value-initialized element initializer for us. This library-generated value is
used to initialize each element in the container. The value of the element initializer
depends on the type of the elements stored in the vector.

If the vector holds elements of a built-in type, such as int, then the element
initializer has a value of 0. If the elements are of a class type, such as string, then
the element initializer is itself default initialized:

vector<int> ivec(10); // ten elements, each initialized to 0
vector<string> svec(10); // ten elements, each an empty string

There are two restrictions on this form of initialization: The first restriction is that
some classes require that we always supply an explicit initializer (§ 2.2.1, p. 44). If
our vector holds objects of a type that we cannot default initialize, then we must
supply an initial element value; it is not possible to create vectors of such types
by supplying only a size.

The second restriction is that when we supply an element count without also
supplying an initial value, we must use the direct form of initialization:
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vector<int> vi = 10; // error: must use direct initialization to supply a size

Here we are using 10 to instruct vector how to create the vector—we want
a vector with ten value-initialized elements. We are not “copying” 10 into the
vector. Hence, we cannot use the copy form of initialization. We’ll see more
about how this restriction works in § 7.5.4 (p. 296).

Table 3.4: Ways to Initialize a vector

vector<T> v1 vector that holds objects of type T. Default initialization;
v1 is empty.

vector<T> v2(v1) v2 has a copy of each element in v1.
vector<T> v2 = v1 Equivalent to v2(v1), v2 is a copy of the elements in v1.
vector<T> v3(n, val) v3 has n elements with value val.
vector<T> v4(n) v4 has n copies of a value-initialized object.
vector<T> v5{a,b,c . . .} v5 has as many elements as there are initializers; elements

are initialized by corresponding initializers.

vector<T> v5 = {a,b,c . . .} Equivalent to v5{a,b,c . . .}.

List Initializer or Element Count?

In a few cases, what initialization means depends upon whether we use curly
braces or parentheses to pass the initializer(s). For example, when we initialize
a vector<int> from a single int value, that value might represent the vector’s
size or it might be an element value. Similarly, if we supply exactly two int val-
ues, those values could be a size and an initial value, or they could be values for
a two-element vector. We specify which meaning we intend by whether we use
curly braces or parentheses:

vector<int> v1(10); // v1 has ten elements with value 0
vector<int> v2{10}; // v2 has one element with value 10

vector<int> v3(10, 1); // v3 has ten elements with value 1
vector<int> v4{10, 1}; // v4 has two elements with values 10 and 1

When we use parentheses, we are saying that the values we supply are to be used
to construct the object. Thus, v1 and v3 use their initializers to determine the
vector’s size, and its size and element values, respectively.

When we use curly braces, {...}, we’re saying that, if possible, we want to
list initialize the object. That is, if there is a way to use the values inside the curly
braces as a list of element initializers, the class will do so. Only if it is not possible
to list initialize the object will the other ways to initialize the object be considered.
The values we supply when we initialize v2 and v4 can be used as element values.
These objects are list initialized; the resulting vectors have one and two elements,
respectively.

On the other hand, if we use braces and there is no way to use the initializers to
list initialize the object, then those values will be used to construct the object. For
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example, to list initialize a vector of strings, we must supply values that can be
used as strings. In this case, there is no confusion about whether to list initialize
the elements or construct a vector of the given size:

vector<string> v5{"hi"}; // list initialization: v5 has one element
vector<string> v6("hi"); // error: can’t construct a vector from a string literal
vector<string> v7{10}; // v7 has ten default-initialized elements
vector<string> v8{10, "hi"}; // v8 has ten elements with value "hi"

Although we used braces on all but one of these definitions, only v5 is list initial-
ized. In order to list initialize the vector, the values inside braces must match
the element type. We cannot use an int to initialize a string, so the initializers
for v7 and v8 can’t be element initializers. If list initialization isn’t possible, the
compiler looks for other ways to initialize the object from the given values.

EXE R C I S E S SE C TI ON 3.3.1

Exercise 3.12: Which, if any, of the following vector definitions are in error? For
those that are legal, explain what the definition does. For those that are not legal,
explain why they are illegal.

(a) vector<vector<int>> ivec;
(b) vector<string> svec = ivec;
(c) vector<string> svec(10, "null");

Exercise 3.13: How many elements are there in each of the following vectors? What
are the values of the elements?

(a) vector<int> v1; (b) vector<int> v2(10);
(c) vector<int> v3(10, 42); (d) vector<int> v4{10};
(e) vector<int> v5{10, 42}; (f) vector<string> v6{10};
(g) vector<string> v7{10, "hi"};

3.3.2 Adding Elements to a vector
Directly initializing the elements of a vector is feasible only if we have a small
number of known initial values, if we want to make a copy of another vector, or
if we want to initialize all the elements to the same value. More commonly, when
we create a vector, we don’t know how many elements we’ll need, or we don’t
know the value of those elements. Even if we do know all the values, if we have
a large number of different initial element values, it can be cumbersome to specify
them when we create the vector.

As one example, if we need a vector with values from 0 to 9, we can easily
use list initialization. What if we wanted elements from 0 to 99 or 0 to 999? List
initialization would be too unwieldy. In such cases, it is better to create an empty
vector and use a vector member named push_back to add elements at run
time. The push_back operation takes a value and “pushes” that value as a new
last element onto the “back” of the vector. For example:
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vector<int> v2; // empty vector
for (int i = 0; i != 100; ++i)

v2.push_back(i); // append sequential integers to v2
// at end of loop v2 has 100 elements, values 0 . . . 99

Even though we know we ultimately will have 100 elements, we define v2 as
empty. Each iteration adds the next sequential integer as a new element in v2.

We use the same approach when we want to create a vector where we don’t
know until run time how many elements the vector should have. For example,
we might read the input, storing the values we read in the vector:

// read words from the standard input and store them as elements in a vector
string word;
vector<string> text; // empty vector
while (cin >> word) {

text.push_back(word); // append word to text
}

Again, we start with an initially empty vector. This time, we read and store an
unknown number of values in text.

KEY CONCEPT: VECTORS GROW EFFICIENTLY

The standard requires that vector implementations can efficiently add elements at
run time. Because vectors grow efficiently, it is often unnecessary—and can result
in poorer performance—to define a vector of a specific size. The exception to this
rule is if all the elements actually need the same value. If differing element values are
needed, it is usually more efficient to define an empty vector and add elements as
the values we need become known at run time. Moreover, as we’ll see in § 9.4 (p. 355),
vector offers capabilities to allow us to further enhance run-time performance when
we add elements.

Starting with an empty vector and adding elements at run time is distinctly dif-
ferent from how we use built-in arrays in C and in most other languages. In particular,
if you are accustomed to using C or Java, you might expect that it would be best to de-
fine the vector at its expected size. In fact, the contrary is usually the case.

Programming Implications of Adding Elements to a vector

The fact that we can easily and efficiently add elements to a vector greatly simpli-
fies many programming tasks. However, this simplicity imposes a new obligation
on our programs: We must ensure that any loops we write are correct even if the
loop changes the size of the vector.

Other implications that follow from the dynamic nature of vectors will be-
come clearer as we learn more about using them. However, there is one implica-
tion that is worth noting already: For reasons we’ll explore in § 5.4.3 (p. 188), we
cannot use a range for if the body of the loop adds elements to the vector.

The body of a range for must not change the size of the sequence over
which it is iterating.
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EXE R C I S E S SE C TI ON 3.3.2

Exercise 3.14: Write a program to read a sequence of ints from cin and store those
values in a vector.

Exercise 3.15: Repeat the previous program but read strings this time.

3.3.3 Other vector Operations
In addition to push_back, vector provides only a few other operations, most of
which are similar to the corresponding operations on strings. Table 3.5 lists the
most important ones.

We access the elements of a vector the same way that we access the characters
in a string: through their position in the vector. For example, we can use a
range for (§ 3.2.3, p. 91) to process all the elements in a vector:

vector<int> v{1,2,3,4,5,6,7,8,9};
for (auto &i : v) // for each element in v (note: i is a reference)

i *= i; // square the element value
for (auto i : v) // for each element in v

cout << i << " "; // print the element
cout << endl;

In the first loop, we define our control variable, i, as a reference so that we can
use i to assign new values to the elements in v. We let auto deduce the type of i.
This loop uses a new form of the compound assignment operator (§ 1.4.1, p. 12). As
we’ve seen, += adds the right-hand operand to the left and stores the result in the
left-hand operand. The *= operator behaves similarly, except that it multiplies the
left- and right-hand operands, storing the result in the left-hand one. The second
range for prints each element.

The empty and size members behave as do the corresponding string mem-
bers (§ 3.2.2, p. 87): empty returns a bool indicating whether the vector has any
elements, and size returns the number of elements in the vector. The size
member returns a value of the size_type defined by the corresponding vector
type.

To use size_type, we must name the type in which it is defined. A
vector type always includes its element type (§ 3.3, p. 97):

vector<int>::size_type // ok
vector::size_type // error

The equality and relational operators have the same behavior as the corre-
sponding string operations (§ 3.2.2, p. 88). Two vectors are equal if they have
the same number of elements and if the corresponding elements all have the same
value. The relational operators apply a dictionary ordering: If the vectors have
differing sizes, but the elements that are in common are equal, then the vector
with fewer elements is less than the one with more elements. If the elements have
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differing values, then the relationship between the vectors is determined by the
relationship between the first elements that differ.

We can compare two vectors only if we can compare the elements in those
vectors. Some class types, such as string, define the meaning of the equality
and relational operators. Others, such as our Sales_item class, do not. The
only operations Sales_item supports are those listed in § 1.5.1 (p. 20). Those
operations did not include the equality or relational operators. As a result, we
cannot compare two vector<Sales_item> objects.

Table 3.5: vector Operations

v.empty() Returns true if v is empty; otherwise returns false.
v.size() Returns the number of elements in v.
v.push_back(t) Adds an element with value t to end of v.
v[n] Returns a reference to the element at position n in v.
v1 = v2 Replaces the elements in v1 with a copy of the elements in v2.
v1 = {a,b,c . . .} Replaces the elements in v1 with a copy of the elements in the

comma-separated list.
v1 == v2
v1 != v2

v1 and v2 are equal if they have the same number of elements and each
element in v1 is equal to the corresponding element in v2.

<, <=, >, >= Have their normal meanings using dictionary ordering.

Computing a vector Index

We can fetch a given element using the subscript operator (§ 3.2.3, p. 93). As with
strings, subscripts for vector start at 0; the type of a subscript is the corre-
sponding size_type; and—assuming the vector is nonconst—we can write
to the element returned by the subscript operator. In addition, as we did in § 3.2.3
(p. 95), we can compute an index and directly fetch the element at that position.

As an example, let’s assume that we have a collection of grades that range
from 0 through 100. We’d like to count how many grades fall into various clusters
of 10. Between zero and 100 there are 101 possible grades. These grades can be
represented by 11 clusters: 10 clusters of 10 grades each plus one cluster for the
perfect score of 100. The first cluster will count grades of 0 through 9, the second
will count grades from 10 through 19, and so on. The final cluster counts how
many scores of 100 were achieved.

Clustering the grades this way, if our input is

42 65 95 100 39 67 95 76 88 76 83 92 76 93

then the output should be

0 0 0 1 1 0 2 3 2 4 1

which indicates that there were no grades below 30, one grade in the 30s, one in
the 40s, none in the 50s, two in the 60s, three in the 70s, two in the 80s, four in the
90s, and one grade of 100.
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We’ll use a vector with 11 elements to hold the counters for each cluster. We
can determine the cluster index for a given grade by dividing that grade by 10.
When we divide two integers, we get an integer in which the fractional part is trun-
cated. For example, 42/10 is 4, 65/10 is 6 and 100/10 is 10. Once we’ve computed
the cluster index, we can use it to subscript our vector and fetch the counter we
want to increment:

// count the number of grades by clusters of ten: 0--9, 10--19, . .. 90--99, 100
vector<unsigned> scores(11, 0); // 11 buckets, all initially 0
unsigned grade;
while (cin >> grade) { // read the grades

if (grade <= 100) // handle only valid grades
++scores[grade/10]; // increment the counter for the current cluster

}

We start by defining a vector to hold the cluster counts. In this case, we do want
each element to have the same value, so we allocate all 11 elements, each of which
is initialized to 0. The while condition reads the grades. Inside the loop, we check
that the grade we read has a valid value (i.e., that it is less than or equal to 100).
Assuming the grade is valid, we increment the appropriate counter for grade.

The statement that does the increment is a good example of the kind of terse
code characteristic of C++ programs. This expression

++scores[grade/10]; // increment the counter for the current cluster

is equivalent to

auto ind = grade/10; // get the bucket index
scores[ind] = scores[ind] + 1; // increment the count

We compute the bucket index by dividing grade by 10 and use the result of the
division to index scores. Subscripting scores fetches the appropriate counter
for this grade. We increment the value of that element to indicate the occurrence
of a score in the given range.

As we’ve seen, when we use a subscript, we should think about how we know
that the indices are in range (§ 3.2.3, p. 95). In this program, we verify that the
input is a valid grade in the range between 0 and 100. Thus, we know that the
indices we can compute are between 0 and 10. These indices are between 0 and
scores.size() - 1.

Subscripting Does Not Add Elements

Programmers new to C++ sometimes think that subscripting a vector adds ele-
ments; it does not. The following code intends to add ten elements to ivec:

vector<int> ivec; // empty vector
for (decltype(ivec.size()) ix = 0; ix != 10; ++ix)

ivec[ix] = ix; // disaster: ivec has no elements

However, it is in error: ivec is an empty vector; there are no elements to sub-
script! As we’ve seen, the right way to write this loop is to use push_back:
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for (decltype(ivec.size()) ix = 0; ix != 10; ++ix)
ivec.push_back(ix); // ok: adds a new element with value ix

The subscript operator on vector (and string) fetches an existing el-
ement; it does not add an element.

CAUTION: SUBSCRIPT ONLY ELEMENTS THAT ARE KNOWN TO EXIST!

It is crucially important to understand that we may use the subscript operator (the []
operator) to fetch only elements that actually exist. For example,

vector<int> ivec; // empty vector
cout << ivec[0]; // error: ivec has no elements!

vector<int> ivec2(10); // vector with ten elements
cout << ivec2[10]; // error: ivec2 has elements 0 . . . 9

It is an error to subscript an element that doesn’t exist, but it is an error that the com-
piler is unlikely to detect. Instead, the value we get at run time is undefined.

Attempting to subscript elements that do not exist is, unfortunately, an extremely
common and pernicious programming error. So-called buffer overflow errors are the
result of subscripting elements that don’t exist. Such bugs are the most common cause
of security problems in PC and other applications.

A good way to ensure that subscripts are in range is to avoid subscripting
altogether by using a range for whenever possible.

EXE R C I S E S SE C TI ON 3.3.3

Exercise 3.16: Write a program to print the size and contents of the vectors from
exercise 3.13. Check whether your answers to that exercise were correct. If not, restudy
§ 3.3.1 (p. 97) until you understand why you were wrong.

Exercise 3.17: Read a sequence of words from cin and store the values a vector. Af-
ter you’ve read all the words, process the vector and change each word to uppercase.
Print the transformed elements, eight words to a line.

Exercise 3.18: Is the following program legal? If not, how might you fix it?

vector<int> ivec;
ivec[0] = 42;

Exercise 3.19: List three ways to define a vector and give it ten elements, each with
the value 42. Indicate whether there is a preferred way to do so and why.

Exercise 3.20: Read a set of integers into a vector. Print the sum of each pair of
adjacent elements. Change your program so that it prints the sum of the first and last
elements, followed by the sum of the second and second-to-last, and so on.
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3.4 Introducing Iterators
Although we can use subscripts to access the characters of a string or the ele-
ments in a vector, there is a more general mechanism—known as iterators—that
we can use for the same purpose. As we’ll see in Part II, in addition to vector,
the library defines several other kinds of containers. All of the library containers
have iterators, but only a few of them support the subscript operator. Technically
speaking, a string is not a container type, but string supports many of the con-
tainer operations. As we’ve seen string, like vector has a subscript operator.
Like vectors, strings also have iterators.

Like pointers (§ 2.3.2, p. 52), iterators give us indirect access to an object. In
the case of an iterator, that object is an element in a container or a character in a
string. We can use an iterator to fetch an element and iterators have operations
to move from one element to another. As with pointers, an iterator may be valid or
invalid. A valid iterator either denotes an element or denotes a position one past
the last element in a container. All other iterator values are invalid.

3.4.1 Using Iterators
Unlike pointers, we do not use the address-of operator to obtain an iterator. In-
stead, types that have iterators have members that return iterators. In particular,
these types have members named begin and end. The begin member returns an
iterator that denotes the first element (or first character), if there is one:

// the compiler determines the type of b and e; see § 2.5.2 (p. 68)
// b denotes the first element and e denotes one past the last element in v
auto b = v.begin(), e = v.end(); // b and e have the same type

The iterator returned by end is an iterator positioned “one past the end” of the
associated container (or string). This iterator denotes a nonexistent element “off
the end” of the container. It is used as a marker indicating when we have processed
all the elements. The iterator returned by end is often referred to as the off-the-
end iterator or abbreviated as “the end iterator.” If the container is empty, begin
returns the same iterator as the one returned by end.

If the container is empty, the iterators returned by begin and end are
equal—they are both off-the-end iterators.

In general, we do not know (or care about) the precise type that an iterator
has. In this example, we used auto to define b and e (§ 2.5.2, p. 68). As a result,
these variables have whatever type is returned by the begin and end members,
respectively. We’ll have more to say about those types on page 108.

Iterator Operations

Iterators support only a few operations, which are listed in Table 3.6. We can com-
pare two valid iterators using == or !=. Iterators are equal if they denote the same
element or if they are both off-the-end iterators for the same container. Otherwise,
they are unequal.
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As with pointers, we can dereference an iterator to obtain the element denoted
by an iterator. Also, like pointers, we may dereference only a valid iterator that
denotes an element (§ 2.3.2, p. 53). Dereferencing an invalid iterator or an off-the-
end iterator has undefined behavior.

As an example, we’ll rewrite the program from § 3.2.3 (p. 94) that capitalized
the first character of a string using an iterator instead of a subscript:

string s("some string");
if (s.begin() != s.end()) { // make sure s is not empty

auto it = s.begin(); // it denotes the first character in s
*it = toupper(*it); // make that character uppercase

}

As in our original program, we first check that s isn’t empty. In this case, we do so
by comparing the iterators returned by begin and end. Those iterators are equal
if the string is empty. If they are unequl, there is at least one character in s.

Inside the if body, we obtain an iterator to the first character by assigning the
iterator returned by begin to it. We dereference that iterator to pass that charac-
ter to toupper. We also dereference it on the left-hand side of the assignment in
order to assign the character returned from toupper to the first character in s. As
in our original program, the output of this loop will be:

Some string

Table 3.6: Standard Container Iterator Operations

*iter Returns a reference to the element denoted by the iterator iter.
iter->mem Dereferences iter and fetches the member named mem from the

underlying element. Equivalent to (*iter).mem.
++iter Increments iter to refer to the next element in the container.
--iter Decrements iter to refer to the previous element in the container.

iter1 == iter2
iter1 != iter2

Compares two iterators for equality (inequality). Two iterators are equal
if they denote the same element or if they are the off-the-end iterator for
the same container.

Moving Iterators from One Element to Another

Iterators use the increment (++) operator (§ 1.4.1, p. 12) to move from one element
to the next. Incrementing an iterator is a logically similar operation to incrementing
an integer. In the case of integers, the effect is to “add 1” to the integer’s value. In
the case of iterators, the effect is to “advance the iterator by one position.”

Because the iterator returned from end does not denote an element, it
may not be incremented or dereferenced.

Using the increment operator, we can rewrite our program that changed the
case of the first word in a string to use iterators instead:
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// process characters in s until we run out of characters or we hit a whitespace
for (auto it = s.begin(); it != s.end() && !isspace(*it); ++it)

*it = toupper(*it); // capitalize the current character

This loop, like the one in § 3.2.3 (p. 94), iterates through the characters in s, stop-
ping when we encounter a whitespace character. However, this loop accesses these
characters using an iterator, not a subscript.

The loop starts by initializing it from s.begin, meaning that it denotes the
first character (if any) in s. The condition checks whether it has reached the end
of s. If not, the condition next dereferences it to pass the current character to
isspace to see whether we’re done. At the end of each iteration, we execute
++it to advance the iterator to access the next character in s.

The body of this loop, is the same as the last statement in the previous if. We
dereference it to pass the current character to toupper and assign the resulting
uppercase letter back into the character denoted by it.

KEY CONCEPT: GENERIC PROGRAMMING

Programmers coming to C++ from C or Java might be surprised that we used != rather
than < in our for loops such as the one above and in the one on page 94. C++ program-
mers use != as a matter of habit. They do so for the same reason that they use iterators
rather than subscripts: This coding style applies equally well to various kinds of con-
tainers provided by the library.

As we’ve seen, only a few library types, vector and string being among them,
have the subscript operator. Similarly, all of the library containers have iterators that
define the == and != operators. Most of those iterators do not have the < operator.
By routinely using iterators and !=, we don’t have to worry about the precise type of
container we’re processing.

Iterator Types

Just as we do not know the precise type of a vector’s or string’s size_type
member (§ 3.2.2, p. 88), so too, we generally do not know—and do not need to
know—the precise type of an iterator. Instead, as with size_type, the library
types that have iterators define types named iterator and const_iterator
that represent actual iterator types:

vector<int>::iterator it; // it can read and write vector<int> elements
string::iterator it2; // it2 can read and write characters in a string

vector<int>::const_iterator it3; // it3 can read but not write elements
string::const_iterator it4; // it4 can read but not write characters

A const_iterator behaves like a const pointer (§ 2.4.2, p. 62). Like a const
pointer, a const_iterator may read but not write the element it denotes; an
object of type iterator can both read and write. If a vector or string is
const, we may use only its const_iterator type. With a nonconst vector
or string, we can use either iterator or const_iterator.
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TERMINOLOGY: ITERATORS AND ITERATOR TYPES

The term iterator is used to refer to three different entities. We might mean the concept
of an iterator, or we might refer to the iterator type defined by a container, or we
might refer to an object as an iterator.

What’s important to understand is that there is a collection of types that are related
conceptually. A type is an iterator if it supports a common set of actions. Those actions
let us access an element in a container and let us move from one element to another.

Each container class defines a type named iterator; that iterator type supports
the actions of an (conceptual) iterator.

The begin and end Operations

The type returned by begin and end depends on whether the object on which
they operator is const. If the object is const, then begin and end return a
const_iterator; if the object is not const, they return iterator:

vector<int> v;
const vector<int> cv;
auto it1 = v.begin(); // it1 has type vector<int>::iterator
auto it2 = cv.begin(); // it2 has type vector<int>::const_iterator

Often this default behavior is not what we want. For reasons we’ll explain in § 6.2.3
(p. 213), it is usually best to use a const type (such as const_iterator) when
we need to read but do not need to write to an object. To let us ask specifically
for the const_iterator type, the new standard introduced two new functions
named cbegin and cend:

auto it3 = v.cbegin(); // it3 has type vector<int>::const_iterator

As do the begin and end members, these members return iterators to the first
and one past the last element in the container. However, regardless of whether the
vector (or string) is const, they return a const_iterator.

Combining Dereference and Member Access

When we dereference an iterator, we get the object that the iterator denotes. If that
object has a class type, we may want to access a member of that object. For exam-
ple, we might have a vector of strings and we might need to know whether a
given element is empty. Assuming it is an iterator into this vector, we can check
whether the string that it denotes is empty as follows:

(*it).empty()

For reasons we’ll cover in § 4.1.2 (p. 136), the parentheses in (*it).empty() are
necessary. The parentheses say to apply the dereference operator to it and to
apply the dot operator (§ 1.5.2, p. 23) to the result of dereferencing it. Without
parentheses, the dot operator would apply to it, not to the resulting object:

(*it).empty() // dereferences it and calls the member empty on the resulting object
*it.empty() // error: attempts to fetch the member named empty from it

// but it is an iterator and has no member named empty
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The second expression is interpreted as a request to fetch the empty member from
the object named it. However, it is an iterator and has no member named empty.
Hence, the second expression is in error.

To simplify expressions such as this one, the language defines the arrow op-
erator (the -> operator). The arrow operator combines dereference and member
access into a single operation. That is, it->mem is a synonym for (*it).mem.

For example, assume we have a vector<string> named text that holds the
data from a text file. Each element in the vector is either a sentence or an empty
string representing a paragraph break. If we want to print the contents of the
first paragraph from text, we’d write a loop that iterates through text until we
encounter an element that is empty:

// print each line in text up to the first blank line
for (auto it = text.cbegin();

it != text.cend() && !it->empty(); ++it)
cout << *it << endl;

We start by initializing it to denote the first element in text. The loop continues
until either we process every element in text or we find an element that is empty.
So long as there are elements and we haven’t seen an empty element, we print the
current element. It is worth noting that because the loop reads but does not write
to the elements in text, we use cbegin and cend to control the iteration.

Some vector Operations Invalidate Iterators

In § 3.3.2 (p. 101) we noted that there are implications of the fact that vectors can
grow dynamically. We also noted that one such implication is that we cannot add
elements to a vector inside a range for loop. Another implication is that any
operation, such as push_back, that changes the size of a vector potentially in-
validates all iterators into that vector. We’ll explore how iterators become invalid
in more detail in § 9.3.6 (p. 353).

For now, it is important to realize that loops that use iterators should not
add elements to the container to which the iterators refer.

EXE R C I S E S SE C TI ON 3.4.1

Exercise 3.21: Redo the first exercise from § 3.3.3 (p. 105) using iterators.

Exercise 3.22: Revise the loop that printed the first paragraph in text to instead
change the elements in text that correspond to the first paragraph to all uppercase.
After you’ve updated text, print its contents.

Exercise 3.23: Write a program to create a vector with ten int elements. Using an
iterator, assign each element a value that is twice its current value. Test your program
by printing the vector.
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3.4.2 Iterator Arithmetic
Incrementing an iterator moves the iterator one element at a time. All the library
containers have iterators that support increment. Similarly, we can use == and !=
to compare two valid iterators (§ 3.4, p. 106) into any of the library container types.

Iterators for string and vector support additional operations that can move
an iterator multiple elements at a time. They also support all the relational op-
erators. These operations, which are often referred to as iterator arithmetic, are
described in Table 3.7.

Table 3.7: Operations Supported by vector and string Iterators

iter + n
iter - n

Adding (subtracting) an integral value n to (from) an iterator yields an
iterator that many elements forward (backward) within the container.
The resulting iterator must denote elements in, or one past the end of,
the same container.

iter1 += n
iter1 -= n

Compound-assignment for iterator addition and subtraction. Assigns to
iter1 the value of adding n to, or subtracting n from, iter1.

iter1 - iter2 Subtracting two iterators yields the number that when added to the
right-hand iterator yields the left-hand iterator. The iterators must
denote elements in, or one past the end of, the same container.

>, >=, <, <= Relational operators on iterators. One iterator is less than another if it
refers to an element that appears in the container before the one
referred to by the other iterator. The iterators must denote elements in,
or one past the end of, the same container.

Arithmetic Operations on Iterators

We can add (or subtract) an integral value and an iterator. Doing so returns an
iterator positioned forward (or backward) that many elements. When we add or
subtract an integral value and an iterator, the result must denote an element in the
same vector (or string) or denote one past the end of the associated vector
(or string). As an example, we can compute an iterator to the element nearest
the middle of a vector:

// compute an iterator to the element closest to the midpoint of vi
auto mid = vi.begin() + vi.size() / 2;

If vi has 20 elements, then vi.size()/2 is 10. In this case, we’d set mid equal
to vi.begin() + 10. Remembering that subscripts start at 0, this element is the
same as vi[10], the element ten past the first.

In addition to comparing two iterators for equality, we can compare vector
and string iterators using the relational operators (<, <=, >, >=). The iterators
must be valid and must denote elements in (or one past the end of) the same
vector or string. For example, assuming it is an iterator into the same vector
as mid, we can check whether it denotes an element before or after mid as follows:

if (it < mid)
// process elements in the first half of vi
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We can also subtract two iterators so long as they refer to elements in, or one
off the end of, the same vector or string. The result is the distance between
the iterators. By distance we mean the amount by which we’d have to change
one iterator to get the other. The result type is a signed integral type named
difference_type. Both vector and string define difference_type. This
type is signed, because subtraction might have a negative result.

Using Iterator Arithmetic

A classic algorithm that uses iterator arithmetic is binary search. A binary search
looks for a particular value in a sorted sequence. It operates by looking at the el-
ement closest to the middle of the sequence. If that element is the one we want,
we’re done. Otherwise, if that element is smaller than the one we want, we con-
tinue our search by looking only at elements after the rejected one. If the middle
element is larger than the one we want, we continue by looking only in the first
half. We compute a new middle element in the reduced range and continue look-
ing until we either find the element or run out of elements.

We can do a binary search using iterators as follows:

// text must be sorted
// beg and end will denote the range we’re searching
auto beg = text.begin(), end = text.end();
auto mid = text.begin() + (end - beg)/2; // original midpoint

// while there are still elements to look at and we haven’t yet found sought
while (mid != end && *mid != sought) {

if (sought < *mid) // is the element we want in the first half?
end = mid; // if so, adjust the range to ignore the second half

else // the element we want is in the second half
beg = mid + 1; // start looking with the element just after mid

mid = beg + (end - beg)/2; // new midpoint
}

We start by defining three iterators: beg will be the first element in the range, end
one past the last element, and mid the element closest to the middle. We initialize
these iterators to denote the entire range in a vector<string> named text.

Our loop first checks that the range is not empty. If mid is equal to the current
value of end, then we’ve run out of elements to search. In this case, the condition
fails and we exit the while. Otherwise, mid refers to an element and we check
whether mid denotes the one we want. If so, we’re done and we exit the loop.

If we still have elements to process, the code inside the while adjusts the range
by moving end or beg. If the element denoted by mid is greater than sought, we
know that if sought is in text, it will appear before the element denoted by mid.
Therefore, we can ignore elements after mid, which we do by assigning mid to
end. If *mid is smaller than sought, the element must be in the range of elements
after the one denoted by mid. In this case, we adjust the range by making beg
denote the element just after mid. We already know that mid is not the one we
want, so we can eliminate it from the range.

At the end of the while, mid will be equal to end or it will denote the element
for which we are looking. If mid equals end, then the element was not in text.
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EXE R C I S E S SE C TI ON 3.4.2

Exercise 3.24: Redo the last exercise from § 3.3.3 (p. 105) using iterators.

Exercise 3.25: Rewrite the grade clustering program from § 3.3.3 (p. 104) using itera-
tors instead of subscripts.

Exercise 3.26: In the binary search program on page 112, why did we write mid = beg
+ (end - beg) / 2; instead of mid = (beg + end) /2;?

3.5 Arrays
An array is a data structure that is similar to the library vector type (§ 3.3, p. 96)
but offers a different trade-off between performance and flexibility. Like a vector,
an array is a container of unnamed objects of a single type that we access by posi-
tion. Unlike a vector, arrays have fixed size; we cannot add elements to an array.
Because arrays have fixed size, they sometimes offer better run-time performance
for specialized applications. However, that run-time advantage comes at the cost
of lost flexibility.

If you don’t know exactly how many elements you need, use a vector.

3.5.1 Defining and Initializing Built-in Arrays
Arrays are a compound type (§ 2.3, p. 50). An array declarator has the form a[d],
where a is the name being defined and d is the dimension of the array. The dimen-
sion specifies the number of elements and must be greater than zero. The number
of elements in an array is part of the array’s type. As a result, the dimension must
be known at compile time, which means that the dimension must be a constant
expression (§ 2.4.4, p. 65):

unsigned cnt = 42; // not a constant expression
constexpr unsigned sz = 42; // constant expression

// constexpr see § 2.4.4 (p. 66)
int arr[10]; // array of ten ints
int *parr[sz]; // array of 42 pointers to int
string bad[cnt]; // error: cnt is not a constant expression
string strs[get_size()]; // ok if get_size is constexpr, error otherwise

By default, the elements in an array are default initialized (§ 2.2.1, p. 43).

As with variables of built-in type, a default-initialized array of built-in
type that is defined inside a function will have undefined values.

When we define an array, we must specify a type for the array. We cannot use
auto to deduce the type from a list of initializers. As with vector, arrays hold
objects. Thus, there are no arrays of references.
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Explicitly Initializing Array Elements

We can list initialize (§ 3.3.1, p. 98) the elements in an array. When we do so, we
can omit the dimension. If we omit the dimension, the compiler infers it from
the number of initializers. If we specify a dimension, the number of initializers
must not exceed the specified size. If the dimension is greater than the number
of initializers, the initializers are used for the first elements and any remaining
elements are value initialized (§ 3.3.1, p. 98):

const unsigned sz = 3;
int ia1[sz] = {0,1,2}; // array of three ints with values 0, 1, 2
int a2[] = {0, 1, 2}; // an array of dimension 3
int a3[5] = {0, 1, 2}; // equivalent to a3[] = {0, 1, 2, 0, 0}
string a4[3] = {"hi", "bye"}; // same as a4[] = {"hi", "bye", ""}
int a5[2] = {0,1,2}; // error: too many initializers

Character Arrays Are Special

Character arrays have an additional form of initialization: We can initialize such
arrays from a string literal (§ 2.1.3, p. 39). When we use this form of initialization,
it is important to remember that string literals end with a null character. That null
character is copied into the array along with the characters in the literal:

char a1[] = {’C’, ’+’, ’+’}; // list initialization, no null
char a2[] = {’C’, ’+’, ’+’, ’\0’}; // list initialization, explicit null
char a3[] = "C++"; // null terminator added automatically
const char a4[6] = "Daniel"; // error: no space for the null!

The dimension of a1 is 3; the dimensions of a2 and a3 are both 4. The definition
of a4 is in error. Although the literal contains only six explicit characters, the array
size must be at least seven—six to hold the literal and one for the null.

No Copy or Assignment

We cannot initialize an array as a copy of another array, nor is it legal to assign one
array to another:

int a[] = {0, 1, 2}; // array of three ints
int a2[] = a; // error: cannot initialize one array with another
a2 = a; // error: cannot assign one array to another

Some compilers allow array assignment as a compiler extension. It is
usually a good idea to avoid using nonstandard features. Programs that
use such features, will not work with a different compiler.

Understanding Complicated Array Declarations

Like vectors, arrays can hold objects of most any type. For example, we can have
an array of pointers. Because an array is an object, we can define both pointers and
references to arrays. Defining arrays that hold pointers is fairly straightforward,
defining a pointer or reference to an array is a bit more complicated:
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int *ptrs[10]; // ptrs is an array of ten pointers to int
int &refs[10] = /* ? */; // error: no arrays of references
int (*Parray)[10] = &arr; // Parray points to an array of ten ints
int (&arrRef)[10] = arr; // arrRef refers to an array of ten ints

By default, type modifiers bind right to left. Reading the definition of ptrs from
right to left (§ 2.3.3, p. 58) is easy: We see that we’re defining an array of size 10,
named ptrs, that holds pointers to int.

Reading the definition of Parray from right to left isn’t as helpful. Because
the array dimension follows the name being declared, it can be easier to read array
declarations from the inside out rather than from right to left. Reading from the
inside out makes it much easier to understand the type of Parray. We start by
observing that the parentheses around *Parray mean that Parray is a pointer.
Looking right, we see that Parray points to an array of size 10. Looking left, we
see that the elements in that array are ints. Thus, Parray is a pointer to an array
of ten ints. Similarly, (&arrRef) says that arrRef is a reference. The type to
which it refers is an array of size 10. That array holds elements of type int.

Of course, there are no limits on how many type modifiers can be used:

int *(&arry)[10] = ptrs; // arry is a reference to an array of ten pointers

Reading this declaration from the inside out, we see that arry is a reference. Look-
ing right, we see that the object to which arry refers is an array of size 10. Looking
left, we see that the element type is pointer to int. Thus, arry is a reference to an
array of ten pointers.

It can be easier to understand array declarations by starting with the
array’s name and reading them from the inside out.

EXE R C I S E S SE C TI ON 3.5.1

Exercise 3.27: Assuming txt_size is a function that takes no arguments and returns
an int value, which of the following definitions are illegal? Explain why.

unsigned buf_size = 1024;
(a) int ia[buf_size]; (b) int ia[4 * 7 - 14];
(c) int ia[txt_size()]; (d) char st[11] = "fundamental";

Exercise 3.28: What are the values in the following arrays?

string sa[10];
int ia[10];
int main() {

string sa2[10];
int ia2[10];

}

Exercise 3.29: List some of the drawbacks of using an array instead of a vector.
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3.5.2 Accessing the Elements of an Array
As with the library vector and string types, we can use a range for or the
subscript operator to access elements of an array. As usual, the indices start at 0.
For an array of ten elements, the indices are 0 through 9, not 1 through 10.

When we use a variable to subscript an array, we normally should define that
variable to have type size_t. size_t is a machine-specific unsigned type that
is guaranteed to be large enough to hold the size of any object in memory. The
size_t type is defined in the cstddef header, which is the C++ version of the
stddef.h header from the C library.

With the exception that arrays are fixed size, we use arrays in ways that are
similar to how we use vectors. For example, we can reimplement our grading
program from § 3.3.3 (p. 104) to use an array to hold the cluster counters:

// count the number of grades by clusters of ten: 0--9, 10--19, . . . 90--99, 100
unsigned scores[11] = {}; // 11 buckets, all value initialized to 0
unsigned grade;
while (cin >> grade) {

if (grade <= 100)
++scores[grade/10]; // increment the counter for the current cluster

}

The only obvious difference between this program and the one on page 104 is the
declaration of scores. In this program scores is an array of 11 unsigned ele-
ments. The not so obvious difference is that the subscript operator in this program
is the one that is defined as part of the language. This operator can be used on oper-
ands of array type. The subscript operator used in the program on page 104 was
defined by the library vector template and applies to operands of type vector.

As in the case of string or vector, it is best to use a range for when we
want to traverse the entire array. For example, we can print the resulting scores
as follows:

for (auto i : scores) // for each counter in scores
cout << i << " "; // print the value of that counter

cout << endl;

Because the dimension is part of each array type, the system knows how many
elements are in scores. Using a range for means that we don’t have to manage
the traversal ourselves.

Checking Subscript Values

As with string and vector, it is up to the programmer to ensure that the sub-
script value is in range—that is, that the index value is equal to or greater than zero
and less than the size of the array. Nothing stops a program from stepping across
an array boundary except careful attention to detail and thorough testing of the
code. It is possible for programs to compile and execute yet still be fatally wrong.

The most common source of security problems are buffer overflow bugs.
Such bugs occur when a program fails to check a subscript and mistak-
enly uses memory outside the range of an array or similar data structure.
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EXE R C I S E S SE C TI ON 3.5.2

Exercise 3.30: Identify the indexing errors in the following code:

constexpr size_t array_size = 10;
int ia[array_size];
for (size_t ix = 1; ix <= array_size; ++ix)

ia[ix] = ix;

Exercise 3.31: Write a program to define an array of ten ints. Give each element the
same value as its position in the array.

Exercise 3.32: Copy the array you defined in the previous exercise into another array.
Rewrite your program to use vectors.

Exercise 3.33: What would happen if we did not initialize the scores array in the
program on page 116?

3.5.3 Pointers and Arrays
In C++ pointers and arrays are closely intertwined. In particular, as we’ll see, when
we use an array, the compiler ordinarily converts the array to a pointer.

Normally, we obtain a pointer to an object by using the address-of operator
(§ 2.3.2, p. 52). Generally speaking, the address-of operator may be applied to any
object. The elements in an array are objects. When we subscript an array, the result
is the object at that location in the array. As with any other object, we can obtain a
pointer to an array element by taking the address of that element:

string nums[] = {"one", "two", "three"}; // array of strings
string *p = &nums[0]; // p points to the first element in nums

However, arrays have a special property—in most places when we use an array,
the compiler automatically substitutes a pointer to the first element:

string *p2 = nums; // equivalent to p2 = &nums[0]

In most expressions, when we use an object of array type, we are really
using a pointer to the first element in that array.

There are various implications of the fact that operations on arrays are often
really operations on pointers. One such implication is that when we use an array
as an initializer for a variable defined using auto (§ 2.5.2, p. 68), the deduced type
is a pointer, not an array:

int ia[] = {0,1,2,3,4,5,6,7,8,9}; // ia is an array of ten ints
auto ia2(ia); // ia2 is an int* that points to the first element in ia
ia2 = 42; // error: ia2 is a pointer, and we can’t assign an int to a pointer

Although ia is an array of ten ints, when we use ia as an initializer, the compiler
treats that initialization as if we had written

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

118 Strings, Vectors, and Arrays

auto ia2(&ia[0]); // now it’s clear that ia2 has type int*

It is worth noting that this conversion does not happen when we use decltype
(§ 2.5.3, p. 70). The type returned by decltype(ia) is array of ten ints:

// ia3 is an array of ten ints
decltype(ia) ia3 = {0,1,2,3,4,5,6,7,8,9};
ia3 = p; // error: can’t assign an int* to an array
ia3[4] = i; // ok: assigns the value of i to an element in ia3

Pointers Are Iterators

Pointers that address elements in an array have additional operations beyond
those we described in § 2.3.2 (p. 52). In particular, pointers to array elements sup-
port the same operations as iterators on vectors or strings (§ 3.4, p. 106). For
example, we can use the increment operator to move from one element in an array
to the next:

int arr[] = {0,1,2,3,4,5,6,7,8,9};
int *p = arr; // p points to the first element in arr
++p; // p points to arr[1]

Just as we can use iterators to traverse the elements in a vector, we can use
pointers to traverse the elements in an array. Of course, to do so, we need to obtain
pointers to the first and one past the last element. As we’ve just seen, we can obtain
a pointer to the first element by using the array itself or by taking the address-of
the first element. We can obtain an off-the-end pointer by using another special
property of arrays. We can take the address of the nonexistent element one past
the last element of an array:

int *e = &arr[10]; // pointer just past the last element in arr

Here we used the subscript operator to index a nonexisting element; arr has ten
elements, so the last element in arr is at index position 9. The only thing we can
do with this element is take its address, which we do to initialize e. Like an off-the-
end iterator (§ 3.4.1, p. 106), an off-the-end pointer does not point to an element.
As a result, we may not dereference or increment an off-the-end pointer.

Using these pointers we can write a loop to print the elements in arr as follows:

for (int *b = arr; b != e; ++b)
cout << *b << endl; // print the elements in arr

The Library begin and end Functions

Although we can compute an off-the-end pointer, doing so is error-prone. To make
it easier and safer to use pointers, the new library includes two functions, named
begin and end. These functions act like the similarly named container members
(§ 3.4.1, p. 106). However, arrays are not class types, so these functions are not
member functions. Instead, they take an argument that is an array:

int ia[] = {0,1,2,3,4,5,6,7,8,9}; // ia is an array of ten ints
int *beg = begin(ia); // pointer to the first element in ia
int *last = end(ia); // pointer one past the last element in ia
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begin returns a pointer to the first, and end returns a pointer one past the last
element in the given array: These functions are defined in the iterator header.

Using begin and end, it is easy to write a loop to process the elements in an
array. For example, assuming arr is an array that holds int values, we might find
the first negative value in arr as follows:

// pbeg points to the first and pend points just past the last element in arr
int *pbeg = begin(arr), *pend = end(arr);
// find the first negative element, stopping if we’ve seen all the elements
while (pbeg != pend && *pbeg >= 0)

++pbeg;

We start by defining two int pointers named pbeg and pend. We position pbeg
to denote the first element and pend to point one past the last element in arr.
The while condition uses pend to know whether it is safe to dereference pbeg. If
pbeg does point at an element, we dereference and check whether the underlying
element is negative. If so, the condition fails and we exit the loop. If not, we
increment the pointer to look at the next element.

A pointer “one past” the end of a built-in array behaves the same way
as the iterator returned by the end operation of a vector. In particular,
we may not dereference or increment an off-the-end pointer.

Pointer Arithmetic

Pointers that address array elements can use all the iterator operations listed in
Table 3.6 (p. 107) and Table 3.7 (p. 111). These operations—dereference, increment,
comparisons, addition of an integral value, subtraction of two pointers—have the
same meaning when applied to pointers that point at elements in a built-in array
as they do when applied to iterators.

When we add (or subtract) an integral value to (or from) a pointer, the result is
a new pointer. That new pointer points to the element the given number ahead of
(or behind) the original pointer:

constexpr size_t sz = 5;
int arr[sz] = {1,2,3,4,5};
int *ip = arr; // equivalent to int *ip = &arr[0]
int *ip2 = ip + 4; // ip2 points to arr[4], the last element in arr

The result of adding 4 to ip is a pointer that points to the element four elements
further on in the array from the one to which ip currently points.

The result of adding an integral value to a pointer must be a pointer to an
element in the same array, or a pointer just past the end of the array:

// ok: arr is converted to a pointer to its first element; p points one past the end of arr
int *p = arr + sz; // use caution -- do not dereference!
int *p2 = arr + 10; // error: arr has only 5 elements; p2 has undefined value

When we add sz to arr, the compiler converts arr to a pointer to the first element
in arr. When we add sz to that pointer, we get a pointer that points sz positions
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(i.e., 5 positions) past the first one. That is, it points one past the last element in
arr. Computing a pointer more than one past the last element is an error, although
the compiler is unlikely to detect such errors.

As with iterators, subtracting two pointers gives us the distance between those
pointers. The pointers must point to elements in the same array:

auto n = end(arr) - begin(arr); // n is 5, the number of elements in arr

The result of subtracting two pointers is a library type named ptrdiff_t. Like
size_t, the ptrdiff_t type is a machine-specific type and is defined in the
cstddefheader. Because subtraction might yield a negative distance, ptrdiff_t
is a signed integral type.

We can use the relational operators to compare pointers that point to elements
of an array, or one past the last element in that array. For example, we can traverse
the elements in arr as follows:

int *b = arr, *e = arr + sz;
while (b < e) {

// use *b
++b;

}

We cannot use the relational operators on pointers to two unrelated objects:

int i = 0, sz = 42;
int *p = &i, *e = &sz;

// undefined: p and e are unrelated; comparison is meaningless!
while (p < e)

Although the utility may be obscure at this point, it is worth noting that pointer
arithmetic is also valid for null pointers (§ 2.3.2, p. 53) and for pointers that point
to an object that is not an array. In the latter case, the pointers must point to the
same object, or one past that object. If p is a null pointer, we can add or subtract
an integral constant expression (§ 2.4.4, p. 65) whose value is 0 to p. We can also
subtract two null pointers from one another, in which case the result is 0.

Interaction between Dereference and Pointer Arithmetic

The result of adding an integral value to a pointer is itself a pointer. Assuming the
resulting pointer points to an element, we can dereference the resulting pointer:

int ia[] = {0,2,4,6,8}; // array with 5 elements of type int
int last = *(ia + 4); // ok: initializes last to 8, the value of ia[4]

The expression *(ia + 4) calculates the address four elements past ia and deref-
erences the resulting pointer. This expression is equivalent to writing ia[4].

Recall that in § 3.4.1 (p. 109) we noted that parentheses are required in expres-
sions that contain dereference and dot operators. Similarly, the parentheses around
this pointer addition are essential. Writing

last = *ia + 4; // ok: last = 4, equivalent to ia[0] + 4

means dereference ia and add 4 to the dereferenced value. We’ll cover the reasons
for this behavior in § 4.1.2 (p. 136).
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Subscripts and Pointers

As we’ve seen, in most places when we use the name of an array, we are really
using a pointer to the first element in that array. One place where the compiler
does this transformation is when we subscript an array. Given

int ia[] = {0,2,4,6,8}; // array with 5 elements of type int

if we write ia[0], that is an expression that uses the name of an array. When we
subscript an array, we are really subscripting a pointer to an element in that array:

int i = ia[2]; // ia is converted to a pointer to the first element in ia
// ia[2] fetches the element to which (ia + 2) points

int *p = ia; // p points to the first element in ia
i = *(p + 2); // equivalent to i = ia[2]

We can use the subscript operator on any pointer, as long as that pointer points to
an element (or one past the last element) in an array:

int *p = &ia[2]; // p points to the element indexed by 2
int j = p[1]; // p[1] is equivalent to *(p + 1),

// p[1] is the same element as ia[3]
int k = p[-2]; // p[-2] is the same element as ia[0]

This last example points out an important difference between arrays and library
types such as vector and string that have subscript operators. The library types
force the index used with a subscript to be an unsigned value. The built-in sub-
script operator does not. The index used with the built-in subscript operator can
be a negative value. Of course, the resulting address must point to an element in
(or one past the end of) the array to which the original pointer points.

Unlike subscripts for vector and string, the index of the built-in sub-
script operator is not an unsigned type.

EXE R C I S E S SE C TI ON 3.5.3

Exercise 3.34: Given that p1 and p2 point to elements in the same array, what does
the following code do? Are there values of p1 or p2 that make this code illegal?

p1 += p2 - p1;

Exercise 3.35: Using pointers, write a program to set the elements in an array to zero.

Exercise 3.36: Write a program to compare two arrays for equality. Write a similar
program to compare two vectors.
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3.5.4 C-Style Character Strings

Although C++ supports C-style strings, they should not be used by C++
programs. C-style strings are a surprisingly rich source of bugs and are
the root cause of many security problems. They’re also harder to use!

Character string literals are an instance of a more general construct that C++ in-
herits from C: C-style character strings. C-style strings are not a type. Instead,
they are a convention for how to represent and use character strings. Strings that
follow this convention are stored in character arrays and are null terminated. By
null-terminated we mean that the last character in the string is followed by a null
character (’\0’). Ordinarily we use pointers to manipulate these strings.

C Library String Functions

The Standard C library provides a set of functions, listed in Table 3.8, that operate
on C-style strings. These functions are defined in the cstring header, which is
the C++ version of the C header string.h.

The functions in Table 3.8 do not verify their string parameters.

The pointer(s) passed to these routines must point to null-terminated array(s):

char ca[] = {’C’, ’+’, ’+’}; // not null terminated
cout << strlen(ca) << endl; // disaster: ca isn’t null terminated

In this case, ca is an array of char but is not null terminated. The result is unde-
fined. The most likely effect of this call is that strlen will keep looking through
the memory that follows ca until it encounters a null character.

Table 3.8: C-Style Character String Functions

strlen(p) Returns the length of p, not counting the null.
strcmp(p1, p2) Compares p1 and p2 for equality. Returns 0 if p1 == p2, a positive

value if p1 > p2, a negative value if p1 < p2.
strcat(p1, p2) Appends p2 to p1. Returns p1.

strcpy(p1, p2) Copies p2 into p1. Returns p1.

Comparing Strings

Comparing two C-style strings is done quite differently from how we compare
library strings. When we compare two library strings, we use the normal
relational or equality operators:

string s1 = "A string example";
string s2 = "A different string";

if (s1 < s2) // false: s2 is less than s1
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Using these operators on similarly defined C-style strings compares the pointer
values, not the strings themselves:

const char ca1[] = "A string example";
const char ca2[] = "A different string";

if (ca1 < ca2) // undefined: compares two unrelated addresses

Remember that when we use an array, we are really using a pointer to the first
element in the array (§ 3.5.3, p. 117). Hence, this condition actually compares two
const char* values. Those pointers do not address the same object, so the com-
parison is undefined.

To compare the strings, rather than the pointer values, we can call strcmp.
That function returns 0 if the strings are equal, or a positive or negative value,
depending on whether the first string is larger or smaller than the second:

if (strcmp(ca1, ca2) < 0) // same effect as string comparison s1 < s2

Caller Is Responsible for Size of a Destination String

Concatenating or copying C-style strings is also very different from the same op-
erations on library strings. For example, if we wanted to concatenate the two
strings s1 and s2 defined above, we can do so directly:

// initialize largeStr as a concatenation of s1, a space, and s2
string largeStr = s1 + " " + s2;

Doing the same with our two arrays, ca1 and ca2, would be an error. The expres-
sion ca1 + ca2 tries to add two pointers, which is illegal and meaningless.

Instead we can use strcat and strcpy. However, to use these functions, we
must pass an array to hold the resulting string. The array we pass must be large
enough to hold the generated string, including the null character at the end. The
code we show here, although a common usage pattern, is fraught with potential
for serious error:

// disastrous if we miscalculated the size of largeStr
strcpy(largeStr, ca1); // copies ca1 into largeStr
strcat(largeStr, " "); // adds a space at the end of largeStr
strcat(largeStr, ca2); // concatenates ca2 onto largeStr

The problem is that we can easily miscalculate the size needed for largeStr.
Moreover, any time we change the values we want to store in largeStr, we have
to remember to double-check that we calculated its size correctly. Unfortunately,
programs similar to this code are widely distributed. Programs with such code are
error-prone and often lead to serious security leaks.

For most applications, in addition to being safer, it is also more efficient
to use library strings rather than C-style strings.
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EXE R C I S E S SE C TI ON 3.5.4

Exercise 3.37: What does the following program do?

const char ca[] = {’h’, ’e’, ’l’, ’l’, ’o’};
const char *cp = ca;
while (*cp) {

cout << *cp << endl;
++cp;

}

Exercise 3.38: In this section, we noted that it was not only illegal but meaningless to
try to add two pointers. Why would adding two pointers be meaningless?

Exercise 3.39: Write a program to compare two strings. Now write a program to
compare the values of two C-style character strings.

Exercise 3.40: Write a program to define two character arrays initialized from string
literals. Now define a third character array to hold the concatenation of the two arrays.
Use strcpy and strcat to copy the two arrays into the third.

3.5.5 Interfacing to Older Code
Many C++ programs predate the standard library and do not use the string and
vector types. Moreover, many C++ programs interface to programs written in
C or other languages that cannot use the C++ library. Hence, programs written in
modern C++ may have to interface to code that uses arrays and/or C-style charac-
ter strings. The C++ library offers facilities to make the interface easier to manage.

Mixing Library strings and C-Style Strings

In § 3.2.1 (p. 84) we saw that we can initialize a string from a string literal:

string s("Hello World"); // s holds Hello World

More generally, we can use a null-terminated character array anywhere that we
can use a string literal:

• We can use a null-terminated character array to initialize or assign a string.

• We can use a null-terminated character array as one operand (but not both
operands) to the string addition operator or as the right-hand operand in
the string compound assignment (+=) operator.

The reverse functionality is not provided: There is no direct way to use a library
stringwhen a C-style string is required. For example, there is no way to initialize
a character pointer from a string. There is, however, a string member function
named c_str that we can often use to accomplish what we want:

char *str = s; // error: can’t initialize a char* from a string
const char *str = s.c_str(); // ok
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The name c_str indicates that the function returns a C-style character string. That
is, it returns a pointer to the beginning of a null-terminated character array that
holds the same data as the characters in the string. The type of the pointer is
const char*, which prevents us from changing the contents of the array.

The array returned by c_str is not guaranteed to be valid indefinitely. Any
subsequent use of s that might change the value of s can invalidate this array.

If a program needs continuing access to the contents of the array re-
turned by str(), the program must copy the array returned by c_str.

Using an Array to Initialize a vector

In § 3.5.1 (p. 114) we noted that we cannot initialize a built-in array from another
array. Nor can we initialize an array from a vector. However, we can use an
array to initialize a vector. To do so, we specify the address of the first element
and one past the last element that we wish to copy:

int int_arr[] = {0, 1, 2, 3, 4, 5};
// ivec has six elements; each is a copy of the corresponding element in int_arr
vector<int> ivec(begin(int_arr), end(int_arr));

The two pointers used to construct ivec mark the range of values to use to ini-
tialize the elements in ivec. The second pointer points one past the last element
to be copied. In this case, we used the library begin and end functions (§ 3.5.3,
p. 118) to pass pointers to the first and one past the last elements in int_arr. As a
result, ivec will have six elements each of which will have the same value as the
corresponding element in int_arr.

The specified range can be a subset of the array:

// copies three elements: int_arr[1], int_arr[2], int_arr[3]
vector<int> subVec(int_arr + 1, int_arr + 4);

This initialization creates subVec with three elements. The values of these ele-
ments are copies of the values in int_arr[1] through int_arr[3].

ADVICE: USE LIBRARY TYPES INSTEAD OF ARRAYS

Pointers and arrays are surprisingly error-prone. Part of the problem is conceptual:
Pointers are used for low-level manipulations and it is easy to make bookkeeping
mistakes. Other problems arise because of the syntax, particularly the declaration
syntax used with pointers.

Modern C++ programs should use vectors and iterators instead of built-in arrays
and pointers, and use strings rather than C-style array-based character strings.

3.6 Multidimensional Arrays
Strictly speaking, there are no multidimensional arrays in C++. What are com-
monly referred to as multidimensional arrays are actually arrays of arrays. It can
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EXE R C I S E S SE C TI ON 3.5.5

Exercise 3.41: Write a program to initialize a vector from an array of ints.

Exercise 3.42: Write a program to copy a vector of ints into an array of ints.

be helpful to keep this fact in mind when you use what appears to be a multidi-
mensional array.

We define an array whose elements are arrays by providing two dimensions:
the dimension of the array itself and the dimension of its elements:

int ia[3][4]; // array of size 3; each element is an array of ints of size 4
// array of size 10; each element is a 20-element array whose elements are arrays of 30 ints
int arr[10][20][30] = {0}; // initialize all elements to 0

As we saw in § 3.5.1 (p. 115), we can more easily understand these definitions by
reading them from the inside out. We start with the name we’re defining (ia) and
see that ia is an array of size 3. Continuing to look to the right, we see that the
elements of ia also have a dimension. Thus, the elements in ia are themselves
arrays of size 4. Looking left, we see that the type of those elements is int. So, ia
is an array of size 3, each of whose elements is an array of four ints.

We read the definition for arr in the same way. First we see that arr is an
array of size 10. The elements of that array are themselves arrays of size 20. Each
of those arrays has 30 elements that are of type int. There is no limit on how many
subscripts are used. That is, we can have an array whose elements are arrays of
elements that are arrays, and so on.

In a two-dimensional array, the first dimension is usually referred to as the row
and the second as the column.

Initializing the Elements of a Multidimensional Array

As with any array, we can initialize the elements of a multidimensional array by
providing a bracketed list of initializers. Multidimensional arrays may be initial-
ized by specifying bracketed values for each row:

int ia[3][4] = { // three elements; each element is an array of size 4
{0, 1, 2, 3}, // initializers for the row indexed by 0
{4, 5, 6, 7}, // initializers for the row indexed by 1
{8, 9, 10, 11} // initializers for the row indexed by 2

};

The nested braces are optional. The following initialization is equivalent, although
considerably less clear:

// equivalent initialization without the optional nested braces for each row
int ia[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

As is the case for single-dimension arrays, elements may be left out of the ini-
tializer list. We can initialize only the first element of each row as follows:
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// explicitly initialize only element 0 in each row
int ia[3][4] = {{ 0 }, { 4 }, { 8 }};

The remaining elements are value initialized in the same way as ordinary, single-
dimension arrays (§ 3.5.1, p. 114). If the nested braces were omitted, the results
would be very different. This code

// explicitly initialize row 0; the remaining elements are value initialized
int ix[3][4] = {0, 3, 6, 9};

initializes the elements of the first row. The remaining elements are initialized to 0.

Subscripting a Multidimensional Array

As with any array, we can use a subscript to access the elements of a multidimen-
sional array. To do so, we use a separate subscript for each dimension.

If an expression provides as many subscripts as there are dimensions, we get
an element with the specified type. If we supply fewer subscripts than there are
dimensions, then the result is the inner-array element at the specified index:

// assigns the first element of arr to the last element in the last row of ia
ia[2][3] = arr[0][0][0];

int (&row)[4] = ia[1]; // binds row to the second four-element array in ia

In the first example we supply indices for all the dimensions for both arrays. On
the left-hand side, ia[2] returns the last row in ia. It does not fetch an element
from that array but returns the array itself. We subscript that array, fetching ele-
ment [3], which is the last element in that array.

Similarly, the right-hand operand has three dimensions. We first fetch the ar-
ray at index 0 from the outermost array. The result of that operation is a (multidi-
mensional) array of size 20. We take the first element from that 20-element array,
yielding an array of size 30. We then fetch the first element from that array.

In the second example, we define row as a reference to an array of four ints.
We bind that reference to the second row in ia.

As another example, it is common to use a pair of nested for loops to process
the elements in a multidimensional array:

constexpr size_t rowCnt = 3, colCnt = 4;

int ia[rowCnt][colCnt]; // 12 uninitialized elements

// for each row
for (size_t i = 0; i != rowCnt; ++i) {

// for each column within the row
for (size_t j = 0; j != colCnt; ++j) {

// assign the element’s positional index as its value
ia[i][j] = i * colCnt + j;

}
}

The outer for loops through each of the array elements in ia. The inner for loops
through the elements of those interior arrays. In this case, we set the value of each
element as its index in the overall array.
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Using a Range for with Multidimensional Arrays

Under the new standard we can simplify the previous loop by using a range for:

size_t cnt = 0;
for (auto &row : ia) // for every element in the outer array

for (auto &col : row) { // for every element in the inner array
col = cnt; // give this element the next value
++cnt; // increment cnt

}

This loop gives the elements of ia the same values as the previous loop, but this
time we let the system manage the indices for us. We want to change the value
of the elements, so we declare our control variables, row and col, as references
(§ 3.2.3, p. 93). The first for iterates through the elements in ia. Those elements
are arrays of size 4. Thus, the type of row is a reference to an array of four ints.
The second for iterates through one of those 4-element arrays. Hence, col is
int&. On each iteration we assign the value of cnt to the next element in ia and
increment cnt.

In the previous example, we used references as our loop control variables be-
cause we wanted to change the elements in the array. However, there is a deeper
reason for using references. As an example, consider the following loop:

for (const auto &row : ia) // for every element in the outer array
for (auto col : row) // for every element in the inner array

cout << col << endl;

This loop does not write to the elements, yet we still define the control variable
of the outer loop as a reference. We do so in order to avoid the normal array to
pointer conversion (§ 3.5.3, p. 117). Had we neglected the reference and written
these loops as:

for (auto row : ia)
for (auto col : row)

our program would not compile. As before, the first for iterates through ia,
whose elements are arrays of size 4. Because row is not a reference, when the
compiler initializes row it will convert each array element (like any other object of
array type) to a pointer to that array’s first element. As a result, in this loop the
type of row is int*. The inner for loop is illegal. Despite our intentions, that loop
attempts to iterate over an int*.

To use a multidimensional array in a range for, the loop control vari-
able for all but the innermost array must be references.

Pointers and Multidimensional Arrays

As with any array, when we use the name of a multidimensional array, it is auto-
matically converted to a pointer to the first element in the array.
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When you define a pointer to a multidimensional array, remember that
a multidimensional array is really an array of arrays.

Because a multidimensional array is really an array of arrays, the pointer type
to which the array converts is a pointer to the first inner array:

int ia[3][4]; // array of size 3; each element is an array of ints of size 4
int (*p)[4] = ia; // p points to an array of four ints
p = &ia[2]; // p now points to the last element in ia

Applying the strategy from § 3.5.1 (p. 115), we start by noting that (*p) says p is
a pointer. Looking right, we see that the object to which p points has a dimension
of size 4, and looking left that the element type is int. Hence, p is a pointer to an
array of four ints.

The parentheses in this declaration are essential:

int *ip[4]; // array of pointers to int
int (*ip)[4]; // pointer to an array of four ints

With the advent of the new standard, we can often avoid having to write the
type of a pointer into an array by using auto or decltype (§ 2.5.2, p. 68):

// print the value of each element in ia, with each inner array on its own line
// p points to an array of four ints
for (auto p = ia; p != ia + 3; ++p) {

// q points to the first element of an array of four ints; that is, q points to an int
for (auto q = *p; q != *p + 4; ++q)

cout << *q << ’ ’;
cout << endl;

}

The outer for loop starts by initializing p to point to the first array in ia. That
loop continues until we’ve processed all three rows in ia. The increment, ++p, has
the effect of moving p to point to the next row (i.e., the next element) in ia.

The inner for loop prints the values of the inner arrays. It starts by making q
point to the first element in the array to which p points. The result of *p is an array
of four ints. As usual, when we use an array, it is converted automatically to a
pointer to its first element. The inner for loop runs until we’ve processed every
element in the inner array. To obtain a pointer just off the end of the inner array,
we again dereference p to get a pointer to the first element in that array. We then
add 4 to that pointer to process the four elements in each inner array.

Of course, we can even more easily write this loop using the library begin and
end functions (§ 3.5.3, p. 118):

// p points to the first array in ia
for (auto p = begin(ia); p != end(ia); ++p) {

// q points to the first element in an inner array
for (auto q = begin(*p); q != end(*p); ++q)

cout << *q << ’ ’; // prints the int value to which q points
cout << endl;

}
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Here we let the library determine the end pointer, and we use auto to avoid hav-
ing to write the type returned from begin. In the outer loop, that type is a pointer
to an array of four ints. In the inner loop, that type is a pointer to int.

Type Aliases Simplify Pointers to Multidimensional Arrays

A type alias (§ 2.5.1, p. 67) can make it easier to read, write, and understand point-
ers to multidimensional arrays. For example:

using int_array = int[4]; // new style type alias declaration; see § 2.5.1 (p. 68)
typedef int int_array[4]; // equivalent typedef declaration; § 2.5.1 (p. 67)

// print the value of each element in ia, with each inner array on its own line
for (int_array *p = ia; p != ia + 3; ++p) {

for (int *q = *p; q != *p + 4; ++q)
cout << *q << ’ ’;

cout << endl;
}

Here we start by defining int_array as a name for the type “array of four ints.”
We use that type name to define our loop control variable in the outer for loop.

EXE R C I S E S SE C TI ON 3.6

Exercise 3.43: Write three different versions of a program to print the elements of ia.
One version should use a range for to manage the iteration, the other two should use
an ordinary for loop in one case using subscripts and in the other using pointers. In
all three programs write all the types directly. That is, do not use a type alias, auto, or
decltype to simplify the code.

Exercise 3.44: Rewrite the programs from the previous exercises using a type alias for
the type of the loop control variables.

Exercise 3.45: Rewrite the programs again, this time using auto.
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CH A P T E R SU M M A R Y
Among the most important library types are vector and string. A string is a
variable-length sequence of characters, and a vector is a container of objects of a
single type.

Iterators allow indirect access to objects stored in a container. Iterators are used
to access and navigate between the elements in strings and vectors.

Arrays and pointers to array elements provide low-level analogs to the vector
and string libraries. In general, the library classes should be used in preference
to low-level array and pointer alternatives built into the language.

DEFINED TERMS

begin Member of string and vector
that returns an iterator to the first ele-
ment. Also, free-standing library function
that takes an array and returns a pointer to
the first element in the array.

buffer overflow Serious programming bug
that results when we use an index that
is out-of-range for a container, such as a
string, vector, or an array.

C-style strings Null-terminated character
array. String literals are C-style strings. C-
style strings are inherently error-prone.

class template A blueprint from which
specific clas types can be created. To use
a class template, we must specify addi-
tional information. For example, to de-
fine a vector, we specify the element type:
vector<int> holds ints.

compiler extension Feature that is added
to the language by a particular compiler.
Programs that rely on compiler extensions
cannot be moved easily to other compilers.

container A type whose objects hold a col-
lection of objects of a given type. vector is
a container type.

copy initialization Form of initialization
that uses an =. The newly created object is a
copy of the given initializer.

difference_type A signed integral type
defined by vector and string that can
hold the distance between any two iterators.

direct initialization Form of initialization
that does not include an =.

empty Member of string and vector.
Returns bool, which is true if size is
zero, false otherwise.

end Member of string and vector that
returns an off-the-end iterator. Also, free-
standing library function that takes an ar-
ray and returns a pointer one past the last
element in the array.

getline Function defined in the string
header that takes an istream and a
string. The function reads the stream up
to the next newline, storing what it read into
the string, and returns the istream. The
newline is read and discarded.

index Value used in the subscript opera-
tor to denote the element to retrieve from a
string, vector, or array.

instantiation Compiler process that gener-
ates a specific template class or function.

iterator A type used to access and navigate
among the elements of a container.

iterator arithmetic Operations on vector
or string iterators: Adding or subtracting
an integral value and an iterator yields an
iterator that many elements ahead of or be-
hind the original iterator. Subtracting one
iterator from another yields the distance be-
tween them. Iterators must refer to ele-
ments in, or off-the-end of the same con-
tainer.
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null-terminated string String whose last
character is followed by the null character
(’\0’).

off-the-end iterator The iterator returned
by end that refers to a nonexistent element
one past the end of a container.

pointer arithmetic The arithmetic opera-
tions that can be applied to pointers. Point-
ers to arrays support the same operations as
iterator arithmetic.

ptrdiff_t Machine-dependent signed inte-
gral type defined in the cstddef header
that is large enough to hold the difference
between two pointers into the largest possi-
ble array.

push_back Member of vector. Appends
elements to the back of a vector.

range for Control statement that iterates
through a specified collection of values.

size Member of string and vector. Re-
turns the number of characters or ele-
ments, respectively. Returns a value of the
size_type for the type.

size_t Machine-dependent unsigned inte-
gral type defined in the cstddef header
that is large enough to hold the size of the
largest possible array.

size_type Name of types defined by the
string and vector classes that are capa-
ble of containing the size of any string
or vector, respectively. Library classes
that define size_type define it as an
unsigned type.

string Library type that represents a se-
quence of characters.

using declarations Make a name from a
namespace accessible directly.

using namespace::name;

makes name accessible without the name-
space:: prefix.

value initialization Initialization in which
built-in types are initialized to zero and

class types are initialized by the class’s de-
fault constructor. Objects of a class type can
be value initialized only if the class has a de-
fault constructor. Used to initialize a con-
tainer’s elements when a size, but not an
element initializer, is specified. Elements
are initialized as a copy of this compiler-
generated value.

vector Library type that holds a collection
of elements of a specified type.

++ operator The iterator types and point-
ers define the increment operator to “add
one” by moving the iterator to refer to the
next element.

[ ] operator Subscript operator. obj[i]
yields the element at position i from the
container object obj. Indices count from
zero—the first element is element 0 and the
last is the element indexed by obj.size()
- 1. Subscript returns an object. If p is a
pointer and n an integer, p[n] is a synonym
for *(p+n).

-> operator Arrow operator. Combines
the operations of dereference and dot oper-
ators: a->b is a synonym for (*a).b.

<< operator The string library type de-
fines an output operator. The string oper-
ator prints the characters in a string.

>> operator The string library type de-
fines an input operator. The string op-
erator reads whitespace-delimited chunks
of characters, storing what is read into the
right-hand (string) operand.

! operator Logical NOT operator. Returns
the inverse of the bool value of its operand.
Result is true if operand is false and vice
versa.

&& operator Logical AND operator. Result
is true if both operands are true. The
right-hand operand is evaluated only if the
left-hand operand is true.

|| operator Logical OR operator. Yields
true if either operand is true. The right-
hand operand is evaluated only if the left-
hand operand is false.
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C++ provides a rich set of operators and defines what these operators
do when applied to operands of built-in type. It also allows us to de-
fine the meaning of most of the operators when applied to operands
of class types. This chapter focuses on the operators as defined in the
language and applied to operands of built-in type. We will also look
at some of the operators defined by the library. Chapter 14 will show
how we can define operators for our own types.
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An expression is composed of one or more operands and yields a result when
it is evaluated. The simplest form of an expression is a single literal or variable.
The result of such an expression is the value of the variable or literal. More com-
plicated expressions are formed from an operator and one or more operands.

4.1 Fundamentals
There are a few fundamental concepts that affect how expressions are evaluated.
We start by briefly discussing the concepts that apply to most (if not all) expres-
sions. Subsequent sections will cover these topics in more detail.

4.1.1 Basic Concepts
There are both unary operators and binary operators. Unary operators, such as
address-of (&) and dereference (*), act on one operand. Binary operators, such as
equality (==) and multiplication (*), act on two operands. There is also one ternary
operator that takes three operands, and one operator, function call, that takes an
unlimited number of operands.

Some symbols, such as *, are used as both a unary (dereference) and a bi-
nary (multiplication) operator. The context in which a symbol is used determines
whether the symbol represents a unary or binary operator. The uses of such sym-
bols are independent; it can be helpful to think of them as two different symbols.

Grouping Operators and Operands

Understanding expressions with multiple operators requires understanding the
precedence and associativity of the operators and may depend on the order of
evaluation of the operands. For example, the result of the following expression
depends on how the operands are grouped to the operators:

5 + 10 * 20/2;

The operands to the * operator could be 10 and 20, or 10 and 20/2, or 15 and 20,
or 15 and 20/2. Understanding such expressions is the topic of the next section.

Operand Conversions

As part of evaluating an expression, operands are often converted from one type
to another. For example, the binary operators usually expect operands with the
same type. These operators can be used on operands with differing types so long
as the operands can be converted (§ 2.1.2, p. 35) to a common type.

Although the rules are somewhat complicated, for the most part conversions
happen in unsurprising ways. For example, we can convert an integer to floating-
point, and vice versa, but we cannot convert a pointer type to floating-point. What
may be a bit surprising is that small integral type operands (e.g., bool, char,
short, etc.) are generally promoted to a larger integral type, typically int. We’ll
look in detail at conversions in § 4.11 (p. 159).
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Overloaded Operators

The language defines what the operators mean when applied to built-in and com-
pound types. We can also define what most operators mean when applied to class
types. Because such definitions give an alternative meaning to an existing opera-
tor symbol, we refer to them as overloaded operators. The IO library >> and <<
operators and the operators we used with strings, vectors, and iterators are all
overloaded operators.

When we use an overloaded operator, the meaning of the operator—including
the type of its operand(s) and the result—depend on how the operator is defined.
However, the number of operands and the precedence and the associativity of the
operator cannot be changed.

Lvalues and Rvalues

Every expression in C++ is either an rvalue (pronounced “are-value”) or an lvalue
(pronounced “ell-value”). These names are inherited from C and originally had a
simple mnemonic purpose: lvalues could stand on the left-hand side of an assign-
ment whereas rvalues could not.

In C++, the distinction is less simple. In C++, an lvalue expression yields an
object or a function. However, some lvalues, such as const objects, may not be
the left-hand operand of an assignment. Moreover, some expressions yield objects
but return them as rvalues, not lvalues. Roughly speaking, when we use an object
as an rvalue, we use the object’s value (its contents). When we use an object as an
lvalue, we use the object’s identity (its location in memory).

Operators differ as to whether they require lvalue or rvalue operands and as
to whether they return lvalues or rvalues. The important point is that (with one
exception that we’ll cover in § 13.6 (p. 531)) we can use an lvalue when an rvalue is
required, but we cannot use an rvalue when an lvalue (i.e., a location) is required.
When we use an lvalue in place of an rvalue, the object’s contents (its value) are
used. We have already used several operators that involve lvalues.

• Assignment requires a (nonconst) lvalue as its left-hand operand and yields
its left-hand operand as an lvalue.

• The address-of operator (§ 2.3.2, p. 52) requires an lvalue operand and re-
turns a pointer to its operand as an rvalue.

• The built-in dereference and subscript operators (§ 2.3.2, p. 53, and § 3.5.2,
p. 116) and the iterator dereference and string and vector subscript oper-
ators (§ 3.4.1, p. 106, § 3.2.3, p. 93, and § 3.3.3, p. 102) all yield lvalues.

• The built-in and iterator increment and decrement operators (§ 1.4.1, p. 12,
and § 3.4.1, p. 107) require lvalue operands and the prefix versions (which
are the ones we have used so far) also yield lvalues.

As we present the operators, we will note whether an operand must be an lvalue
and whether the operator returns an lvalue.

Lvalues and rvalues also differ when used with decltype (§ 2.5.3, p. 70).
When we apply decltype to an expression (other than a variable), the result is
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a reference type if the expression yields an lvalue. As an example, assume p is an
int*. Because dereference yields an lvalue, decltype(*p) is int&. On the other
hand, because the address-of operator yields an rvalue, decltype(&p) is int**,
that is, a pointer to a pointer to type int.

4.1.2 Precedence and Associativity
An expression with two or more operators is a compound expression. Evaluating
a compound expression involves grouping the operands to the operators. Prece-
dence and associativity determine how the operands are grouped. That is, they
determine which parts of the expression are the operands for each of the opera-
tors in the expression. Programmers can override these rules by parenthesizing
compound expressions to force a particular grouping.

In general, the value of an expression depends on how the subexpressions are
grouped. Operands of operators with higher precedence group more tightly than
operands of operators at lower precedence. Associativity determines how to group
operands with the same precedence. For example, multiplication and division
have the same precedence as each other, but they have higher precedence than ad-
dition. Therefore, operands to multiplication and division group before operands
to addition and subtraction. The arithmetic operators are left associative, which
means operators at the same precdence group left to right:

• Because of precedence, the expression 3+4*5 is 23, not 35.

• Because of associativity, the expression 20-15-3 is 2, not 8.

As a more complicated example, a left-to-right evaluation of the following ex-
pression yields 20:

6 + 3 * 4 / 2 + 2

Other imaginable results include 9, 14, and 36. In C++, the result is 14, because this
expression is equivalent to

// parentheses in this expression match default precedence and associativity
((6 + ((3 * 4) / 2)) + 2)

Parentheses Override Precedence and Associativity

We can override the normal grouping with parentheses. Parenthesized expressions
are evaluated by treating each parenthesized subexpression as a unit and other-
wise applying the normal precedence rules. For example, we can parenthesize the
expression above to force the result to be any of the four possible values:

// parentheses result in alternative groupings
cout << (6 + 3) * (4 / 2 + 2) << endl; // prints 36
cout << ((6 + 3) * 4) / 2 + 2 << endl; // prints 20
cout << 6 + 3 * 4 / (2 + 2) << endl; // prints 9
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When Precedence and Associativity Matter

We have already seen examples where precedence affects the correctness of our
programs. For example, consider the discussion in § 3.5.3 (p. 120) about derefer-
ence and pointer arithmetic:

int ia[] = {0,2,4,6,8}; // array with five elements of type int
int last = *(ia + 4); // initializes last to 8, the value of ia[4]
last = *ia + 4; // last = 4, equivalent to ia[0] + 4

If we want to access the element at the location ia + 4, then the parentheses around
the addition are essential. Without parentheses, *ia is grouped first and 4 is added
to the value in *ia.

The most common case that we’ve seen in which associativity matters is in
input and output expressions. As we’ll see in § 4.8 (p. 155), the operators used
for IO are left associative. This associativity means we can combine several IO
operations in a single expression:

cin >> v1 >> v2; // read into v1 and then into v2

Table 4.12 (p. 166) lists all the operators organized into segments separated by
double lines. Operators in each segment have the same precedence, and have
higher precedence than operators in subsequent segments. For example, the prefix
increment and dereference operators share the same precedence, which is higher
than that of the arithmetic operators. The table includes a page reference to each
operator’s description. We have seen some of these operators already and will
cover most of the rest in this chapter. However, there are a few operators that we
will not cover until later.

EXE R C I S E S SE C TI ON 4.1.2

Exercise 4.1: What is the value returned by 5 + 10 * 20/2?

Exercise 4.2: Using Table 4.12 (p. 166), parenthesize the following expressions to indi-
cate the order in which the operands are grouped:

(a) * vec.begin() (b) * vec.begin() + 1

4.1.3 Order of Evaluation
Precedence specifies how the operands are grouped. It says nothing about the
order in which the operands are evaluated. In most cases, the order is largely
unspecified. In the following expression

int i = f1() * f2();

we know that f1 and f2 must be called before the multiplication can be done. Af-
ter all, it is their results that are multiplied. However, we have no way of knowing
whether f1 will be called before f2 or vice versa.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

138 Expressions

For operators that do not specify evaluation order, it is an error for an expres-
sion to refer to and change the same object. Expressions that do so have undefined
behavior (§ 2.1.2, p. 36). As a simple example, the << operator makes no guar-
antees about when or how its operands are evaluated. As a result, the following
output expression is undefined:

int i = 0;
cout << i << " " << ++i << endl; // undefined

Because this program is undefined, we cannot draw any conclusions about how
it might behave. The compiler might evaluate ++i before evaluating i, in which
case the output will be 1 1. Or the compiler might evaluate i first, in which case
the output will be 0 1. Or the compiler might do something else entirely. Because
this expression has undefined behavior, the program is in error, regardless of what
code the compiler generates.

There are four operators that do guarantee the order in which operands are
evaluated. We saw in § 3.2.3 (p. 94) that the logical AND (&&) operator guarantees
that its left-hand operand is evaluated first. Moreover, we are also guaranteed that
the right-hand operand is evaluated only if the left-hand operand is true. The
only other operators that guarantee the order in which operands are evaluated are
the logical OR (||) operator (§ 4.3, p. 141), the conditional (? :) operator (§ 4.7,
p. 151), and the comma (,) operator (§ 4.10, p. 157).

Order of Evaluation, Precedence, and Associativity

Order of operand evaluation is independent of precedence and associativity. In an
expression such as f() + g() * h() + j():

• Precedence guarantees that the results of g() and h() are multiplied.

• Associativity guarantees that the result of f() is added to the product of g()
and h() and that the result of that addition is added to the value of j().

• There are no guarantees as to the order in which these functions are called.

If f, g, h, and j are independent functions that do not affect the state of the same
objects or perform IO, then the order in which the functions are called is irrelevant.
If any of these functions do affect the same object, then the expression is in error
and has undefined behavior.

EXE R C I S E S SE C TI ON 4.1.3

Exercise 4.3: Order of evaluation for most of the binary operators is left undefined
to give the compiler opportunities for optimization. This strategy presents a trade-off
between efficient code generation and potential pitfalls in the use of the language by
the programmer. Do you consider that an acceptable trade-off? Why or why not?
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ADVICE: MANAGING COMPOUND EXPRESSIONS

When you write compound expressions, two rules of thumb can be helpful:

1. When in doubt, parenthesize expressions to force the grouping that the logic of
your program requires.

2. If you change the value of an operand, don’t use that operand elsewhere in the
same expresion.

An important exception to the second rule occurs when the subexpression that
changes the operand is itself the operand of another subexpression. For example,
in *++iter, the increment changes the value of iter. The (now changed) value of
iter is the operand to the dereference operator. In this (and similar) expressions, or-
der of evaluation isn’t an issue. The increment (i.e., the subexpression that changes
the operand) must be evaluated before the dereference can be evaluated. Such usage
poses no problems and is quite common.

4.2 Arithmetic Operators

Table 4.1: Arithmetic Operators (Left Associative)

Operator Function Use

+ unary plus + expr
- unary minus - expr

* multiplication expr * expr
/ division expr / expr
% remainder expr % expr

+ addition expr + expr
- subtraction expr - expr

Table 4.1 (and the operator tables in subsequent sections) groups the opera-
tors by their precedence. The unary arithmetic operators have higher precedence
than the multiplication and division operators, which in turn have higher prece-
dence than the binary addition and subtraction operators. Operators of higher
precedence group more tightly than do operators with lower precedence. These
operators are all left associative, meaning that they group left to right when the
precedence levels are the same.

Unless noted otherwise, the arithmetic operators may be applied to any of the
arithmetic types (§ 2.1.1, p. 32) or to any type that can be converted to an arithmetic
type. The operands and results of these operators are rvalues. As described in
§ 4.11 (p. 159), operands of small integral types are promoted to a larger integral
type, and all operands may be converted to a common type as part of evaluating
these operators.

The unary plus operator and the addition and subtraction operators may also
be applied to pointers. § 3.5.3 (p. 119) covered the use of binary + and - with
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pointer operands. When applied to a pointer or arithmetic value, unary plus re-
turns a (possibly promoted) copy of the value of its operand.

The unary minus operator returns the result of negating a (possibly promoted)
copy of the value of its operand:

int i = 1024;
int k = -i; // i is -1024

bool b = true;
bool b2 = -b; // b2 is true!

In § 2.1.1 (p. 34) we noted that bool values should not be used for computation.
The result of -b is a good example of what we had in mind.

For most operators, operands of type bool are promoted to int. In this case,
the value of b is true, which promotes to the int value 1 (§ 2.1.2, p. 35). That
(promoted) value is negated, yielding -1. The value -1 is converted back to bool
and used to initialize b2. This initializer is a nonzero value, which when converted
to bool is true. Thus, the value of b2 is true!

CAUTION: OVERFLOW AND OTHER ARITHMETIC EXCEPTIONS

Some arithmetic expressions yield undefined results. Some of these undefined expres-
sions are due to the nature of mathematics—for example, division by zero. Others are
undefined due to the nature of computers—for example, due to overflow. Overflow
happens when a value is computed that is outside the range of values that the type
can represent.

Consider a machine on which shorts are 16 bits. In that case, the maximum short
is 32767. On such a machine, the following compound assignment overflows:

short short_value = 32767; // max value if shorts are 16 bits

short_value += 1; // this calculation overflows
cout << "short_value: " << short_value << endl;

The assignment to short_value is undefined. Representing a signed value of 32768
requires 17 bits, but only 16 are available. On many systems, there is no compile-time
or run-time warning when an overflow occurs. As with any undefined behavior, what
happens is unpredictable. On our system the program completes and writes

short_value: -32768

The value “wrapped around”: The sign bit, which had been 0, was set to 1, resulting
in a negative value. On another system, the result might be different, or the program
might behave differently, including crashing entirely.

When applied to objects of arithmetic types, the arithmetic operators, +, -, *,
and /, have their obvious meanings: addition, subtraction, multiplication, and
division. Division between integers returns an integer. If the quotient contains a
fractional part, it is truncated toward zero:

int ival1 = 21/6; // ival1 is 3; result is truncated; remainder is discarded
int ival2 = 21/7; // ival2 is 3; no remainder; result is an integral value
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The % operator, known as the “remainder” or the “modulus” operator, com-
putes the remainder that results from dividing the left-hand operand by the right-
hand operand. The operands to % must have integral type:

int ival = 42;
double dval = 3.14;

ival % 12; // ok: result is 6
ival % dval; // error: floating-point operand

In a division, a nonzero quotient is positive if the operands have the same sign
and negative otherwise. Earlier versions of the language permitted a negative quo-
tient to be rounded up or down; the new standard requires the quotient to be
rounded toward zero (i.e., truncated).

The modulus operator is defined so that if m and n are integers and n is nonzero,
then (m/n)*n + m%n is equal to m. By implication, if m%n is nonzero, it has the same
sign as m. Earlier versions of the language permitted m%n to have the same sign as
n on implementations in which negative m/n was rounded away from zero, but
such implementations are now prohibited. Moreover, except for the obscure case
where -m overflows, (-m)/n and m/(-n) are always equal to -(m/n), m%(-n)
is equal to m%n, and (-m)%n is equal to -(m%n). More concretely:

21 % 6; /* result is 3 */ 21 / 6; /* result is 3 */
21 % 7; /* result is 0 */ 21 / 7; /* result is 3 */

-21 % -8; /* result is -5 */ -21 / -8; /* result is 2 */
21 % -5; /* result is 1 */ 21 / -5; /* result is -4 */

EXE R C I S E S SE C TI ON 4.2

Exercise 4.4: Parenthesize the following expression to show how it is evaluated. Test
your answer by compiling the expression (without parentheses) and printing its result.

12 / 3 * 4 + 5 * 15 + 24 % 4 / 2

Exercise 4.5: Determine the result of the following expressions.

(a) -30 * 3 + 21 / 5 (b) -30 + 3 * 21 / 5
(c) 30 / 3 * 21 % 5 (d) -30 / 3 * 21 % 4

Exercise 4.6: Write an expression to determine whether an int value is even or odd.

Exercise 4.7: What does overflow mean? Show three expressions that will overflow.

4.3 Logical and Relational Operators
The relational operators take operands of arithmetic or pointer type; the logical op-
erators take operands of any type that can be converted to bool. These operators
all return values of type bool. Arithmetic and pointer operand(s) with a value of
zero are false; all other values are true. The operands to these operators are
rvalues and the result is an rvalue.
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Table 4.2: Logical and Relational Operators

Associativity Operator Function Use

Right ! logical NOT !expr

Left < less than expr < expr
Left <= less than or equal expr <= expr
Left > greater than expr > expr
Left >= greater than or equal expr >= expr

Left == equality expr == expr
Left != inequality expr != expr

Left && logical AND expr && expr

Left || logical OR expr || expr

Logical AND and OR Operators

The overall result of the logical AND operator is true if and only if both its oper-
ands evaluate to true. The logical OR (||) operator evaluates as true if either
of its operands evaluates as true.

The logical AND and OR operators always evaluate their left operand before the
right. Moreover, the right operand is evaluated if and only if the left operand does
not determine the result. This strategy is known as short-circuit evaluation:

• The right side of an && is evaluated if and only if the left side is true.

• The right side of an || is evaluated if and only if the left side is false.

Several of the programs in Chapter 3 used the logical AND operator. Those
programs used the left-hand operand to test whether it was safe to evaluate the
right-hand operand. For example, the for condition on page 94:

index != s.size() && !isspace(s[index])

first checks that index has not reached the end of its associated string. We’re
guaranteed that the right operand won’t be evaluated unless index is in range.

As an example that uses the logical OR, imagine we have some text in a vector
of strings. We want to print the strings, adding a newline after each empty
string or after a string that ends with a period. We’ll use a range-based for
loop (§ 3.2.3, p. 91) to process each element:

// note s as a reference to const; the elements aren’t copied and can’t be changed
for (const auto &s : text) { // for each element in text

cout << s; // print the current element
// blank lines and those that end with a period get a newline
if (s.empty() || s[s.size() - 1] == ’.’)

cout << endl;
else

cout << " "; // otherwise just separate with a space
}
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After we print the current element, we check to see if we need to print a newline.
The condition in the if first checks whether s is an empty string. If so, we
need to print a newline regardless of the value of the right-hand operand. Only
if the string is not empty do we evaluate the second expression, which checks
whether the string ends with a period. In this expression, we rely on short-circuit
evaluation of || to ensure that we subscript s only if s is not empty.

It is worth noting that we declared s as a reference to const (§ 2.5.2, p. 69).
The elements in text are strings, and might be large. By making s a reference,
we avoid copying the elements. Because we don’t need to write to the elements,
we made s a reference to const.

Logical NOT Operator

The logical NOT operator (!) returns the inverse of the truth value of its operand.
We first used this operator in § 3.2.2 (p. 87). As another example, assuming vec is
a vector of ints, we might use the logical NOT operator to see whether vec has
elements by negating the value returned by empty:

// print the first element in vec if there is one
if (!vec.empty())

cout << vec[0];

The subexpression

!vec.empty()

evaluates as true if the call to empty returns false.

The Relational Operators

The relational operators (<, <=, >, <=) have their ordinary meanings and return
bool values. These operators are left associative.

Because the relational operators return bools, the result of chaining these op-
erators together is likely to be surprising:

// oops! this condition compares k to the bool result of i < j
if (i < j < k) // true if k is greater than 1!

This condition groups i and j to the first < operator. The bool result of that
expression is the left-hand operand of the second less-than operator. That is, k is
compared to the true/false result of the first comparison! To accomplish the
test we intended, we can rewrite the expression as follows:

// ok: condition is true if i is smaller than j and j is smaller than k
if (i < j && j < k) { /* . . . */ }

Equality Tests and the bool Literals

If we want to test the truth value of an arithmetic or pointer object, the most direct
way is to use the value as a condition:

if (val) { /* . . . */ } // true if val is any nonzero value
if (!val) { /* . . . */ } // true if val is zero
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In both conditions, the compiler converts val to bool. The first condition suc-
ceeds so long as val is nonzero; the second succeeds if val is zero.

We might think we could rewrite a test of this kind as

if (val == true) { /* . . . */ } // true only if val is equal to 1!

There are two problems with this approach. First, it is longer and less direct than
the previous code (although admittedly when first learning C++ this kind of ab-
breviation can be perplexing). Much more importantly, when val is not a bool,
this comparison does not work as expected.

If val is not a bool, then true is converted to the type of val before the ==
operator is applied. That is, when val is not a bool, it is as if we had written

if (val == 1) { /* . . . */ }

As we’ve seen, when a bool is converted to another arithmetic type, false con-
verts to 0 and true converts to 1 (§ 2.1.2, p. 35). If we really cared whether val
was the specific value 1, we should write the condition to test that case directly.

It is usually a bad idea to use the boolean literals true and false as
operands in a comparison. These literals should be used only to compare
to an object of type bool.

EXE R C I S E S SE C TI ON 4.3

Exercise 4.8: Explain when operands are evaluated in the logical AND, logical OR, and
equality operators.

Exercise 4.9: Explain the behavior of the condition in the following if:

const char *cp = "Hello World";
if (cp && *cp)

Exercise 4.10: Write the condition for a while loop that would read ints from the
standard input and stop when the value read is equal to 42.

Exercise 4.11: Write an expression that tests four values, a, b, c, and d, and ensures
that a is greater than b, which is greater than c, which is greater than d.

Exercise 4.12: Assuming i, j, and k are all ints, explain what i != j < k means.

4.4 Assignment Operators
The left-hand operand of an assignment operator must be a modifiable lvalue. For
example, given

int i = 0, j = 0, k = 0; // initializations, not assignment
const int ci = i; // initialization, not assignment
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Each of these assignments is illegal:

1024 = k; // error: literals are rvalues
i + j = k; // error: arithmetic expressions are rvalues
ci = k; // error: ci is a const (nonmodifiable) lvalue

The result of an assignment is its left-hand operand, which is an lvalue. The
type of the result is the type of the left-hand operand. If the types of the left and
right operands differ, the right-hand operand is converted to the type of the left:

k = 0; // result: type int, value 0
k = 3.14159; // result: type int, value 3

Under the new standard, we can use a braced initializer list (§ 2.2.1, p. 43) on the
right-hand side:

k = {3.14}; // error: narrowing conversion

vector<int> vi; // initially empty
vi = {0,1,2,3,4,5,6,7,8,9}; // vi now has ten elements, values 0 through 9

If the left-hand operand is of a built-in type, the initializer list may contain at most
one value, and that value must not require a narrowing conversion (§ 2.2.1, p. 43).

For class types, what happens depends on the details of the class. In the case of
vector, the vector template defines its own version of an assignment operator
that can take an initializer list. This operator replaces the elements of the left-hand
side with the elements in the list on the right-hand side.

Regardless of the type of the left-hand operand, the initializer list may be empty.
In this case, the compiler generates a value-initialized (§ 3.3.1, p. 98) temporary and
assigns that value to the left-hand operand.

Assignment Is Right Associative

Unlike the other binary operators, assignment is right associative:

int ival, jval;
ival = jval = 0; // ok: each assigned 0

Because assignment is right associative, the right-most assignment, jval = 0, is
the right-hand operand of the left-most assignment operator. Because assignment
returns its left-hand operand, the result of the right-most assignment (i.e., jval) is
assigned to ival.

Each object in a multiple assignment must have the same type as its right-hand
neighbor or a type to which that neighbor can be converted (§ 4.11, p. 159):

int ival, *pval; // ival is an int; pval is a pointer to int
ival = pval = 0; // error: cannot assign the value of a pointer to an int

string s1, s2;
s1 = s2 = "OK"; // string literal "OK" converted to string

The first assignment is illegal because ival and pval have different types and
there is no conversion from the type of pval (int*) to the type of ival (int). It
is illegal even though zero is a value that can be assigned to either object.
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On the other hand, the second assignment is fine. The string literal is converted
to string, and that string is assigned to s2. The result of that assignment is s2,
which has the same type as s1.

Assignment Has Low Precedence

Assignments often occur in conditions. Because assignment has relatively low
precedence, we usually must parenthesize the assignment for the condition to
work properly. To see why assignment in a condition is useful, consider the fol-
lowing loop. We want to call a function until it returns a desired value—say, 42:

// a verbose and therefore more error-prone way to write this loop
int i = get_value(); // get the first value

while (i != 42) {
// do something . . .
i = get_value(); // get remaining values

}

Here we start by calling get_value followed by a loop whose condition uses the
value returned from that call. The last statement in this loop makes another call to
get_value, and the loop repeats. We can write this code more directly as

int i;

// a better way to write our loop---what the condition does is now clearer
while ((i = get_value()) != 42) {

// do something . . .
}

The condition now more clearly expresses our intent: We want to continue until
get_value returns 42. The condition executes by assigning the result returned
by get_value to i and then comparing the result of that assignment with 42.

Without the parentheses, the operands to != would be the value returned from
get_value and 42. The true or false result of that test would be assigned to
i—clearly not what we intended!

Because assignment has lower precedence than the relational operators,
parentheses are usually needed around assignments in conditions.

Beware of Confusing Equality and Assignment Operators

The fact that we can use assignment in a condition can have surprising effects:

if (i = j)

The condition in this if assigns the value of j to i and then tests the result of the
assignment. If j is nonzero, the condition will be true. The author of this code
almost surely intended to test whether i and j have the same value:

if (i == j)

Bugs of this sort are notoriously difficult to find. Some, but not all, compilers are
kind enough to warn about code such as this example.
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Compound Assignment Operators

We often apply an operator to an object and then assign the result to that same
object. As an example, consider the sum program from § 1.4.2 (p. 13):

int sum = 0;

// sum values from 1 through 10 inclusive
for (int val = 1; val <= 10; ++val)

sum += val; // equivalent to sum = sum + val

This kind of operation is common not just for addition but for the other arithmetic
operators and the bitwise operators, which we cover in § 4.8 (p. 152). There are
compound assignments for each of these operators:

+= -= *= /= %= // arithmetic operators
<<= >>= &= ^= |= // bitwise operators; see § 4.8 (p. 152)

Each compound operator is essentially equivalent to

a = a op b;

with the exception that, when we use the compound assignment, the left-hand
operand is evaluated only once. If we use an ordinary assignment, that operand
is evaluated twice: once in the expression on the right-hand side and again as
the operand on the left hand. In many, perhaps most, contexts this difference is
immaterial aside from possible performance consequences.

EXE R C I S E S SE C TI ON 4.4

Exercise 4.13: What are the values of i and d after each assignment?

int i; double d;
(a) d = i = 3.5; (b) i = d = 3.5;

Exercise 4.14: Explain what happens in each of the if tests:

if (42 = i) // ...
if (i = 42) // ...

Exercise 4.15: The following assignment is illegal. Why? How would you correct it?

double dval; int ival; int *pi;
dval = ival = pi = 0;

Exercise 4.16: Although the following are legal, they probably do not behave as the
programmer expects. Why? Rewrite the expressions as you think they should be.

(a) if (p = getPtr() != 0) (b) if (i = 1024)

4.5 Increment and Decrement Operators
The increment (++) and decrement (--) operators provide a convenient notational
shorthand for adding or subtracting 1 from an object. This notation rises above
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mere convenience when we use these operators with iterators, because many iter-
ators do not support arithmetic.

There are two forms of these operators: prefix and postfix. So far, we have used
only the prefix form. This form increments (or decrements) its operand and yields
the changed object as its result. The postfix operators increment (or decrement) the
operand but yield a copy of the original, unchanged value as its result:

int i = 0, j;
j = ++i; // j = 1, i = 1: prefix yields the incremented value
j = i++; // j = 1, i = 2: postfix yields the unincremented value

These operators require lvalue operands. The prefix operators return the object
itself as an lvalue. The postfix operators return a copy of the object’s original value
as an rvalue.

ADVICE: USE POSTFIX OPERATORS ONLY WHEN NECESSARY

Readers from a C background might be surprised that we use the prefix increment in
the programs we’ve written. The reason is simple: The prefix version avoids unneces-
sary work. It increments the value and returns the incremented version. The postfix
operator must store the original value so that it can return the unincremented value
as its result. If we don’t need the unincremented value, there’s no need for the extra
work done by the postfix operator.

For ints and pointers, the compiler can optimize away this extra work. For more
complicated iterator types, this extra work potentially might be more costly. By ha-
bitually using the prefix versions, we do not have to worry about whether the perfor-
mance difference matters. Moreover—and perhaps more importantly—we can express
the intent of our programs more directly.

Combining Dereference and Increment in a Single Expression

The postfix versions of ++ and -- are used when we want to use the current value
of a variable and increment it in a single compound expression.

As one example, we can use postfix increment to write a loop to print the values
in a vector up to but not including the first negative value:

auto pbeg = v.begin();
// print elements up to the first negative value
while (pbeg != v.end() && *beg >= 0)

cout << *pbeg++ << endl; // print the current value and advance pbeg

The expression *pbeg++ is usually confusing to programmers new to both C++
and C. However, because this usage pattern is so common, C++ programmers must
understand such expressions.

The precedence of postfix increment is higher than that of the dereference oper-
ator, so *pbeg++ is equivalent to *(pbeg++). The subexpression pbeg++ incre-
ments pbeg and yields a copy of the previous value of pbeg as its result. Accord-
ingly, the operand of * is the unincremented value of pbeg. Thus, the statement
prints the element to which pbeg originally pointed and increments pbeg.
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This usage relies on the fact that postfix increment returns a copy of its original,
unincremented operand. If it returned the incremented value, we’d dereference
the incremented value, with disastrous results. We’d skip the first element. Worse,
if the sequence had no negative values, we would attempt to dereference one too
many elements.

ADVICE: BREVITY CAN BE A VIRTUE

Expressions such as *pbeg++ can be bewildering—at first. However, it is a useful
and widely used idiom. Once the notation is familiar, writing

cout << *iter++ << endl;

is easier and less error-prone than the more verbose equivalent

cout << *iter << endl;
++iter;

It is worthwhile to study examples of such code until their meanings are immediately
clear. Most C++ programs use succinct expressions rather than more verbose equiva-
lents. Therefore, C++ programmers must be comfortable with such usages. Moreover,
once these expressions are familiar, you will find them less error-prone.

Remember That Operands Can Be Evaluated in Any Order

Most operators give no guarantee as to the order in which operands will be evalu-
ated (§ 4.1.3, p. 137). This lack of guaranteed order often doesn’t matter. The cases
where it does matter are when one subexpression changes the value of an operand
that is used in another subexpression. Because the increment and decrement op-
erators change their operands, it is easy to misuse these operators in compound
expressions.

To illustrate the problem, we’ll rewrite the loop from § 3.4.1 (p. 108) that capi-
talizes the first word in the input. That example used a for loop:

for (auto it = s.begin(); it != s.end() && !isspace(*it); ++it)

*it = toupper(*it); // capitalize the current character

which allowed us to separate the statement that dereferenced beg from the one
that incremented it. Replacing the for with a seemingly equivalent while

// the behavior of the following loop is undefined!
while (beg != s.end() && !isspace(*beg))

*beg = toupper(*beg++); // error: this assignment is undefined

results in undefined behavior. The problem is that in the revised version, both the
left- and right-hand operands to = use beg and the right-hand operand changes
beg. The assignment is therefore undefined. The compiler might evaluate this
expression as either

*beg = toupper(*beg); // execution if left-hand side is evaluated first
*(beg + 1) = toupper(*beg); // execution if right-hand side is evaluated first

or it might evaluate it in yet some other way.
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EXE R C I S E S SE C TI ON 4.5

Exercise 4.17: Explain the difference between prefix and postfix increment.

Exercise 4.18: What would happen if the while loop on page 148 that prints the ele-
ments from a vector used the prefix increment operator?

Exercise 4.19: Given that ptr points to an int, that vec is a vector<int>, and that
ival is an int, explain the behavior of each of these expressions. Which, if any, are
likely to be incorrect? Why? How might each be corrected?

(a) ptr != 0 && *ptr++ (b) ival++ && ival
(c) vec[ival++] <= vec[ival]

4.6 The Member Access Operators
The dot (§ 1.5.2, p. 23) and arrow (§ 3.4.1, p. 110) operators provide for member
access. The dot operator fetches a member from an object of class type; arrow is
defined so that ptr->mem is a synonym for (*ptr).mem:

string s1 = "a string", *p = &s1;

auto n = s1.size(); // run the size member of the string s1
n = (*p).size(); // run size on the object to which p points
n = p->size(); // equivalent to (*p).size()

Because dereference has a lower precedence than dot, we must parenthesize the
dereference subexpression. If we omit the parentheses, this code means something
quite different:

// run the size member of p, then dereference the result!
*p.size(); // error: p is a pointer and has no member named size

This expression attempts to fetch the size member of the object p. However, p is
a pointer, which has no members; this code will not compile.

The arrow operator requires a pointer operand and yields an lvalue. The dot
operator yields an lvalue if the object from which the member is fetched is an
lvalue; otherwise the result is an rvalue.

EXE R C I S E S SE C TI ON 4.6

Exercise 4.20: Assuming that iter is a vector<string>::iterator, indicate
which, if any, of the following expressions are legal. Explain the behavior of the le-
gal expressions and why those that aren’t legal are in error.

(a) *iter++; (b) (*iter)++; (c) *iter.empty()
(d) iter->empty(); (e) ++*iter; (f) iter++->empty();
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4.7 The Conditional Operator
The conditional operator (the ?: operator) lets us embed simple if-else logic inside
an expression. The conditional operator has the following form:

cond ? expr1 : expr2;

where cond is an expression that is used as a condition and expr1 and expr2 are
expressions of the same type (or types that can be converted to a common type).
This operator executes by evaluating cond. If the condition is true, then expr1 is
evaluated; otherwise, expr2 is evaluated. As one example, we can use a conditional
operator to determine whether a grade is pass or fail:

string finalgrade = (grade < 60) ? "fail" : "pass";

The condition checks whether grade is less than 60. If so, the result of the expres-
sion is "fail"; otherwise the result is "pass". Like the logical AND and logical
OR (&& and ||) operators, the conditional operator guarantees that only one of
expr1 or expr2 is evaluated.

That result of the conditional operator is an lvalue if both expressions are lval-
ues or if they convert to a common lvalue type. Otherwise the result is an rvalue.

Nesting Conditional Operations

We can nest one conditional operator inside another. That is, the conditional op-
erator can be used as the cond or as one or both of the exprs of another conditional
expression. As an example, we’ll use a pair of nested conditionals to perform a
three-way test to indicate whether a grade is a high pass, an ordinary pass, or fail:

finalgrade = (grade > 90) ? "high pass"
: (grade < 60) ? "fail" : "pass";

The first condition checks whether the grade is above 90. If so, the expression
after the ? is evaluated, which yields "high pass". If the condition fails, the :
branch is executed, which is itself another conditional expression. This conditional
asks whether the grade is less than 60. If so, the ? branch is evaluated and yields
"fail". If not, the : branch returns "pass".

The conditional operator is right associative, meaning (as usual) that the oper-
ands group right to left. Associativity accounts for the fact that the right-hand
conditional—the one that compares grade to 60—forms the : branch of the left-
hand conditional expression.

Nested conditionals quickly become unreadable. It’s a good idea to nest
no more than two or three.

Using a Conditional Operator in an Output Expression

The conditional operator has fairly low precedence. When we embed a conditional
expression in a larger expression, we usually must parenthesize the conditional
subexpression. For example, we often use the conditional operator to print one or
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another value, depending on the result of a condition. An incompletely parenthe-
sized conditional operator in an output expression can have surprising results:

cout << ((grade < 60) ? "fail" : "pass"); // prints pass or fail
cout << (grade < 60) ? "fail" : "pass"; // prints 1 or 0!
cout << grade < 60 ? "fail" : "pass"; // error: compares cout to 60

The second expression uses the comparison between grade and 60 as the operand
to the << operator. The value 1 or 0 is printed, depending on whether grade < 60
is true or false. The << operator returns cout, which is tested as the condition for
the conditional operator. That is, the second expression is equivalent to

cout << (grade < 60); // prints 1 or 0
cout ? "fail" : "pass"; // test cout and then yield one of the two literals

// depending on whether cout is true or false

The last expression is an error because it is equivalent to

cout << grade; // less-than has lower precedence than shift, so print grade first
cout < 60 ? "fail" : "pass"; // then compare cout to 60!

EXE R C I S E S SE C TI ON 4.7

Exercise 4.21: Write a program to use a conditional operator to find the elements in a
vector<int> that have odd value and double the value of each such element.

Exercise 4.22: Extend the program that assigned high pass, pass, and fail grades to
also assign low pass for grades between 60 and 75 inclusive. Write two versions: One
version that uses only conditional operators; the other should use one or more if
statements. Which version do you think is easier to understand and why?

Exercise 4.23: The following expression fails to compile due to operator precedence.
Using Table 4.12 (p. 166), explain why it fails. How would you fix it?

string s = "word";
string pl = s + s[s.size() - 1] == ’s’ ? "" : "s" ;

Exercise 4.24: Our program that distinguished between high pass, pass, and fail de-
pended on the fact that the conditional operator is right associative. Describe how that
operator would be evaluated if the operator were left associative.

4.8 The Bitwise Operators
The bitwise operators take operands of integral type that they use as a collection
of bits. These operators let us test and set individual bits. As we’ll see in § 17.2
(p. 723), we can also use these operators on a library type named bitset that
represents a flexibly sized collection of bits.

As usual, if an operand is a “small integer,” its value is first promoted (§ 4.11.1,
p. 160) to a larger integral type. The operand(s) can be either signed or unsigned.
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Table 4.3: Bitwise Operators (Left Associative)

Operator Function Use

~ bitwise NOT ~expr

<< left shift expr1 << expr2
>> right shift expr1 >> expr2

& bitwise AND expr1 & expr2

^ bitwise XOR expr1 ^ expr2

| bitwise OR expr1 | expr2

If the operand is signed and its value is negative, then the way that the “sign bit”
is handled in a number of the bitwise operations is machine dependent. Moreover,
doing a left shift that changes the value of the sign bit is undefined.

Because there are no guarantees for how the sign bit is handled, we
strongly recommend using unsigned types with the bitwise operators.

Bitwise Shift Operators

We have already used the overloaded versions of the >> and << operators that the
IO library defines to do input and output. The built-in meaning of these operators
is that they perform a bitwise shift on their operands. They yield a value that is a
copy of the (possibly promoted) left-hand operand with the bits shifted as directed
by the right-hand operand. The right-hand operand must not be negative and
must be a value that is strictly less than the number of bits in the result. Otherwise,
the operation is undefined. The bits are shifted left (<<) or right (>>). Bits that are
shifted off the end are discarded:

These illustrations have the low-order bit on the right
These examples assume char has 8 bits, and int has 32

// 0233 is an octal literal (§ 2.1.3, p. 38)
unsigned char bits = 0233; 1 0 0 1 1 0 1 1

bits << 8 // bits promoted to int and then shifted left by 8 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

bits << 31 // left shift 31 bits, left-most bits discarded
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bits >> 3 // right shift 3 bits, 3 right-most bits discarded
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

The left-shift operator (the << operator) inserts 0-valued bits on the right. The
behavior of the right-shift operator (the >> operator) depends on the type of the
left-hand operand: If that operand is unsigned, then the operator inserts 0-valued
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bits on the left; if it is a signed type, the result is implementation defined—either
copies of the sign bit or 0-valued bits are inserted on the left.

Bitwise NOT Operator

The bitwise NOT operator (the ~operator) generates a new value with the bits of
its operand inverted. Each 1 bit is set to 0; each 0 bit is set to 1:

unsigned char bits = 0227; 1 0 0 1 0 1 1 1
~bits

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 0

Here, our char operand is first promoted to int. Promoting a char to int
leaves the value unchanged but adds 0 bits to the high order positions. Thus,
promoting bits to int adds 24 high order bits, all of which are 0-valued. The bits
in the promoted value are inverted.

Bitwise AND, OR, and XOR Operators

The AND (&), OR (|), and XOR (^) operators generate new values with the bit pat-
tern composed from its two operands:

unsigned char b1 = 0145; 0 1 1 0 0 1 0 1

unsigned char b2 = 0257; 1 0 1 0 1 1 1 1

b1 & b2 24 high-order bits all 0 0 0 1 0 0 1 0 1

b1 | b2 24 high-order bits all 0 1 1 1 0 1 1 1 1

b1 ^ b2 24 high-order bits all 0 1 1 0 0 1 0 1 0

For each bit position in the result of the bitwise AND operator (the & operator)
the bit is 1 if both operands contain 1; otherwise, the result is 0. For the OR (inclu-
sive or) operator (the | operator), the bit is 1 if either or both operands contain 1;
otherwise, the result is 0. For the XOR (exclusive or) operator (the ^ operator), the
bit is 1 if either but not both operands contain 1; otherwise, the result is 0.

It is a common error to confuse the bitwise and logical operators (§ 4.3,
p. 141). For example to confuse the bitwise & with the logical &&, the
bitwise | with the logical ||, and the bitwise ~and the logical !).

Using Bitwise Operators

As an example of using the bitwise operators let’s assume a teacher has 30 students
in a class. Each week the class is given a pass/fail quiz. We’ll track the results of
each quiz using one bit per student to represent the pass or fail grade on a given
test. We might represent each quiz in an unsigned integral value:

unsigned long quiz1 = 0; // we’ll use this value as a collection of bits
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We define quiz1 as an unsigned long. Thus, quiz1 will have at least 32 bits on
any machine. We explicitly initialize quiz1 to ensure that the bits start out with
well-defined values.

The teacher must be able to set and test individual bits. For example, we’d
like to be able to set the bit corresponding to student number 27 to indicate that
this student passed the quiz. We can indicate that student number 27 passed by
creating a value that has only bit 27 turned on. If we then bitwise OR that value
with quiz1, all the bits except bit 27 will remain unchanged.

For the purpose of this example, we will count the bits of quiz1 by assigning
0 to the low-order bit, 1 to the next bit, and so on.

We can obtain a value indicating that student 27 passed by using the left-shift
operator and an unsigned long integer literal 1 (§ 2.1.3, p. 38):

1UL << 27 // generate a value with only bit number 27 set

1UL has a 1 in the low-order bit and (at least) 31 zero bits. We specified unsigned
long because ints are only guaranteed to have 16 bits, and we need at least 27.
This expression shifts the 1 bit left 27 positions inserting 0 bits behind it.

Next we OR this value with quiz1. Because we want to update the value of
quiz1, we use a compound assignment (§ 4.4, p. 147):

quiz1 |= 1UL << 27; // indicate student number 27 passed

The |= operator executes analogously to how += does. It is equivalent to

quiz1 = quiz1 | 1UL << 27; // equivalent to quiz1 |= 1UL << 27;

Imagine that the teacher reexamined the quiz and discovered that student 27
actually had failed the test. The teacher must now turn off bit 27. This time we
need an integer that has bit 27 turned off and all the other bits turned on. We’ll
bitwise AND this value with quiz1 to turn off just that bit:

quiz1 &= ~(1UL << 27); // student number 27 failed

We obtain a value with all but bit 27 turned on by inverting our previous value.
That value had 0 bits in all but bit 27, which was a 1. Applying the bitwise NOT to
that value will turn off bit 27 and turn on all the others. When we bitwise AND this
value with quiz1, all except bit 27 will remain unchanged.

Finally, we might want to know how the student at position 27 fared:

bool status = quiz1 & (1UL << 27); // how did student number 27 do?

Here we AND a value that has bit 27 turned on with quiz1. The result is nonzero
(i.e., true) if bit 27 of quiz1 is also on; otherwise, it evaluates to zero.

Shift Operators (aka IO Operators) Are Left Associative

Although many programmers never use the bitwise operators directly, most pro-
grammers do use overloaded versions of these operators for IO. An overloaded
operator has the same precedence and associativity as the built-in version of that
operator. Therefore, programmers need to understand the precedence and associa-
tivity of the shift operators even if they never use them with their built-in meaning.

Because the shift operators are left associative, the expression

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

156 Expressions

cout << "hi" << " there" << endl;

executes as

( (cout << "hi") << " there" ) << endl;

In this statement, the operand "hi" is grouped with the first << symbol. Its result
is grouped with the second, and then that result is grouped with the third.

The shift operators have midlevel precedence: lower than the arithmetic oper-
ators but higher than the relational, assignment, and conditional operators. These
relative precedence levels mean we usually have to use parentheses to force the
correct grouping of operators with lower precedence.

cout << 42 + 10; // ok: + has higher precedence, so the sum is printed
cout << (10 < 42); // ok: parentheses force intended grouping; prints 1
cout << 10 < 42; // error: attempt to compare cout to 42!

The last cout is interpreted as

(cout << 10) < 42;

which says to “write 10 onto cout and then compare the result of that operation
(i.e., cout) to 42.”

EXE R C I S E S SE C TI ON 4.8

Exercise 4.25: What is the value of ~’q’ << 6 on a machine with 32-bit ints and 8 bit
chars, that uses Latin-1 character set in which ’q’ has the bit pattern 01110001?

Exercise 4.26: In our grading example in this section, what would happen if we used
unsigned int as the type for quiz1?

Exercise 4.27: What is the result of each of these expressions?

unsigned long ul1 = 3, ul2 = 7;
(a) ul1 & ul2 (b) ul1 | ul2
(c) ul1 && ul2 (d) ul1 || ul2

4.9 The sizeof Operator
The sizeof operator returns the size, in bytes, of an expression or a type name.
The operator is right associative. The result of sizeof is a constant expression
(§ 2.4.4, p. 65) of type size_t (§ 3.5.2, p. 116). The operator takes one of two
forms:

sizeof (type)
sizeof expr

In the second form, sizeof returns the size of the type returned by the given ex-
pression. The sizeof operator is unusual in that it does not evaluate its operand:
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Sales_data data, *p;
sizeof(Sales_data); // size required to hold an object of type Sales_data
sizeof data; // size of data’s type, i.e., sizeof(Sales_data)
sizeof p; // size of a pointer
sizeof *p; // size of the type to which p points, i.e., sizeof(Sales_data)
sizeof data.revenue; // size of the type of Sales_data’s revenue member
sizeof Sales_data::revenue; // alternative way to get the size of revenue

The most interesting of these examples is sizeof *p. First, because sizeof is
right associative and has the same precedence as *, this expression groups right
to left. That is, it is equivalent to sizeof (*p). Second, because sizeof does
not evaluate its operand, it doesn’t matter that p is an invalid (i.e., uninitialized)
pointer (§ 2.3.2, p. 52). Dereferencing an invalid pointer as the operand to sizeof
is safe because the pointer is not actually used. sizeof doesn’t need dereference
the pointer to know what type it will return.

Under the new standard, we can use the scope operator to ask for the size of
a member of a class type. Ordinarily we can only access the members of a class
through an object of that type. We don’t need to supply an object, because sizeof
does not need to fetch the member to know its size.

The result of applying sizeof depends in part on the type involved:

• sizeof char or an expression of type char is guaranteed to be 1.

• sizeof a reference type returns the size of an object of the referenced type.

• sizeof a pointer returns the size needed hold a pointer.

• sizeof a dereferenced pointer returns the size of an object of the type to
which the pointer points; the pointer need not be valid.

• sizeof an array is the size of the entire array. It is equivalent to taking the
sizeof the element type times the number of elements in the array. Note
that sizeof does not convert the array to a pointer.

• sizeof a string or a vector returns only the size of the fixed part of these
types; it does not return the size used by the object’s elements.

Because sizeof returns the size of the entire array, we can determine the num-
ber of elements in an array by dividing the array size by the element size:

// sizeof(ia)/sizeof(*ia) returns the number of elements in ia
constexpr size_t sz = sizeof(ia)/sizeof(*ia);
int arr2[sz]; // ok sizeof returns a constant expression § 2.4.4 (p. 65)

Because sizeof returns a constant expression, we can use the result of a sizeof
expression to specify the dimension of an array.

4.10 Comma Operator
The comma operator takes two operands, which it evaluates from left to right. Like
the logical AND and logical OR and the conditional operator, the comma operator
guarantees the order in which its operands are evaluated.
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EXE R C I S E S SE C TI ON 4.9

Exercise 4.28: Write a program to print the size of each of the built-in types.

Exercise 4.29: Predict the output of the following code and explain your reasoning.
Now run the program. Is the output what you expected? If not, figure out why.

int x[10]; int *p = x;

cout << sizeof(x)/sizeof(*x) << endl;
cout << sizeof(p)/sizeof(*p) << endl;

Exercise 4.30: Using Table 4.12 (p. 166), parenthesize the following expressions to
match the default evaluation:

(a) sizeof x + y (b) sizeof p->mem[i]
(c) sizeof a < b (d) sizeof f()

The left-hand expression is evaluated and its result is discarded. The result of a
comma expression is the value of its right-hand expression. The result is an lvalue
if the right-hand operand is an lvalue.

One common use for the comma operator is in a for loop:

vector<int>::size_type cnt = ivec.size();
// assign values from size . . . 1 to the elements in ivec
for(vector<int>::size_type ix = 0;

ix != ivec.size(); ++ix, --cnt)
ivec[ix] = cnt;

This loop increments ix and decrements cnt in the expression in the for header.
Both ix and cnt are changed on each trip through the loop. As long as the test of
ix succeeds, we reset the current element to the current value of cnt.

EXE R C I S E S SE C TI ON 4.10

Exercise 4.31: The program in this section used the prefix increment and decrement
operators. Explain why we used prefix and not postfix. What changes would have to
be made to use the postfix versions? Rewrite the program using postfix operators.

Exercise 4.32: Explain the following loop.

constexpr int size = 5;
int ia[size] = {1,2,3,4,5};
for (int *ptr = ia, ix = 0;

ix != size && ptr != ia+size;
++ix, ++ptr) { /* . . . */ }

Exercise 4.33: Using Table 4.12 (p. 166) explain what the following expression does:

someValue ? ++x, ++y : --x, --y
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4.11 Type Conversions
In C++ some types are related to each other. When two types are related, we can
use an object or value of one type where an operand of the related type is expected.
Two types are related if there is a conversion between them.

As an example, consider the following expression, which initializes ival to 6:

int ival = 3.541 + 3; // the compiler might warn about loss of precision

The operands of the addition are values of two different types: 3.541 has type
double, and 3 is an int. Rather than attempt to add values of the two differ-
ent types, C++ defines a set of conversions to transform the operands to a com-
mon type. These conversions are carried out automatically without programmer
intervention—and sometimes without programmer knowledge. For that reason,
they are referred to as implicit conversions.

The implicit conversions among the arithmetic types are defined to preserve
precision, if possible. Most often, if an expression has both integral and floating-
point operands, the integer is converted to floating-point. In this case, 3 is con-
verted to double, floating-point addition is done, and the result is a double.

The initialization happens next. In an initialization, the type of the object we
are initializing dominates. The initializer is converted to the object’s type. In this
case, the double result of the addition is converted to int and used to initialize
ival. Converting a double to an int truncates the double’s value, discarding
the decimal portion. In this expression, the value 6 is assigned to ival.

When Implicit Conversions Occur

The compiler automatically converts operands in the following circumstances:

• In most expressions, values of integral types smaller than int are first pro-
moted to an appropriate larger integral type.

• In conditions, nonbool expressions are converted to bool.

• In initializations, the initializer is converted to the type of the variable; in
assignments, the right-hand operand is converted to the type of the left-hand.

• In arithmetic and relational expressions with operands of mixed types, the
types are converted to a common type.

• As we’ll see in Chapter 6, conversions also happen during function calls.

4.11.1 The Arithmetic Conversions
The arithmetic conversions, which we introduced in § 2.1.2 (p. 35), convert one
arithmetic type to another. The rules define a hierarchy of type conversions in
which operands to an operator are converted to the widest type. For example, if
one operand is of type long double, then the other operand is converted to type
long double regardless of what the second type is. More generally, in expressions
that mix floating-point and integral values, the integral value is converted to an
appropriate floating-point type.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

160 Expressions

Integral Promotions

The integral promotions convert the small integral types to a larger integral type.
The types bool, char, signed char, unsigned char, short, and unsigned
short are promoted to int if all possible values of that type fit in an int. Other-
wise, the value is promoted to unsigned int. As we’ve seen many times, a bool
that is false promotes to 0 and true to 1.

The larger char types (wchar_t, char16_t, and char32_t) are promoted to
the smallest type of int, unsigned int, long, unsigned long, long long, or
unsigned long long in which all possible values of that character type fit.

Operands of Unsigned Type

If the operands of an operator have differing types, those operands are ordinarily
converted to a common type. If any operand is an unsigned type, the type to
which the operands are converted depends on the relative sizes of the integral
types on the machine.

As usual, integral promotions happen first. If the resulting type(s) match, no
further conversion is needed. If both (possibly promoted) operands have the same
signedness, then the operand with the smaller type is converted to the larger type.

When the signedness differs and the type of the unsigned operand is the same
as or larger than that of the signed operand, the signed operand is converted to
unsigned. For example, given an unsigned int and an int, the int is converted
to unsigned int. It is worth noting that if the int has a negative value, the result
will be converted as described in § 2.1.2 (p. 35), with the same results.

The remaining case is when the signed operand has a larger type than the un-
signed operand. In this case, the result is machine dependent. If all values in the
unsigned type fit in the larger type, then the unsigned operand is converted to the
signed type. If the values don’t fit, then the signed operand is converted to the
unsigned type. For example, if the operands are long and unsigned int, and
int and long have the same size, the long will be converted to unsigned int.
If the long type has more bits, then the unsigned int will be converted to long.

Understanding the Arithmetic Conversions

One way to understand the arithmetic conversions is to study lots of examples:

bool flag; char cval;
short sval; unsigned short usval;
int ival; unsigned int uival;
long lval; unsigned long ulval;
float fval; double dval;

3.14159L + ’a’; // ’a’ promoted to int, then that int converted to long double
dval + ival; // ival converted to double
dval + fval; // fval converted to double
ival = dval; // dval converted (by truncation) to int
flag = dval; // if dval is 0, then flag is false, otherwise true
cval + fval; // cval promoted to int, then that int converted to float
sval + cval; // sval and cval promoted to int
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cval + lval; // cval converted to long
ival + ulval; // ival converted to unsigned long
usval + ival; // promotion depends on the size of unsigned short and int
uival + lval; // conversion depends on the size of unsigned int and long

In the first addition, the character constant lowercase ’a’ has type char, which
is a numeric value (§ 2.1.1, p. 32). What that value is depends on the machine’s
character set. On our machine, ’a’ has the numeric value 97. When we add ’a’
to a long double, the char value is promoted to int, and then that int value
is converted to a long double. The converted value is added to the literal. The
other interesting cases are the last two expressions involving unsigned values. The
type of the result in these expressions is machine dependent.

EXE R C I S E S SE C TI O N 4.11.1

Exercise 4.34: Given the variable definitions in this section, explain what conversions
take place in the following expressions:

(a) if (fval) (b) dval = fval + ival; (c) dval + ival * cval;

Remember that you may need to consider the associativity of the operators.

Exercise 4.35: Given the following definitions,

char cval; int ival; unsigned int ui;
float fval; double dval;

identify the implicit type conversions, if any, taking place:

(a) cval = ’a’ + 3; (b) fval = ui - ival * 1.0;
(c) dval = ui * fval; (d) cval = ival + fval + dval;

4.11.2 Other Implicit Conversions
In addition to the arithmetic conversions, there are several additional kinds of im-
plicit conversions. These include:

Array to Pointer Conversions: In most expressions, when we use an array, the
array is automatically converted to a pointer to the first element in that array:

int ia[10]; // array of ten ints
int* ip = ia; // convert ia to a pointer to the first element

This conversion is not performed when an array is used with decltype or as the
operand of the address-of (&), sizeof, or typeid (which we’ll cover in § 19.2.2
(p. 826)) operators. The conversion is also omitted when we initialize a reference to
an array (§ 3.5.1, p. 114). As we’ll see in § 6.7 (p. 247), a similar pointer conversion
happens when we use a function type in an expression.

Pointer Conversions: There are several other pointer conversions: A constant in-
tegral value of 0 and the literal nullptr can be converted to any pointer type; a
pointer to any nonconst type can be converted to void*, and a pointer to any
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type can be converted to a const void*. We’ll see in § 15.2.2 (p. 597) that there is
an additional pointer conversion that applies to types related by inheritance.

Conversions to bool: There is an automatic conversion from arithmetic or pointer
types to bool. If the pointer or arithmetic value is zero, the conversion yields
false; any other value yields true:

char *cp = get_string();
if (cp) /* . . . */ // true if the pointer cp is not zero
while (*cp) /* . . . */ // true if *cp is not the null character

Conversion to const: We can convert a pointer to a nonconst type to a pointer to
the corresponding const type, and similarly for references. That is, if T is a type,
we can convert a pointer or a reference to T into a pointer or reference to const T,
respectively (§ 2.4.1, p. 61, and § 2.4.2, p. 62):

int i;
const int &j = i; // convert a nonconst to a reference to const int
const int *p = &i; // convert address of a nonconst to the address of a const
int &r = j, *q = p; // error: conversion from const to nonconst not allowed

The reverse conversion—removing a low-level const—does not exist.

Conversions Defined by Class Types: Class types can define conversions that the
compiler will apply automatically. The compiler will apply only one class-type
conversion at a time. In § 7.5.4 (p. 295) we’ll see an example of when multiple
conversions might be required, and will be rejected.

Our programs have already used class-type conversions: We use a class-type
conversion when we use a C-style character string where a library string is ex-
pected (§ 3.5.5, p. 124) and when we read from an istream in a condition:

string s, t = "a value"; // character string literal converted to type string
while (cin >> s) // while condition converts cin to bool

The condition (cin >> s) reads cin and yields cin as its result. Conditions ex-
pect a value of type bool, but this condition tests a value of type istream. The
IO library defines a conversion from istream to bool. That conversion is used
(automatically) to convert cin to bool. The resulting bool value depends on the
state of the stream. If the last read succeeded, then the conversion yields true. If
the last attempt failed, then the conversion to bool yields false.

4.11.3 Explicit Conversions
Sometimes we want to explicitly force an object to be converted to a different type.
For example, we might want to use floating-point division in the following code:

int i, j;
double slope = i/j;

To do so, we’d need a way to explicitly convert i and/or j to double. We use a
cast to request an explicit conversion.

Although necessary at times, casts are inherently dangerous constructs.
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Named Casts

A named cast has the following form:

cast-name<type>(expression);

where type is the target type of the conversion, and expression is the value to be
cast. If type is a reference, then the result is an lvalue. The cast-name may be one of
static_cast, dynamic_cast, const_cast, and reinterpret_cast. We’ll
cover dynamic_cast, which supports the run-time type identification, in § 19.2
(p. 825). The cast-name determines what kind of conversion is performed.

static_cast

Any well-defined type conversion, other than those involving low-level const,
can be requested using a static_cast. For example, we can force our expression
to use floating-point division by casting one of the operands to double:

// cast used to force floating-point division
double slope = static_cast<double>(j) / i;

A static_cast is often useful when a larger arithmetic type is assigned to a
smaller type. The cast informs both the reader of the program and the compiler
that we are aware of and are not concerned about the potential loss of precision.
Compilers often generate a warning for assignments of a larger arithmetic type to
a smaller type. When we do an explicit cast, the warning message is turned off.

A static_cast is also useful to perform a conversion that the compiler will
not generate automatically. For example, we can use a static_cast to retrieve a
pointer value that was stored in a void* pointer (§ 2.3.2, p. 56):

void* p = &d; // ok: address of any nonconst object can be stored in a void*
// ok: converts void* back to the original pointer type
double *dp = static_cast<double*>(p);

When we store a pointer in a void* and then use a static_cast to cast the
pointer back to its original type, we are guaranteed that the pointer value is pre-
served. That is, the result of the cast will be equal to the original address value.
However, we must be certain that the type to which we cast the pointer is the actual
type of that pointer; if the types do not match, the result is undefined.

const_cast

A const_cast changes only a low-level (§ 2.4.3, p. 63) const in its operand:

const char *pc;
char *p = const_cast<char*>(pc); // ok: but writing through p is undefined

Conventionally we say that a cast that converts a const object to a nonconst
type “casts away the const.” Once we have cast away the const of an object, the
compiler will no longer prevent us from writing to that object. If the object was
originally not a const, using a cast to obtain write access is legal. However, using
a const_cast in order to write to a const object is undefined.
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Only a const_cast may be used to change the constness of an expression.
Trying to change whether an expression is const with any of the other forms of
named cast is a compile-time error. Similarly, we cannot use a const_cast to
change the type of an expression:

const char *cp;
// error: static_cast can’t cast away const
char *q = static_cast<char*>(cp);

static_cast<string>(cp); // ok: converts string literal to string
const_cast<string>(cp); // error: const_cast only changes constness

A const_cast is most useful in the context of overloaded functions, which
we’ll describe in § 6.4 (p. 232).

reinterpret_cast

A reinterpret_cast generally performs a low-level reinterpretation of the bit
pattern of its operands. As an example, given the following cast

int *ip;
char *pc = reinterpret_cast<char*>(ip);

we must never forget that the actual object addressed by pc is an int, not a char-
acter. Any use of pc that assumes it’s an ordinary character pointer is likely to fail
at run time. For example:

string str(pc);

is likely to result in bizarre run-time behavior.
The use of pc to initialize str is a good example of why reinterpret_cast

is dangerous. The problem is that types are changed, yet there are no warnings or
errors from the compiler. When we initialized pc with the address of an int, there
is no error or warning from the compiler because we explicitly said the conversion
was okay. Any subsequent use of pcwill assume that the value it holds is a char*.
The compiler has no way of knowing that it actually holds a pointer to an int.
Thus, the initialization of str with pc is absolutely correct—albeit in this case
meaningless or worse! Tracking down the cause of this sort of problem can prove
extremely difficult, especially if the cast of ip to pc occurs in a file separate from
the one in which pc is used to initialize a string.

A reinterpret_cast is inherently machine dependent. Safely using
reinterpret_cast requires completely understanding the types in-
volved as well as the details of how the compiler implements the cast.

Old-Style Casts

In early versions of C++, an explicit cast took one of the following two forms:

type (expr); // function-style cast notation
(type) expr; // C-language-style cast notation
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ADVICE: AVOID CASTS

Casts interfere with normal type checking (§ 2.2.2, p. 46). As a result, we strongly
recommend that programmers avoid casts. This advice is particularly applicable to
reinterpret_casts. Such casts are always hazardous. A const_cast can be use-
ful in the context of overloaded functions, which we’ll cover in § 6.4 (p. 232). Other
uses of const_cast often indicate a design flaw. The other casts, static_cast and
dynamic_cast, should be needed infrequently. Every time you write a cast, you
should think hard about whether you can achieve the same result in a different way.
If the cast is unavoidable, errors can be mitigated by limiting the scope in which the
cast value is used and by documenting all assumptions about the types involved.

Depending on the types involved, an old-style cast has the same behavior as a
const_cast, a static_cast, or a reinterpret_cast. When we use an old-
style cast where a static_cast or a const_cast would be legal, the old-style
cast does the same conversion as the respective named cast. If neither cast is legal,
then an old-style cast performs a reinterpret_cast. For example:

char *pc = (char*) ip; // ip is a pointer to int

has the same effect as using a reinterpret_cast.

Old-style casts are less visible than are named casts. Because they are
easily overlooked, it is more difficult to track down a rogue cast.

EXE R C I S E S SE C TI O N 4.11.3

Exercise 4.36: Assuming i is an int and d is a double write the expression i *= d so
that it does integral, rather than floating-point, multiplication.

Exercise 4.37: Rewrite each of the following old-style casts to use a named cast:

int i; double d; const string *ps; char *pc; void *pv;
(a) pv = (void*)ps; (b) i = int(*pc);
(c) pv = &d; (d) pc = (char*) pv;

Exercise 4.38: Explain the following expression:

double slope = static_cast<double>(j/i);
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4.12 Operator Precedence Table

Associativity See
and Operator Function Use Page

L :: global scope ::name 286
L :: class scope class::name 88
L :: namespace scope namespace::name 82

L . member selectors object.member 23
L -> member selectors pointer->member 110
L [] subscript expr[ expr ] 116
L () function call name(expr_list) 23
L () type construction type(expr_list) 164

R ++ postfix increment lvalue++ 147
R -- postfix decrement lvalue-- 147
R typeid type ID typeid(type) 826
R typeid run-time type ID typeid(expr) 826
R explicit cast type conversion cast_name<type>(expr) 162

R ++ prefix increment ++lvalue 147
R -- prefix decrement --lvalue 147
R ~ bitwise NOT ~expr 152
R ! logical NOT !expr 141
R - unary minus -expr 140
R + unary plus +expr 140
R * dereference *expr 53
R & address-of &lvalue 52
R () type conversion (type) expr 164
R sizeof size of object sizeof expr 156
R sizeof size of type sizeof( type ) 156
R sizeof... size of parameter pack sizeof...( name ) 700
R new allocate object new type 458
R new[] allocate array new type[size] 458
R delete deallocate object delete expr 460
R delete[] deallocate array delete[] expr 460
R noexcept can expr throw noexcept ( expr ) 780

L ->* ptr to member select ptr->*ptr_to_member 837
L .* ptr to member select obj.*ptr_to_member 837

L * multiply expr * expr 139
L / divide expr / expr 139
L % modulo (remainder) expr % expr 139

L + add expr + expr 139
L - subtract expr - expr 139

L << bitwise shift left expr << expr 152
L >> bitwise shift right expr >> expr 152

L < less than expr < expr 141
L <= less than or equal expr <= expr 141
L > greater than expr > expr 141

Continued on next page
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Table 4.4: Operator Precedence
(continued)

Associativity See
and Operator Function Use Page

L >= greater than or equal expr >= expr 141

L == equality expr == expr 141
L != inequality expr != expr 141

L & bitwise AND expr & expr 152

L ^ bitwise XOR expr ^ expr 152

L | bitwise OR expr | expr 152

L && logical AND expr && expr 141

L || logical OR expr || expr 141

R ?: conditional expr ? expr : expr 151

R = assignment lvalue = expr 144
R *=, /=, %=, compound assign lvalue += expr, etc. 144
R +=, -=, 144
R <<=, >>=, 144
R &=,|=, ^= 144

R throw throw exception throw expr 193

L , comma expr , expr 157
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CH A P T E R SU M M A R Y
C++ provides a rich set of operators and defines their meaning when applied to
values of the built-in types. Additionally, the language supports operator over-
loading, which allows us to define the meaning of the operators for class types.
We’ll see in Chapter 14 how to define operators for our own types.

To understand expressions involving more than one operator it is necessary
to understand precedence, associativity, and order of operand evaluation. Each
operator has a precedence level and associativity. Precedence determines how op-
erators are grouped in a compound expression. Associativity determines how op-
erators at the same precedence level are grouped.

Most operators do not specify the order in which operands are evaluated: The
compiler is free to evaluate either the left- or right-hand operand first. Often, the
order of operand evaluation has no impact on the result of the expression. How-
ever, if both operands refer to the same object and one of the operands changes that
object, then the program has a serious bug—and a bug that may be hard to find.

Finally, operands are often converted automatically from their initial type to
another related type. For example, small integral types are promoted to a larger
integral type in every expression. Conversions exist for both built-in and class
types. Conversions can also be done explicitly through a cast.

DEFINED TERMS

arithmetic conversion A conversion from
one arithmetic type to another. In the
context of the binary arithmetic operators,
arithmetic conversions usually attempt to
preserve precision by converting a smaller
type to a larger type (e.g., integral types are
converted to floating point).

associativity Determines how operators
with the same precedence are grouped. Op-
erators can be either right associative (oper-
ators are grouped from right to left) or left
associative (operators are grouped from left
to right).

binary operators Operators that take two
operands.

cast An explicit conversion.

compound expression An expression in-
volving more than one operator.

const_cast A cast that converts a low-
level const object to the corresponding
nonconst type or vice versa.

conversion Process whereby a value of
one type is transformed into a value of an-
other type. The language defines conver-
sions among the built-in types. Conversions
to and from class types are also possible.

dynamic_cast Used in combination with
inheritance and run-time type identifica-
tion. See § 19.2 (p. 825).

expression The lowest level of computa-
tion in a C++ program. Expressions gener-
ally apply an operator to one or more oper-
ands. Each expression yields a result. Ex-
pressions can be used as operands, so we
can write compound expressions requiring
the evaluation of multiple operators.

implicit conversion A conversion that is
automatically generated by the compiler.
Given an expression that needs a particular
type but has an operand of a differing type,
the compiler will automatically convert the
operand to the desired type if an appropri-
ate conversion exists.
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integral promotions conversions that take
a smaller integral type to its most closely
related larger integral type. Operands of
small integral types (e.g., short, char,
etc.) are always promoted, even in contexts
where such conversions might not seem to
be required.

lvalue An expression that yields an object
or function. A nonconst lvalue that de-
notes an object may be the left-hand oper-
and of assignment.

operands Values on which an expression
operates. Each operator has one or more
operands associated with it.

operator Symbol that determines what ac-
tion an expression performs. The language
defines a set of operators and what those
operators mean when applied to values of
built-in type. The language also defines the
precedence and associativity of each opera-
tor and specifies how many operands each
operator takes. Operators may be over-
loaded and applied to values of class type.

order of evaluation Order, if any, in which
the operands to an operator are evaluated.
In most cases, the compiler is free to eval-
uate operands in any order. However, the
operands are always evaluated before the
operator itself is evaluated. Only the &&, ||,
?:, and comma operators specify the order
in which their operands are evaluated.

overloaded operator Version of an opera-
tor that is defined for use with a class type.
We’ll see in Chapter 14 how to define over-
loaded versions of operators.

precedence Defines the order in which
different operators in a compound expres-
sion are grouped. Operators with higher
precedence are grouped more tightly than
operators with lower precedence.

promoted See integral promotions.

reinterpret_cast Interprets the contents of
the operand as a different type. Inherently
machine dependent and dangerous.

result Value or object obtained by evaluat-
ing an expression.

rvalue Expression that yields a value but
not the associated location, if any, of that
value.

short-circuit evaluation Term used to de-
scribe how the logical AND and logical OR

operators execute. If the first operand to
these operators is sufficient to determine
the overall result, evaluation stops. We are
guaranteed that the second operand is not
evaluated.

sizeof Operator that returns the size, in
bytes, to store an object of a given type
name or of the type of a given expression.

static_cast An explicit request for a well-
defined type conversion. Often used to
override an implicit conversion that the
compiler would otherwise perform.

unary operators Operators that take a sin-
gle operand.

, operator Comma operator. Binary oper-
ator that is evaluated left to right. The result
of a comma expression is the value of the
right-hand operand. The result is an lvalue
if and only if that operand is an lvalue.

?: operator Conditional operator. Pro-
vides an if-then-else expression of the form

cond ? expr1 : expr2;

If the condition cond is true, then expr1 is
evaluated. Otherwise, expr2 is evaluated.
The type expr1 and expr2 must be the same
type or be convertible to a common type.
Only one of expr1 or expr2 is evaluated.

&& operator Logical AND operator. Result
is true if both operands are true. The
right-hand operand is evaluated only if the
left-hand operand is true.

& operator Bitwise AND operator. Gener-
ates a new integral value in which each bit
position is 1 if both operands have a 1 in that
position; otherwise the bit is 0.
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ˆ operator Bitwise exclusive or operator.
Generates a new integral value in which
each bit position is 1 if either but not both
operands contain a 1 in that bit position;
otherwise, the bit is 0.

|| operator Logical OR operator. Yields
true if either operand is true. The right-
hand operand is evaluated only if the left-
hand operand is false.

| operator Bitwise OR operator. Generates
a new integral value in which each bit po-
sition is 1 if either operand has a 1 in that
position; otherwise the bit is 0.

++ operator The increment operator. The
increment operator has two forms, prefix
and postfix. Prefix increment yields an
lvalue. It adds 1 to the operand and returns
the changed value of the operand. Postfix
increment yields an rvalue. It adds 1 to the
operand and returns a copy of the original,
unchanged value of the operand. Note: It-
erators have ++ even if they do not have the
+ operator.

-- operator The decrement operator has
two forms, prefix and postfix. Prefix decre-
ment yields an lvalue. It subtracts 1 from
the operand and returns the changed value
of the operand. Postfix decrement yields an
rvalue. It subtracts 1 from the operand and

returns a copy of the original, unchanged
value of the operand. Note: Iterators have
-- even if they do not have the -.

<< operator The left-shift operator. Shifts
bits in a (possibly promoted) copy of the
value of the left-hand operand to the left.
Shifts as many bits as indicated by the right-
hand operand. The right-hand operand
must be zero or positive and strictly less
than the number of bits in the result. Left-
hand operand should be unsigned; if the
left-hand operand is signed, it is unde-
fined if a shift causes a different bit to shift
into the sign bit.

>> operator The right-shift operator. Like
the left-shift operator except that bits are
shifted to the right. If the left-hand oper-
and is signed, it is implementation defined
whether bits shifted into the result are 0 or
a copy of the sign bit.

~ operator Bitwise NOT operator. Gener-
ates a new integral value in which each bit
is an inverted copy of the corresponding bit
in the (possibly promoted) operand.

! operator Logical NOT operator. Returns
the inverse of the bool value of its operand.
Result is true if operand is false and vice
versa.
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Like most languages, C++ provides statements for conditional execu-
tion, loops that repeatedly execute the same body of code, and jump
statements that interrupt the flow of control. This chapter looks in
detail at the statements supported by C++.

171

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

172 Statements

Statements are executed sequentially. Except for the simplest programs, se-
quential execution is inadequate. Therefore, C++ also defines a set of flow-of-
control statements that allow more complicated execution paths.

5.1 Simple Statements
Most statements in C++ end with a semicolon. An expression, such as ival + 5,
becomes an expression statement when it is followed by a semicolon. Expression
statements cause the expression to be evaluated and its result discarded:

ival + 5; // rather useless expression statement
cout << ival; // useful expression statement

The first statement is pretty useless: The addition is done but the result is not used.
More commonly, an expression statement contains an expression that has a side
effect—such as assigning a new value to a variable, or printing a result—when it
is evaluated.

Null Statements

The simplest statement is the empty statement, also known as a null statement. A
null statement is a single semicolon:

; // null statement

A null statement is useful where the language requires a statement but the pro-
gram’s logic does not. Such usage is most common when a loop’s work can be
done within its condition. For example, we might want to read an input stream,
ignoring everything we read until we encounter a particular value:

// read until we hit end-of-file or find an input equal to sought
while (cin >> s && s != sought)

; // null statement

This condition reads a value from the standard input and implicitly tests cin to see
whether the read was successful. Assuming the read succeeded, the second part
of the condition tests whether the value we read is equal to the value in sought.
If we found the value we want, the while loop is exited. Otherwise, the condition
is evaluated again, which reads another value from cin.

Null statements should be commented. That way anyone reading the
code can see that the statement was omitted intentionally.

Beware of Missing or Extraneous Semicolons

Because a null statement is a statement, it is legal anywhere a statement is ex-
pected. For this reason, semicolons that might appear illegal are often nothing
more than null statements. The following fragment contains two statements—the
expression statement and the null statement:
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ival = v1 + v2;; // ok: second semicolon is a superfluous null statement

Although an unnecessary null statement is often harmless, an extra semicolon fol-
lowing the condition in a while or if can drastically alter the programmer’s in-
tent. For example, the following code will loop indefinitely:

// disaster: extra semicolon: loop body is this null statement
while (iter != svec.end()) ; // the while body is the empty statement

++iter; // increment is not part of the loop

Contrary to the indentation, the increment is not part of the loop. The loop body
is the null statement formed by the semicolon that follows the condition.

Extraneous null statements are not always harmless.

Compound Statements (Blocks)

A compound statement, usually referred to as a block, is a (possibly empty) se-
quence of statements and declarations surrounded by a pair of curly braces. A
block is a scope (§ 2.2.4, p. 48). Names introduced inside a block are accessible
only in that block and in blocks nested inside that block. Names are visible from
where they are defined until the end of the (immediately) enclosing block.

Compound statements are used when the language requires a single statement
but the logic of our program needs more than one. For example, the body of a
while or for loop must be a single statement, yet we often need to execute more
than one statement in the body of a loop. We do so by enclosing the statements in
curly braces, thus turning the sequence of statements into a block.

As one example, recall the while loop in the program in § 1.4.1 (p. 11):

while (val <= 10) {
sum += val; // assigns sum + val to sum
++val; // add 1 to val

}

The logic of our program needed two statements but a while loop may contain
only one statement. By enclosing these statements in curly braces, we made them
into a single (compound) statement.

A block is not terminated by a semicolon.

We also can define an empty block by writing a pair of curlies with no state-
ments. An empty block is equivalent to a null statement:

while (cin >> s && s != sought)
{ } // empty block
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EXE R C I S E S SE C TI ON 5.1

Exercise 5.1: What is a null statement? When might you use a null statement?

Exercise 5.2: What is a block? When might you might use a block?

Exercise 5.3: Use the comma operator (§ 4.10, p. 157) to rewrite the while loop from
§ 1.4.1 (p. 11) so that it no longer requires a block. Explain whether this rewrite im-
proves or diminishes the readability of this code.

5.2 Statement Scope
We can define variables inside the control structure of the if, switch, while, and
for statements. Variables defined in the control structure are visible only within
that statement and are out of scope after the statement ends:

while (int i = get_num()) // i is created and initialized on each iteration
cout << i << endl;

i = 0; // error: i is not accessible outside the loop

If we need access to the control variable, then that variable must be defined outside
the statement:

// find the first negative element
auto beg = v.begin();
while (beg != v.end() && *beg >= 0)

++beg;
if (beg == v.end())

// we know that all elements in v are greater than or equal to zero

The value of an object defined in a control structure is used by that structure.
Therefore, such variables must be initialized.

EXE R C I S E S SE C TI ON 5.2

Exercise 5.4: Explain each of the following examples, and correct any problems you
detect.

(a) while (string::iterator iter != s.end()) { /* . . . */ }
(b) while (bool status = find(word)) { /* . . . */ }

if (!status) { /* . . . */ }

5.3 Conditional Statements
C++ provides two statements that allow for conditional execution. The if state-
ment determines the flow of control based on a condition. The switch statement
evaluates an integral expression and chooses one of several execution paths based
on the expression’s value.
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5.3.1 The if Statement
An if statement conditionally executes another statement based on whether a
specified condition is true. There are two forms of the if: one with an else branch
and one without. The syntactic form of the simple if is

if (condition)
statement

An if else statement has the form

if (condition)
statement

else
statement2

In both versions, condition must be enclosed in parentheses. condition can be an
expression or an initialized variable declaration (§ 5.2, p. 174). The expression or
variable must have a type that is convertible (§ 4.11, p. 159) to bool. As usual,
either or both statement and statement2 can be a block.

If condition is true, then statement is executed. After statement completes, exe-
cution continues with the statement following the if.

If condition is false, statement is skipped. In a simple if, execution continues
with the statement following the if. In an if else, statement2 is executed.

Using an if else Statement

To illustrate an if statement, we’ll calculate a letter grade from a numeric grade.
We’ll assume that the numeric grades range from zero to 100 inclusive. A grade of
100 gets an “A++,” grades below 60 get an “F,” and the others range in clumps of
ten: grades from 60 to 69 inclusive get a “D,” 70 to 79 a “C,” and so on. We’ll use a
vector to hold the possible letter grades:

const vector<string> scores = {"F", "D", "C", "B", "A", "A++"};

To solve this problem, we can use an if else statement to execute different
actions for failing and passing grades:

// if grade is less than 60 it’s an F, otherwise compute a subscript
string lettergrade;
if (grade < 60)

lettergrade = scores[0];
else

lettergrade = scores[(grade - 50)/10];

Depending on the value of grade, we execute the statement after the if or the
one after the else. In the else, we compute a subscript from a grade by reducing
the grade to account for the larger range of failing grades. Then we use integer
division (§ 4.2, p. 141), which truncates the remainder, to calculate the appropriate
scores index.
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Nested if Statements

To make our program more interesting, we’ll add a plus or minus to passing
grades. We’ll give a plus to grades ending in 8 or 9, and a minus to those end-
ing in 0, 1, or 2:

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

else if (grade % 10 < 3)
lettergrade += ’-’; // those ending in 0, 1, or 2 get a -

Here we use the modulus operator (§ 4.2, p. 141) to get the remainder and decide
based on the remainder whether to add plus or minus.

We next will incorporate the code that adds a plus or minus to the code that
fetches the letter grade from scores:

// if failing grade, no need to check for a plus or minus
if (grade < 60)

lettergrade = scores[0];
else {

lettergrade = scores[(grade - 50)/10]; // fetch the letter grade
if (grade != 100) // add plus or minus only if not already an A++

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

else if (grade % 10 < 3)
lettergrade += ’-’; // grades ending in 0, 1, or 2 get a -

}

Note that we use a block to enclose the two statements that follow the first else. If
the grade is 60 or more, we have two actions that we need to do: Fetch the letter
grade from scores, and conditionally set the plus or minus.

Watch Your Braces

It is a common mistake to forget the curly braces when multiple statements must
be executed as a block. In the following example, contrary to the indentation, the
code to add a plus or minus happens unconditionally:

if (grade < 60)
lettergrade = scores[0];

else // WRONG: missing curly
lettergrade = scores[(grade - 50)/10];
// despite appearances, without the curly brace, this code is always executed
// failing grades will incorrectly get a - or a +
if (grade != 100)

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

else if (grade % 10 < 3)
lettergrade += ’-’; // grades ending in 0, 1, or 2 get a -

Uncovering this error may be very difficult because the program looks correct.
To avoid such problems, some coding styles recommend always using braces

after an if or an else (and also around the bodies of while and for statements).
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Doing so avoids any possible confusion. It also means that the braces are already
in place if later modifications of the code require adding statements.

Many editors and development environments have tools to automati-
cally indent source code to match its structure. It is a good idea to use
such tools if they are available.

Dangling else

When we nest an if inside another if, it is possible that there will be more if
branches than else branches. Indeed, our grading program has four ifs and two
elses. The question arises: How do we know to which if a given else belongs?

This problem, usually referred to as a dangling else, is common to many pro-
gramming languages that have both if and if else statements. Different lan-
guages solve this problem in different ways. In C++ the ambiguity is resolved by
specifying that each else is matched with the closest preceding unmatched if.

Programmers sometimes get into trouble when they write code that contains
more if than else branches. To illustrate the problem, we’ll rewrite the innermost
if else that adds a plus or minus using a different set of conditions:

// WRONG: execution does NOT match indentation; the else goes with the inner if
if (grade % 10 >= 3)

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

else
lettergrade += ’-’; // grades ending in 3, 4, 5, 6, or 7 get a minus!

The indentation in our code indicates that we intend the else to go with the outer
if—we intend for the else branch to be executed when the grade ends in a digit
less than 3. However, despite our intentions, and contrary to the indentation, the
else branch is part of the inner if. This code adds a ’-’ to grades ending in 3 to
7 inclusive! Properly indented to match the actual execution, what we wrote is:

// indentation matches the execution path, not the programmer’s intent
if (grade % 10 >= 3)

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

else
lettergrade += ’-’; // grades ending in 3, 4, 5, 6, or 7 get a minus!

Controlling the Execution Path with Braces

We can make the else part of the outer if by enclosing the inner if in a block:

// add a plus for grades that end in 8 or 9 and a minus for those ending in 0, 1, or 2
if (grade % 10 >= 3) {

if (grade % 10 > 7)
lettergrade += ’+’; // grades ending in 8 or 9 get a +

} else // curlies force the else to go with the outer if
lettergrade += ’-’; // grades ending in 0, 1, or 2 will get a minus
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Statements do not span block boundaries, so the inner if ends at the close curly
before the else. The else cannot be part of the inner if. Now, the nearest un-
matched if is the outer if, which is what we intended all along.

EXE R C I S E S SE C TI ON 5.3.1

Exercise 5.5: Using an if–else statement, write your own version of the program to
generate the letter grade from a numeric grade.

Exercise 5.6: Rewrite your grading program to use the conditional operator (§ 4.7,
p. 151) in place of the if–else statement.

Exercise 5.7: Correct the errors in each of the following code fragments:

(a) if (ival1 != ival2)
ival1 = ival2

else ival1 = ival2 = 0;
(b) if (ival < minval)

minval = ival;
occurs = 1;

(c) if (int ival = get_value())
cout << "ival = " << ival << endl;

if (!ival)
cout << "ival = 0\n";

(d) if (ival = 0)
ival = get_value();

Exercise 5.8: What is a “dangling else”? How are else clauses resolved in C++?

5.3.2 The switch Statement
A switch statement provides a convenient way of selecting among a (possibly
large) number of fixed alternatives. As one example, suppose that we want to
count how often each of the five vowels appears in some segment of text. Our
program logic is as follows:

• Read every character in the input.

• Compare each character to the set of vowels.

• If the character matches one of the vowels, add 1 to that vowel’s count.

• Display the results.

For example, when we run the program on the text of this chapter, the output is

Number of vowel a: 3195
Number of vowel e: 6230
Number of vowel i: 3102
Number of vowel o: 3289
Number of vowel u: 1033
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We can solve our problem most directly using a switch statement:

// initialize counters for each vowel
unsigned aCnt = 0, eCnt = 0, iCnt = 0, oCnt = 0, uCnt = 0;

char ch;
while (cin >> ch) {

// if ch is a vowel, increment the appropriate counter
switch (ch) {

case ’a’:
++aCnt;
break;

case ’e’:
++eCnt;
break;

case ’i’:
++iCnt;
break;

case ’o’:
++oCnt;
break;

case ’u’:
++uCnt;
break;

}
}
// print results
cout << "Number of vowel a: \t" << aCnt << ’\n’

<< "Number of vowel e: \t" << eCnt << ’\n’
<< "Number of vowel i: \t" << iCnt << ’\n’
<< "Number of vowel o: \t" << oCnt << ’\n’
<< "Number of vowel u: \t" << uCnt << endl;

A switch statement executes by evaluating the parenthesized expression that fol-
lows the keyword switch. That expression may be an initialized variable decla-
ration (§ 5.2, p. 174). The expression is converted to integral type. The result of the
expression is compared with the value associated with each case.

If the expression matches the value of a case label, execution begins with the
first statement following that label. Execution continues normally from that state-
ment through the end of the switch or until a break statement.

We’ll look at break statements in detail in § 5.5.1 (p. 190), but, briefly, a break
interrupts the current control flow. In this case, the break transfers control out
of the switch. In this program, the switch is the only statement in the body
of a while. Breaking out of this switch returns control to the enclosing while.
Because there are no other statements in that while, execution continues at the
condition in the while.

If no match is found, execution falls through to the first statement following the
switch. As we already know, in this example, exiting the switch returns control
to the condition in the while.

The case keyword and its associated value together are known as the case
label. case labels must be integral constant expressions (§ 2.4.4, p. 65):
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char ch = getVal();
int ival = 42;
switch(ch) {

case 3.14: // error: noninteger as case label
case ival: // error: nonconstant as case label
// . . .

It is an error for any two case labels to have the same value. There is also a
special-case label, default, which we cover on page 181.

Control Flow within a switch

It is important to understand that execution flows across case labels. After a case
label is matched, execution starts at that label and continues across all the remain-
ing cases or until the program explicitly interrupts it. To avoid executing code for
subsequent cases, we must explicitly tell the compiler to stop execution. Under
most conditions, the last statement before the next case label is break.

However, there are situations where the default switch behavior is exactly
what is needed. Each case label can have only a single value, but sometimes we
have two or more values that share a common set of actions. In such instances, we
omit a break statement, allowing the program to fall through multiple case labels.

For example, we might want to count only the total number of vowels:

unsigned vowelCnt = 0;
// . . .
switch (ch)
{

// any occurrence of a, e, i, o, or u increments vowelCnt
case ’a’:
case ’e’:
case ’i’:
case ’o’:
case ’u’:

++vowelCnt;
break;

}

Here we stacked several case labels together with no intervening break. The
same code will be executed whenever ch is a vowel.

Because C++ programs are free-form, case labels need not appear on a new
line. We can emphasize that the cases represent a range of values by listing them
all on a single line:

switch (ch)
{

// alternative legal syntax
case ’a’: case ’e’: case ’i’: case ’o’: case ’u’:

++vowelCnt;
break;

}
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Omitting a break at the end of a case happens rarely. If you do omit
a break, include a comment explaining the logic.

Forgetting a break Is a Common Source of Bugs

It is a common misconception to think that only the statements associated with the
matched case label are executed. For example, here is an incorrect implementation
of our vowel-counting switch statement:

// warning: deliberately incorrect!
switch (ch) {

case ’a’:
++aCnt; // oops: should have a break statement

case ’e’:
++eCnt; // oops: should have a break statement

case ’i’:
++iCnt; // oops: should have a break statement

case ’o’:
++oCnt; // oops: should have a break statement

case ’u’:
++uCnt;

}

To understand what happens, assume that the value of ch is ’e’. Execution jumps
to the code following the case ’e’ label, which increments eCnt. Execution con-
tinues across the case labels, incrementing iCnt, oCnt, and uCnt as well.

Although it is not necessary to include a break after the last label of a
switch, the safest course is to provide one. That way, if an additional
case is added later, the break is already in place.

The default Label

The statements following the default label are executed when no case label
matches the value of the switch expression. For example, we might add a counter
to track how many nonvowels we read. We’ll increment this counter, which we’ll
name otherCnt, in the default case:

// if ch is a vowel, increment the appropriate counter
switch (ch) {

case ’a’: case ’e’: case ’i’: case ’o’: case ’u’:
++vowelCnt;
break;

default:
++otherCnt;
break;

}
}
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In this version, if ch is not a vowel, execution will start at the default label and
we’ll increment otherCnt.

It can be useful to define a default label even if there is no work for
the default case. Defining an empty default section indicates to
subsequent readers that the case was considered.

A label may not stand alone; it must precede a statement or another case label.
If a switch ends with a default case that has no work to do, then the default
label must be followed by a null statement or an empty block.

Variable Definitions inside the Body of a switch

As we’ve seen, execution in a switch can jump across case labels. When execu-
tion jumps to a particular case, any code that occurred inside the switch before
that label is ignored. The fact that code is bypassed raises an interesting question:
What happens if the code that is skipped includes a variable definition?

The answer is that it is illegal to jump from a place where a variable with an
initializer is out of scope to a place where that variable is in scope:

case true:
// this switch statement is illegal because these initializations might be bypassed
string file_name; // error: control bypasses an implicitly initialized variable
int ival = 0; // error: control bypasses an explicitly initialized variable
int jval; // ok: because jval is not initialized
break;

case false:
// ok: jval is in scope but is uninitialized
jval = next_num(); // ok: assign a value to jval
if (file_name.empty()) // file_name is in scope but wasn’t initialized

// . . .

If this code were legal, then any time control jumped to the false case, it would
bypass the initialization of file_name and ival. Those variables would be in
scope. Code following false could use those variables. However, these variables
would not have been initialized. As a result, the language does not allow us to
jump over an initialization if the initialized variable is in scope at the point to
which control transfers.

If we need to define and initialize a variable for a particular case, we can do
so by defining the variable inside a block, thereby ensuring that the variable is out
of scope at the point of any subsequent label.

case true:
{

// ok: declaration statement within a statement block
string file_name = get_file_name();
// . . .

}
break;

case false:
if (file_name.empty()) // error: file_name is not in scope
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EXE R C I S E S SE C TI ON 5.3.2

Exercise 5.9: Write a program using a series of if statements to count the number of
vowels in text read from cin.

Exercise 5.10: There is one problem with our vowel-counting program as we’ve im-
plemented it: It doesn’t count capital letters as vowels. Write a program that counts
both lower- and uppercase letters as the appropriate vowel—that is, your program
should count both ’a’ and ’A’ as part of aCnt, and so forth.

Exercise 5.11: Modify our vowel-counting program so that it also counts the number
of blank spaces, tabs, and newlines read.

Exercise 5.12: Modify our vowel-counting program so that it counts the number of
occurrences of the following two-character sequences: ff, fl, and fi.

Exercise 5.13: Each of the programs in the highlighted text on page 184 contains a
common programming error. Identify and correct each error.

5.4 Iterative Statements
Iterative statements, commonly called loops, provide for repeated execution un-
til a condition is true. The while and for statements test the condition before
executing the body. The do while executes the body and then tests its condition.

5.4.1 The while Statement
A while statement repeatedly executes a target statement as long as a condition
is true. Its syntactic form is

while (condition)
statement

In a while, statement (which is often a block) is executed as long as condition eval-
uates as true. condition may not be empty. If the first evaluation of condition yields
false, statement is not executed.

The condition can be an expression or an initialized variable declaration (§ 5.2,
p. 174). Ordinarily, the condition itself or the loop body must do something to
change the value of the expression. Otherwise, the loop might never terminate.

Variables defined in a while condition or while body are created and
destroyed on each iteration.

Using a while Loop

A while loop is generally used when we want to iterate indefinitely, such as when
we read input. A while is also useful when we want access to the value of the loop
control variable after the loop finishes. For example:
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CODE FOR EXERCISE 5.13

(a) unsigned aCnt = 0, eCnt = 0, iouCnt = 0;
char ch = next_text();
switch (ch) {

case ’a’: aCnt++;
case ’e’: eCnt++;
default: iouCnt++;

}

(b) unsigned index = some_value();
switch (index) {

case 1:
int ix = get_value();
ivec[ ix ] = index;
break;

default:
ix = ivec.size()-1;
ivec[ ix ] = index;

}

(c) unsigned evenCnt = 0, oddCnt = 0;
int digit = get_num() % 10;
switch (digit) {

case 1, 3, 5, 7, 9:
oddcnt++;
break;

case 2, 4, 6, 8, 10:
evencnt++;
break;

}

(d) unsigned ival=512, jval=1024, kval=4096;
unsigned bufsize;
unsigned swt = get_bufCnt();
switch(swt) {

case ival:
bufsize = ival * sizeof(int);
break;

case jval:
bufsize = jval * sizeof(int);
break;

case kval:
bufsize = kval * sizeof(int);
break;

}
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vector<int> v;
int i;
// read until end-of-file or other input failure
while (cin >> i)

v.push_back(i);
// find the first negative element
auto beg = v.begin();
while (beg != v.end() && *beg >= 0)

++beg;
if (beg == v.end())

// we know that all elements in v are greater than or equal to zero

The first loop reads data from the standard input. We have no idea how many
times this loop will execute. The condition fails when cin reads invalid data,
encounters some other input failure, or hits end-of-file. The second loop continues
until we find a negative value. When the loop terminates, beg is either equal to
v.end(), or it denotes an element in v whose value is less than zero. We can use
the state of beg outside the while to determine further processing.

EXE R C I S E S SE C TI ON 5.4.1

Exercise 5.14: Write a program to read strings from standard input looking for du-
plicated words. The program should find places in the input where one word is fol-
lowed immediately by itself. Keep track of the largest number of times a single repeti-
tion occurs and which word is repeated. Print the maximum number of duplicates, or
else print a message saying that no word was repeated. For example, if the input is

how now now now brown cow cow

the output should indicate that the word now occurred three times.

5.4.2 Traditional for Statement
The syntactic form of the for statement is:

for (init-statement condition; expression)
statement

The for and the part inside the parentheses is often referred to as the for header.
init-statement must be a declaration statement, an expression statement, or a

null statement. Each of these statements ends with a semicolon, so the syntactic
form can also be thought of as

for (initializer; condition; expression)
statement

In general, init-statement is used to initialize or assign a starting value that is
modified over the course of the loop. condition serves as the loop control. As
long as condition evaluates as true, statement is executed. If the first evaluation
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of condition yields false, statement is not executed. expression usually modifies the
variable(s) initialized in init-statement and tested in condition. expression is evalu-
ated after each iteration of the loop. As usual, statement can be either a single or a
compound statement.

Execution Flow in a Traditional for Loop

Given the following for loop from § 3.2.3 (p. 94):

// process characters in s until we run out of characters or we hit a whitespace
for (decltype(s.size()) index = 0;

index != s.size() && !isspace(s[index]); ++index)
s[index] = toupper(s[index]); // capitalize the current character

the order of evaluation is as follows:

1. init-statement is executed once at the start of the loop. In this example, index
is defined and initialized to zero.

2. Next, condition is evaluated. If index is not equal to s.size() and the char-
acter at s[index] is not whitespace, the for body is executed. Otherwise,
the loop terminates. If the condition is false on the first iteration, then the
for body is not executed at all.

3. If the condition is true, the for body executes. In this case, the for body
makes the character at s[index] uppercase.

4. Finally, expression is evaluated. In this example, index is incremented by 1.

These four steps represent the first iteration of the for loop. Step 1 is executed
only once on entry to the loop. Steps 2, 3, and 4 are repeated until the condition
evaluates as false—that is, when we encounter a whitespace character in s, or
index is greater than s.size().

It is worth remembering that the visibility of any object defined within
the for header is limited to the body of the for loop. Thus, in this
example, index is inaccessible after the for completes.

Multiple Definitions in the for Header

As in any other declaration, init-statement can define several objects. However, init-
statement may be only a single declaration statement. Therefore, all the variables
must have the same base type (§ 2.3, p. 50). As one example, we might write a loop
to duplicate the elements of a vector on the end as follows:

// remember the size of v and stop when we get to the original last element
for (decltype(v.size()) i = 0, sz = v.size(); i != sz; ++i)

v.push_back(v[i]);

In this loop we define both the index, i, and the loop control, sz, in init-statement.
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Omitting Parts of the for Header

A for header can omit any (or all) of init-statement, condition, or expression.
We can use a null statement for init-statement when an initialization is unnec-

essary. For example, we might rewrite the loop that looked for the first negative
number in a vector so that it uses a for:

auto beg = v.begin();
for ( /* null */; beg != v.end() && *beg >= 0; ++beg)

; // no work to do

Note that the semicolon is necessary to indicate the absence of init-statement—more
precisely, the semicolon represents a null init-statement. In this loop, the for body
is also empty because all the work of the loop is done inside the for condition and
expression. The condition decides when it’s time to stop looking and the expres-
sion increments the iterator.

Omitting condition is equivalent to writing true as the condition. Because the
condition always evaluates as true, the for body must contain a statement that
exits the loop. Otherwise the loop will execute indefinitely:

for (int i = 0; /* no condition */ ; ++i) {
// process i; code inside the loop must stop the iteration!

}

We can also omit expression from the for header. In such loops, either the
condition or the body must do something to advance the iteration. As an example,
we’ll rewrite the while loop that read input into a vector of ints:

vector<int> v;
for (int i; cin >> i; /* no expression */ )

v.push_back(i);

In this loop there is no need for an expression because the condition changes the
value of i. The condition tests the input stream so that the loop ends when we’ve
read all the input or encounter an input error.

5.4.3 Range for Statement
The new standard introduced a simpler for statement that can be used to iterate
through the elements of a container or other sequence. The syntactic form of the
range for statement is:

for (declaration : expression)
statement

expression must represent a sequence, such as a braced initializer list (§ 3.3.1, p. 98),
an array (§ 3.5, p. 113), or an object of a type such as vector or string that has
begin and end members that return iterators (§ 3.4, p. 106).

declaration defines a variable. It must be possible to convert each element of the
sequence to the variable’s type (§ 4.11, p. 159). The easiest way to ensure that the
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EXE R C I S E S SE C TI ON 5.4.2

Exercise 5.15: Explain each of the following loops. Correct any problems you detect.

(a) for (int ix = 0; ix != sz; ++ix) { /* . . . */ }
if (ix != sz)

// . . .
(b) int ix;

for (ix != sz; ++ix) { /* . . . */ }
(c) for (int ix = 0; ix != sz; ++ix, ++ sz) { /* . . . */ }

Exercise 5.16: The while loop is particularly good at executing while some condition
holds; for example, when we need to read values until end-of-file. The for loop is
generally thought of as a step loop: An index steps through a range of values in a
collection. Write an idiomatic use of each loop and then rewrite each using the other
loop construct. If you could use only one loop, which would you choose? Why?

Exercise 5.17: Given two vectors of ints, write a program to determine whether
one vector is a prefix of the other. For vectors of unequal length, compare the num-
ber of elements of the smaller vector. For example, given the vectors containing 0,
1, 1, and 2 and 0, 1, 1, 2, 3, 5, 8, respectively your program should return true.

types match is to use the auto type specifier (§ 2.5.2, p. 68). That way the compiler
will deduce the type for us. If we want to write to the elements in the sequence,
the loop variable must be a reference type.

On each iteration, the control variable is defined and initialized by the next
value in the sequence, after which statement is executed. As usual, statement can
be a single statement or a block. Execution ends once all the elements have been
processed.

We have already seen several such loops, but for completeness, here is one that
doubles the value of each element in a vector:

vector<int> v = {0,1,2,3,4,5,6,7,8,9};

// range variable must be a reference so we can write to the elements
for (auto &r : v) // for each element in v

r *= 2; // double the value of each element in v

The for header declares the loop control variable, r, and associates it with v. We
use auto to let the compiler infer the correct type for r. Because we want to change
the value of the elements in v, we declare r as a reference. When we assign to r
inside the loop, that assignment changes the element to which r is bound.

A range for is defined in terms of the equivalent traditional for:

for (auto beg = v.begin(), end = v.end(); beg != end; ++beg) {
auto &r = *beg; // r must be a reference so we can change the element
r *= 2; // double the value of each element in v

}

Now that we know how a range for works, we can understand why we said in
§ 3.3.2 (p. 101) that we cannot use a range for to add elements to a vector (or
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other container). In a range for, the value of end() is cached. If we add elements
to (or remove them from) the sequence, the value of end might be invalidated
(§ 3.4.1, p. 110). We’ll have more to say about these matters in § 9.3.6 (p. 353).

5.4.4 The do while Statement
A do while statement is like a while but the condition is tested after the state-
ment body completes. Regardless of the value of the condition, we execute the
loop at least once. The syntactic form is as follows:

do
statement

while (condition);

A do while ends with a semicolon after the parenthesized condition.

In a do, statement is executed before condition is evaluated. condition cannot be
empty. If condition evaluates as false, then the loop terminates; otherwise, the
loop is repeated. Variables used in condition must be defined outside the body of
the do while statement.

We can write a program that (indefinitely) does sums using a do while:

// repeatedly ask the user for a pair of numbers to sum
string rsp; // used in the condition; can’t be defined inside the do
do {

cout << "please enter two values: ";
int val1 = 0, val2 = 0;
cin >> val1 >> val2;
cout << "The sum of " << val1 << " and " << val2

<< " = " << val1 + val2 << "\n\n"
<< "More? Enter yes or no: ";

cin >> rsp;
} while (!rsp.empty() && rsp[0] != ’n’);

The loop starts by prompting the user for two numbers. It then prints their sum
and asks whether the user wishes to do another sum. The condition checks that
the user gave a response. If not, or if the input starts with an n, the loop is exited.
Otherwise the loop is repeated.

Because the condition is not evaluated until after the statement or block is exe-
cuted, the do while loop does not allow variable definitions inside the condition:

do {
// . . .
mumble(foo);

} while (int foo = get_foo()); // error: declaration in a do condition

If we could define variables in the condition, then any use of the variable would
happen before the variable was defined!
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EXE R C I S E S SE C TI ON 5.4.4

Exercise 5.18: Explain each of the following loops. Correct any problems you detect.

(a) do
int v1, v2;
cout << "Please enter two numbers to sum:" ;
if (cin >> v1 >> v2)

cout << "Sum is: " << v1 + v2 << endl;
while (cin);

(b) do {
// . . .

} while (int ival = get_response());
(c) do {

int ival = get_response();
} while (ival);

Exercise 5.19: Write a program that uses a do while loop to repetitively request two
strings from the user and report which string is less than the other.

5.5 Jump Statements
Jump statements interrupt the flow of execution. C++ offers four jumps: break,
continue, and goto, which we cover in this chapter, and the return statement,
which we’ll describe in § 6.3 (p. 222).

5.5.1 The break Statement
A break statement terminates the nearest enclosing while, do while, for, or
switch statement. Execution resumes at the statement immediately following the
terminated statement.

A break can appear only within an iteration statement or switch statement
(including inside statements or blocks nested inside such loops). A break affects
only the nearest enclosing loop or switch:

string buf;
while (cin >> buf && !buf.empty()) {

switch(buf[0]) {
case ’-’:

// process up to the first blank
for (auto it = buf.begin()+1; it != buf.end(); ++it) {

if (*it == ’ ’)
break; // #1, leaves the for loop

// . . .
}
// break #1 transfers control here
// remaining ’-’ processing:
break; // #2, leaves the switch statement
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case ’+’:
// . . .

} // end switch
// end of switch: break #2 transfers control here

} // end while

The break labeled #1 terminates the for loop that follows the hyphen case label.
It does not terminate the enclosing switch statement and in fact does not even
terminate the processing for the current case. Processing continues with the first
statement following the for, which might be additional code to handle a hyphen
or the break that completes that section.

The break labeled #2 terminates the switch but does not terminate the enclos-
ing while loop. Processing continues after that break by executing the condition
in the while.

EXE R C I S E S SE C TI ON 5.5.1

Exercise 5.20: Write a program to read a sequence of strings from the standard input
until either the same word occurs twice in succession or all the words have been read.
Use a while loop to read the text one word at a time. Use the break statement to
terminate the loop if a word occurs twice in succession. Print the word if it occurs
twice in succession, or else print a message saying that no word was repeated.

5.5.2 The continue Statement
A continue statement terminates the current iteration of the nearest enclosing
loop and immediately begins the next iteration. A continue can appear only in-
side a for, while, or do while loop, including inside statements or blocks nested
inside such loops. Like the break statement, a continue inside a nested loop af-
fects only the nearest enclosing loop. Unlike a break, a continue may appear
inside a switch only if that switch is embedded inside an iterative statement.

A continue interrupts the current iteration; execution stays inside the loop.
In the case of a while or a do while, execution continues by evaluating the con-
dition. In a traditional for loop, execution continues at the expression inside the
for header. In a range for, execution continues by initializing the control variable
from the next element in the sequence.

For example, the following loop reads the standard input one word at a time.
Only words that begin with an underscore will be processed. For any other value,
we terminate the current iteration and get the next input:

string buf;
while (cin >> buf && !buf.empty()) {

if (buf[0] != ’_’)
continue; // get another input

// still here? the input starts with an underscore; process buf . . .
}
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EXE R C I S E S SE C TI ON 5.5.2

Exercise 5.21: Revise the program from the exercise in § 5.5.1 (p. 191) so that it looks
only for duplicated words that start with an uppercase letter.

5.5.3 The goto Statement
A goto statement provides an unconditional jump from the goto to a another
statement in the same function.

Programs should not use gotos. gotos make programs hard to under-
stand and hard to modify.

The syntactic form of a goto statement is

goto label;

where label is an identifier that identifies a statement. A labeled statement is any
statement that is preceded by an identifier followed by a colon:

end: return; // labeled statement; may be the target of a goto

Label identifiers are independent of names used for variables and other identifiers.
Hence, a label may have the same identifier as another entity in the program with-
out interfering with the other uses of that identifier. The goto and the labeled
statement to which it transfers control must be in the same function.

As with a switch statement, a goto cannot transfer control from a point where
an initialized variable is out of scope to a point where that variable is in scope:

// . . .
goto end;

int ix = 10; // error: goto bypasses an initialized variable definition
end:

// error: code here could use ix but the goto bypassed its declaration
ix = 42;

A jump backward over an already executed definition is okay. Jumping back
to a point before a variable is defined destroys the variable and constructs it again:

// backward jump over an initialized variable definition is okay
begin:
int sz = get_size();
if (sz <= 0) {

goto begin;
}

Here sz is destroyed when the goto executes. It is defined and initialized anew
when control passes back through its definition after the jump back to begin.
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EXE R C I S E S SE C TI ON 5.5.3

Exercise 5.22: The last example in this section that jumped back to begin could be
better written using a loop. Rewrite the code to eliminate the goto.

5.6 try Blocks and Exception Handling
Exceptions are run-time anomalies—such as losing a database connection or en-
countering unexpected input—that exist outside the normal functioning of a pro-
gram. Dealing with anomalous behavior can be one of the most difficult parts of
designing any system.

Exception handling is generally used when one part of a program detects a
problem that it cannot resolve and the problem is such that the detecting part of the
program cannot continue. In such cases, the detecting part needs a way to signal
that something happened and that it cannot continue. Moreover, the detecting part
needs a way to signal the problem without knowing what part of the program
will deal with the exceptional condition. Having signaled what happened, the
detecting part stops processing.

A program that contains code that might raise an exception (usually) has an-
other part to handle whatever happened. For example, if the problem is invalid in-
put, the handling part might ask the user to provide correct input. If the database
was lost, the handling part might alert an operator.

Exception handling supports this cooperation between the detecting and han-
dling parts of a program. In C++, exception handling involves

• throw expressions, which the detecting part uses to indicate that it encoun-
tered something it can’t handle. We say that a throw raises an exception.

• try blocks, which the handling part uses to deal with an exception. A try
block starts with the keyword try and ends with one or more catch clauses.
Exceptions thrown from code executed inside a try block are usually han-
dled by one of the catch clauses. Because they “handle” the exception,
catch clauses are also known as exception handlers.

• A set of exception classes that are used to pass information about what
happened between a throw and an associated catch.

In the remainder of this section, we’ll introduce these three components of excep-
tion handling. We’ll also have more to say about exceptions in § 18.1 (p. 772).

5.6.1 A throw Expression
The detecting part of a program uses a throw expression to raise an exception. A
throw consists of the keyword throw followed by an expression. The type of the
expression determines what kind of exception is thrown. A throw expression is
usually followed by a semicolon, making it into an expression statement.
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As a simple example, recall the program in § 1.5.2 (p. 23) that added two objects
of type Sales_item. That program checked whether the records it read referred
to the same book. If not, it printed a message and exited.

Sales_item item1, item2;

cin >> item1 >> item2;
// first check that item1 and item2 represent the same book
if (item1.isbn() == item2.isbn()) {

cout << item1 + item2 << endl;
return 0; // indicate success

} else {
cerr << "Data must refer to same ISBN"

<< endl;
return -1; // indicate failure

}

In a more realistic program, the part that adds the objects might be separated
from the part that manages the interaction with a user. In this case, we might
rewrite the test to throw an exception rather than returning an error indicator:

// first check that the data are for the same item
if (item1.isbn() != item2.isbn())

throw runtime_error("Data must refer to same ISBN");

// if we’re still here, the ISBNs are the same
cout << item1 + item2 << endl;

In this code, if the ISBNs differ, we throw an expression that is an object of type
runtime_error. Throwing an exception terminates the current function and
transfers control to a handler that will know how to handle this error.

The type runtime_error is one of the standard library exception types and
is defined in the stdexcept header. We’ll have more to say about these types in
§ 5.6.3 (p. 197). We must initialize a runtime_error by giving it a string or a C-
style character string (§ 3.5.4, p. 122). That string provides additional information
about the problem.

5.6.2 The try Block
The general form of a try block is

try {
program-statements

} catch (exception-declaration) {
handler-statements

} catch (exception-declaration) {
handler-statements

} // . . .

A try block begins with the keyword try followed by a block, which, as usual, is
a sequence of statements enclosed in curly braces.
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Following the try block is a list of one or more catch clauses. A catch con-
sists of three parts: the keyword catch, the declaration of a (possibly unnamed)
object within parentheses (referred to as an exception declaration), and a block.
When a catch is selected to handle an exception, the associated block is executed.
Once the catch finishes, execution continues with the statement immediately fol-
lowing the last catch clause of the try block.

The program-statements inside the try constitute the normal logic of the pro-
gram. Like any other blocks, they can contain any C++ statement, including decla-
rations. As with any block, variables declared inside a try block are inaccessible
outside the block—in particular, they are not accessible to the catch clauses.

Writing a Handler

In the preceding example, we used a throw to avoid adding two Sales_items
that represented different books. We imagined that the part of the program that
added two Sales_items was separate from the part that communicated with the
user. The part that interacts with the user might contain code something like the
following to handle the exception that was thrown:

while (cin >> item1 >> item2) {
try {

// execute code that will add the two Sales_items
// if the addition fails, the code throws a runtime_error exception

} catch (runtime_error err) {
// remind the user that the ISBNs must match and prompt for another pair
cout << err.what()

<< "\nTry Again? Enter y or n" << endl;
char c;
cin >> c;
if (!cin || c == ’n’)

break; // break out of the while loop
}

}

The ordinary logic of the program that manages the interaction with the user ap-
pears inside the try block. This part of the program is wrapped inside a try
because it might throw an exception of type runtime_error.

This try block has a single catch clause, which handles exceptions of type
runtime_error. The statements in the block following the catch are executed
if code inside the try block throws a runtime_error. Our catch handles the
error by printing a message and asking the user to indicate whether to continue. If
the user enters ’n’, then the break is executed and we exit the while. Otherwise,
execution falls through to the closing brace of the while, which transfers control
back to the while condition for the next iteration.

The prompt to the user prints the return from err.what(). We know that
err has type runtime_error, so we can infer that what is a member function
(§ 1.5.2, p. 23) of the runtime_error class. Each of the library exception classes
defines a member function named what. These functions take no arguments and
return a C-style character string (i.e., a const char*). The what member of
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runtime_error returns a copy of the string used to initialize the particular
object. If the code described in the previous section threw an exception, then this
catch would print

Data must refer to same ISBN
Try Again? Enter y or n

Functions Are Exited during the Search for a Handler

In complicated systems, the execution path of a program may pass through multi-
ple try blocks before encountering code that throws an exception. For example, a
try block might call a function that contains a try, which calls another function
with its own try, and so on.

The search for a handler reverses the call chain. When an exception is thrown,
the function that threw the exception is searched first. If no matching catch is
found, that function terminates. The function that called the one that threw is
searched next. If no handler is found, that function also exits. That function’s
caller is searched next, and so on back up the execution path until a catch of an
appropriate type is found.

If no appropriate catch is found, execution is transferred to a library func-
tion named terminate. The behavior of that function is system dependent but is
guaranteed to stop further execution of the program.

Exceptions that occur in programs that do not define any try blocks are han-
dled in the same manner: After all, if there are no try blocks, there can be no han-
dlers. If a program has no try blocks and an exception occurs, then terminate
is called and the program is exited.

CAUTION: WRITING EXCEPTION SAFE CODE IS Hard

It is important to realize that exceptions interrupt the normal flow of a program. At the
point where the exception occurs, some of the computations that the caller requested
may have been done, while others remain undone. In general, bypassing part of the
program might mean that an object is left in an invalid or incomplete state, or that a
resource is not freed, and so on. Programs that properly “clean up” during exception
handling are said to be exception safe. Writing exception safe code is surprisingly
hard, and (largely) beyond the scope of this language Primer.

Some programs use exceptions simply to terminate the program when an excep-
tional condition occurs. Such programs generally don’t worry about exception safety.

Programs that do handle exceptions and continue processing generally must be
constantly aware of whether an exception might occur and what the program must
do to ensure that objects are valid, that resources don’t leak, and that the program is
restored to an appropriate state.

We will occasionally point out particularly common techniques used to promote
exception safety. However, readers whose programs require robust exception han-
dling should be aware that the techniques we cover are insufficient by themselves to
achieve exception safety.
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5.6.3 Standard Exceptions
The C++ library defines several classes that it uses to report problems encountered
in the functions in the standard library. These exception classes are also intended
to be used in the programs we write. These classes are defined in four headers:

• The exception header defines the most general kind of exception class
named exception. It communicates only that an exception occurred but
provides no additional information.

• The stdexcept header defines several general-purpose exception classes,
which are listed in Table 5.1.

• The new header defines the bad_alloc exception type, which we cover in
§ 12.1.2 (p. 458).

• The type_info header defines the bad_cast exception type, which we
cover in § 19.2 (p. 825).

Table 5.1: Standard Exception Classes Defined in <stdexcept>

exception The most general kind of problem.
runtime_error Problem that can be detected only at run time.
range_error Run-time error: result generated outside the

range of values that are meaningful.
overflow_error Run-time error: computation that overflowed.
underflow_error Run-time error: computation that underflowed.
logic_error Error in the logic of the program.
domain_error Logic error: argument for which no result exists.
invalid_argument Logic error: inappropriate argument.
length_error Logic error: attempt to create an object larger

than the maximum size for that type.
out_of_range Logic error: used a value outside the valid range.

The library exception classes have only a few operations. We can create, copy,
and assign objects of any of the exception types.

We can only default initialize (§ 2.2.1, p. 43) exception, bad_alloc, and
bad_cast objects; it is not possible to provide an initializer for objects of these
exception types.

The other exception types have the opposite behavior: We can initialize those
objects from either a string or a C-style string, but we cannot default initialize
them. When we create objects of any of these other exception types, we must
supply an initializer. That initializer is used to provide additional information
about the error that occurred.

The exception types define only a single operation named what. That function
takes no arguments and returns a const char* that points to a C-style character
string (§ 3.5.4, p. 122). The purpose of this C-style character string is to provide
some sort of textual description of the exception thrown.
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The contents of the C-style string that what returns depends on the type of
the exception object. For the types that take a string initializer, the what function
returns that string. For the other types, the value of the string that what returns
varies by compiler.

EXE R C I S E S SE C TI ON 5.6.3

Exercise 5.23: Write a program that reads two integers from the standard input and
prints the result of dividing the first number by the second.

Exercise 5.24: Revise your program to throw an exception if the second number is
zero. Test your program with a zero input to see what happens on your system if you
don’t catch an exception.

Exercise 5.25: Revise your program from the previous exercise to use a try block to
catch the exception. The catch clause should print a message to the user and ask
them to supply a new number and repeat the code inside the try.
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CH A P T E R SU M M A R Y
C++ provides a limited number of statements. Most of these affect the flow of
control within a program:

• while, for, and do while statements, which provide iterative execution.

• if and switch, which provide conditional execution.

• continue, which stops the current iteration of a loop.

• break, which exits a loop or switch statement.

• goto, which transfers control to a labeled statement.

• try and catch, which define a try block enclosing a sequence of statements
that might throw an exception. The catch clause(s) are intended to handle
the exception(s) that the enclosed code might throw.

• throw expression statements, which exit a block of code, transferring control
to an associated catch clause.

• return, which stops execution of a function. (We’ll cover return state-
ments in Chapter 6.)

In addition, there are expression statements and declaration statements. An
expression statement causes the subject expression to be evaluated. Declarations
and definitions of variables were described in Chapter 2.

DEFINED TERMS

block Sequence of zero or more statements
enclosed in curly braces. A block is a state-
ment, so it can appear anywhere a state-
ment is expected.

break statement Terminates the nearest
enclosing loop or switch statement. Ex-
ecution transfers to the first statement fol-
lowing the terminated loop or switch.

case label Constant expression (§ 2.4.4,
p. 65) that follows the keyword case in a
switch statement. No two case labels in
the same switch statement may have the
same value.

catch clause The catch keyword, an ex-
ception declaration in parentheses, and a
block of statements. The code inside a
catch clause does whatever is necessary to
handle an exception of the type defined in
its exception declaration.

compound statement Synonym for block.

continue statement Terminates the cur-
rent iteration of the nearest enclosing loop.
Execution transfers to the loop condition
in a while or do, to the next iteration in
a range for, or to the expression in the
header of a traditional for loop.

dangling else Colloquial term used to re-
fer to the problem of how to process nested
if statements in which there are more
ifs than elses. In C++, an else is al-
ways paired with the closest preceding un-
matched if. Note that curly braces can
be used to effectively hide an inner if so
that the programmer can control which if
a given else should match.

default label case label that matches any
otherwise unmatched value computed in
the switch expression.
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do while statement Like a while, except
that the condition is tested at the end of the
loop, not the beginning. The statement in-
side the do is executed at least once.

exception classes Set of classes defined
by the standard library to be used to rep-
resent errors. Table 5.1 (p. 197) lists the
general-purpose exception classes.

exception declaration The declaration in
a catch clause. This declaration specifies
the type of exceptions the catch can han-
dle.

exception handler Code that deals with
an exception raised in another part of the
program. Synonym for catch clause.

exception safe Term used to describe pro-
grams that behave correctly when excep-
tions are thrown.

expression statement An expression fol-
lowed by a semicolon. An expression state-
ment causes the expression to be evaluated.

flow of control Execution path through a
program.

for statement Iteration statement that pro-
vides iterative execution. Ordinarily used
to step through a container or to repeat a
calculation a given number of times.

goto statement Statement that causes an
unconditional transfer of control to a spec-
ified labeled statement elsewhere in the
same function. gotos obfuscate the flow
of control within a program and should be
avoided.

if else statement Conditional execution of
code following the if or the else, depend-
ing on the truth value of the condition.

if statement Conditional execution based
on the value of the specified condition. If
the condition is true, then the if body is
executed. If not, control flows to the state-
ment following the if.

labeled statement Statement preceded by
a label. A label is an identifier followed by a
colon. Label identifiers are independent of
other uses of the same identifier.

null statement An empty statement. Indi-
cated by a single semicolon.

raise Often used as a synonym for throw.
C++ programmers speak of “throwing” or
“raising” an exception interchangeably.

range for statement Statement that iter-
ates through a sequence.

switch statement A conditional statement
that starts by evaluating the expression that
follows the switch keyword. Control
passes to the labeled statement with a case
label that matches the value of the expres-
sion. If there is no matching label, execu-
tion either continues at the default label,
if there is one, or falls out of the switch if
there is no default label.

terminate Library function that is called if
an exception is not caught. terminate
aborts the program.

throw expression Expression that inter-
rupts the current execution path. Each
throw throws an object and transfers con-
trol to the nearest enclosing catch clause
that can handle the type of exception that is
thrown.

try block Block enclosed by the keyword
try and one or more catch clauses. If the
code inside a try block raises an exception
and one of the catch clauses matches the
type of the exception, then the exception
is handled by that catch. Otherwise, the
exception is handled by an enclosing try
block or the program terminates.

while statement Iteration statement that
executes its target statement as long as a
specified condition is true. The statement
is executed zero or more times, depending
on the truth value of the condition.
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This chapter describes how to define and declare functions. We’ll
cover how arguments are passed to and values returned from func-
tions. In C++, functions can be overloaded, which means that we can
use the same name for several different functions. We’ll cover both
how to overload functions and how the compiler selects the match-
ing version for a particular call from several overloaded functions.
The chapter closes by describing pointers to functions.
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A function is a block of code with a name. We execute the code by calling
the function. A function may take zero or more arguments and (usually) yields
a result. Functions can be overloaded, meaning that the same name may refer to
several different functions.

6.1 Function Basics
A function definition typically consists of a return type, a name, a list of zero or
more parameters, and a body. The parameters are specified in a comma-separated
list enclosed in parentheses. The actions that the function performs are specified
in a statement block (§ 5.1, p. 173), referred to as the function body.

We execute a function through the call operator, which is a pair of parentheses.
The call operator takes an expression that is a function or points to a function.
Inside the parentheses is a comma-separated list of arguments. The arguments are
used to initialize the function’s parameters. The type of a call expression is the
return type of the function.

Writing a Function

As an example, we’ll write a function to determine the factorial of a given number.
The factorial of a number n is the product of the numbers from 1 through n. The
factorial of 5, for example, is 120.

1 * 2 * 3 * 4 * 5 = 120

We might define this function as follows:

// factorial of val is val * (val - 1) * (val - 2) . . . * ((val - (val - 1)) * 1)
int fact(int val)
{

int ret = 1; // local variable to hold the result as we calculate it
while (val > 1)

ret *= val--; // assign ret * val to ret and decrement val
return ret; // return the result

}

Our function is named fact. It takes one int parameter and returns an int value.
Inside the while loop, we compute the factorial using the postfix decrement op-
erator (§ 4.5, p. 147) to reduce the value of val by 1 on each iteration. The return
statement ends execution of fact and returns the value of ret.

Calling a Function

To call fact, we must supply an int value. The result of the call is also an int:

int main()
{

int j = fact(5); // j equals 120, i.e., the result of fact(5)
cout << "5! is " << j << endl;
return 0;

}
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A function call does two things: It initializes the function’s parameters from the
corresponding arguments, and it transfers control to that function. Execution of
the calling function is suspended and execution of the called function begins.

Execution of a function begins with the (implicit) definition and initialization
of its parameters. Thus, when we call fact, the first thing that happens is that an
int variable named val is created. This variable is initialized by the argument in
the call to fact, which in this case is 5.

Execution of a function ends when a return statement is encountered. Like a
function call, the return statement does two things: It returns the value (if any)
in the return, and it transfers control out of the called function back to the calling
function. The value returned by the function is used to initialize the result of the
call expression. Execution continues with whatever remains of the expression in
which the call appeared. Thus, our call to fact is equivalent to the following:

int val = 5; // initialize val from the literal 5
int ret = 1; // code from the body of fact
while (val > 1)

ret *= val--;
int j = ret; // initialize j as a copy of ret

Parameters and Arguments

Arguments are the initializers for a function’s parameters. The first argument ini-
tializes the first parameter, the second argument initializes the second parameter,
and so on. Although we know which argument initializes which parameter, we
have no guarantees about the order in which arguments are evaluated (§ 4.1.3,
p. 137). The compiler is free to evaluate the arguments in whatever order it prefers.

The type of each argument must match the corresponding parameter in the
same way that the type of any initializer must match the type of the object it ini-
tializes. We must pass exactly the same number of arguments as the function has
parameters. Because every call is guaranteed to pass as many arguments as the
function has parameters, parameters are always initialized.

Because fact has a single parameter of type int, every time we call it we must
supply a single argument that can be converted (§ 4.11, p. 159) to int:

fact("hello"); // error: wrong argument type
fact(); // error: too few arguments
fact(42, 10, 0); // error: too many arguments
fact(3.14); // ok: argument is converted to int

The first call fails because there is no conversion from const char* to int. The
second and third calls pass the wrong number of arguments. The fact function
must be called with one argument; it is an error to call it with any other number.
The last call is legal because there is a conversion from double to int. In this
call, the argument is implicitly converted to int (through truncation). After the
conversion, this call is equivalent to

fact(3);
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Function Parameter List

A function’s parameter list can be empty but cannot be omitted. Typically we
define a function with no parameters by writing an empty parameter list. For
compatibility with C, we also can use the keyword void to indicate that there are
no parameters:

void f1(){ /* . . . */ } // implicit void parameter list
void f2(void){ /* . . . */ } // explicit void parameter list

A parameter list typically consists of a comma-separated list of parameters,
each of which looks like a declaration with a single declarator. Even when the
types of two parameters are the same, the type must be repeated:

int f3(int v1, v2) { /* . . . */ } // error
int f4(int v1, int v2) { /* . . . */ } // ok

No two parameters can have the same name. Moreover, local variables at the out-
ermost scope of the function may not use the same name as any parameter.

Parameter names are optional. However, there is no way to use an unnamed
parameter. Therefore, parameters ordinarily have names. Occasionally a function
has a parameter that is not used. Such parameters are often left unnamed, to in-
dicate that they aren’t used. Leaving a parameter unnamed doesn’t change the
number of arguments that a call must supply. A call must supply an argument for
every parameter, even if that parameter isn’t used.

Function Return Type

Most types can be used as the return type of a function. In particular, the return
type can be void, which means that the function does not return a value. How-
ever, the return type may not be an array type (§ 3.5, p. 113) or a function type.
However, a function may return a pointer to an array or a function. We’ll see how
to define functions that return pointers (or references) to arrays in § 6.3.3 (p. 228)
and how to return pointers to functions in § 6.7 (p. 247).

6.1.1 Local Objects
In C++, names have scope (§ 2.2.4, p. 48), and objects have lifetimes. It is important
to understand both of these concepts.

• The scope of a name is the part of the program’s text in which that name is
visible.

• The lifetime of an object is the time during the program’s execution that the object
exists.

As we’ve seen, the body of a function is a statement block. As usual, the block
forms a new scope in which we can define variables. Parameters and variables
defined inside a function body are referred to as local variables. They are “local”
to that function and hide declarations of the same name made in an outer scope.
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EXE R C I S E S SE C TI ON 6.1

Exercise 6.1: What is the difference between a parameter and an argument?

Exercise 6.2: Indicate which of the following functions are in error and why. Suggest
how you might correct the problems.

(a) int f() {
string s;
// . . .
return s;

}
(b) f2(int i) { /* . . . */ }
(c) int calc(int v1, int v1) /* . . . */ }
(d) double square(double x) return x * x;

Exercise 6.3: Write and test your own version of fact.

Exercise 6.4: Write a function that interacts with the user, asking for a number and
generating the factorial of that number. Call this function from main.

Exercise 6.5: Write a function to return the absolute value of its argument.

Objects defined outside any function exist throughout the program’s execution.
Such objects are created when the program starts and are not destroyed until the
program ends. The lifetime of a local variable depends on how it is defined.

Automatic Objects

The objects that correspond to ordinary local variables are created when the func-
tion’s control path passes through the variable’s definition. They are destroyed
when control passes through the end of the block in which the variable is defined.
Objects that exist only while a block is executing are known as automatic objects.
After execution exits a block, the values of the automatic objects created in that
block are undefined.

Parameters are automatic objects. Storage for the parameters is allocated when
the function begins. Parameters are defined in the scope of the function body.
Hence they are destroyed when the function terminates.

Automatic objects corresponding to the function’s parameters are initialized
by the arguments passed to the function. Automatic objects corresponding to local
variables are initialized if their definition contains an initializer. Otherwise, they
are default initialized (§ 2.2.1, p. 43), which means that uninitialized local variables
of built-in type have undefined values.

Local static Objects

It can be useful to have a local variable whose lifetime continues across calls to
the function. We obtain such objects by defining a local variable as static. Each
local static object is initialized before the first time execution passes through the
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object’s definition. Local statics are not destroyed when a function ends; they
are destroyed when the program terminates.

As a trivial example, here is a function that counts how many times it is called:

size_t count_calls()
{

static size_t ctr = 0; // value will persist across calls
return ++ctr;

}

int main()
{

for (size_t i = 0; i != 10; ++i)
cout << count_calls() << endl;

return 0;
}

This program will print the numbers from 1 through 10 inclusive.
Before control flows through the definition of ctr for the first time, ctr is

created and given an initial value of 0. Each call increments ctr and returns its
new value. Whenever count_calls is executed, the variable ctr already exists
and has whatever value was in that variable the last time the function exited. Thus,
on the second invocation, the value of ctr is 1, on the third it is 2, and so on.

If a local static has no explicit initializer, it is value initialized (§ 3.3.1, p. 98),
meaning that local statics of built-in type are initialized to zero.

EXE R C I S E S SE C TI ON 6.1.1

Exercise 6.6: Explain the differences between a parameter, a local variable, and a local
static variable. Give an example of a function in which each might be useful.

Exercise 6.7: Write a function that returns 0 when it is first called and then generates
numbers in sequence each time it is called again.

6.1.2 Function Declarations
Like any other name, the name of a function must be declared before we can use
it. As with variables (§ 2.2.2, p. 45), a function may be defined only once but may
be declared multiple times. With one exception that we’ll cover in § 15.3 (p. 603),
we can declare a function that is not defined so long as we never use that function.

A function declaration is just like a function definition except that a declaration
has no function body. In a declaration, a semicolon replaces the function body.

Because a function declaration has no body, there is no need for parameter
names. Hence, parameter names are often omitted in a declaration. Although
parameter names are not required, they can be used to help users of the function
understand what the function does:
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// parameter names chosen to indicate that the iterators denote a range of values to print
void print(vector<int>::const_iterator beg,

vector<int>::const_iterator end);

These three elements—the return type, function name, and parameter types—
describe the function’s interface. They specify all the information we need to call
the function. Function declarations are also known as the function prototype.

Function Declarations Go in Header Files

Recall that variables are declared in header files (§ 2.6.3, p. 76) and defined in
source files. For the same reasons, functions should be declared in header files
and defined in source files.

It may be tempting—and would be legal—to put a function declaration directly
in each source file that uses the function. However, doing so is tedious and error-
prone. When we use header files for our function declarations, we can ensure that
all the declarations for a given function agree. Moreover, if the interface to the
function changes, only one declaration has to be changed.

The source file that defines a function should include the header that contains
that function’s declaration. That way the compiler will verify that the definition
and declaration are consistent.

The header that declares a function should be included in the source file
that defines that function.

EXE R C I S E S SE C TI ON 6.1.2

Exercise 6.8: Write a header file named Chapter6.h that contains declarations for
the functions you wrote for the exercises in § 6.1 (p. 205).

6.1.3 Separate Compilation
As our programs get more complicated, we’ll want to store the various parts of the
program in separate files. For example, we might store the functions we wrote for
the exercises in § 6.1 (p. 205) in one file and store code that uses these functions in
other source files. To allow programs to be written in logical parts, C++ supports
what is commonly known as separate compilation. Separate compilation lets us
split our programs into several files, each of which can be compiled independently.

Compiling and Linking Multiple Source Files

As an example, assume that the definition of our fact function is in a file named
fact.cc and its declaration is in a header file named Chapter6.h. Our fact.cc
file, like any file that uses these functions, will include the Chapter6.h header.
We’ll store a main function that calls fact in a second file named factMain.cc.
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To produce an executable file, we must tell the compiler where to find all of the
code we use. We might compile these files as follows:

$ CC factMain.cc fact.cc # generates factMain.exe or a.out
$ CC factMain.cc fact.cc -o main # generates main or main.exe

Here CC is the name of our compiler, $ is our system prompt, and # begins a
command-line comment. We can now run the executable file, which will run our
main function.

If we have changed only one of our source files, we’d like to recompile only the
file that actually changed. Most compilers provide a way to separately compile
each file. This process usually yields a file with the .obj (Windows) or .o (UNIX)
file extension, indicating that the file contains object code.

The compiler lets us link object files together to form an executable. On the
system we use, we would separately compile our program as follows:

$ CC -c factMain.cc # generates factMain.o
$ CC -c fact.cc # generates fact.o
$ CC factMain.o fact.o # generates factMain.exe or a.out
$ CC factMain.o fact.o -o main # generates main or main.exe

You’ll need to check with your compiler’s user’s guide to understand how to com-
pile and execute programs made up of multiple source files.

EXE R C I S E S SE C TI ON 6.1.3

Exercise 6.9: Write your own versions of the fact.cc and factMain.ccfiles. These
files should include your Chapter6.h from the exercises in the previous section. Use
these files to understand how your compiler supports separate compilation.

6.2 Argument Passing
As we’ve seen, each time we call a function, its parameters are created and initial-
ized by the arguments passed in the call.

Parameter initialization works the same way as variable initialization.

As with any other variable, the type of a parameter determines the interaction
between the parameter and its argument. If the parameter is a reference (§ 2.3.1,
p. 50), then the parameter is bound to its argument. Otherwise, the argument’s
value is copied.

When a parameter is a reference, we say that its corresponding argument is
“passed by reference” or that the function is “called by reference.” As with any
other reference, a reference parameter is an alias for the object to which it is bound;
that is, the parameter is an alias for its corresponding argument.
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When the argument value is copied, the parameter and argument are indepen-
dent objects. We say such arguments are “passed by value” or alternatively that
the function is “called by value.”

6.2.1 Passing Arguments by Value
When we initialize a nonreference type variable, the value of the initializer is
copied. Changes made to the variable have no effect on the initializer:

int n = 0; // ordinary variable of type int
int i = n; // i is a copy of the value in n
i = 42; // value in i is changed; n is unchanged

Passing an argument by value works exactly the same way; nothing the function
does to the parameter can affect the argument. For example, inside fact (§ 6.1,
p. 202) the parameter val is decremented:

ret *= val--; // decrements the value of val

Although fact changes the value of val, that change has no effect on the argu-
ment passed to fact. Calling fact(i) does not change the value of i.

Pointer Parameters

Pointers (§ 2.3.2, p. 52) behave like any other nonreference type. When we copy
a pointer, the value of the pointer is copied. After the copy, the two pointers are
distinct. However, a pointer also gives us indirect access to the object to which that
pointer points. We can change the value of that object by assigning through the
pointer (§ 2.3.2, p. 55):

int n = 0, i = 42;
int *p = &n, *q = &i; // p points to n; q points to i
*p = 42; // value in n is changed; p is unchanged
p = q; // p now points to i; values in i and n are unchanged

The same behavior applies to pointer parameters:

// function that takes a pointer and sets the pointed-to value to zero
void reset(int *ip)
{

*ip = 0; // changes the value of the object to which ip points
ip = 0; // changes only the local copy of ip; the argument is unchanged

}

After a call to reset, the object to which the argument points will be 0, but the
pointer argument itself is unchanged:

int i = 42;
reset(&i); // changes i but not the address of i
cout << "i = " << i << endl; // prints i = 0
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Programmers accustomed to programming in C often use pointer pa-
rameters to access objects outside a function. In C++, programmers
generally use reference parameters instead.

EXE R C I S E S SE C TI ON 6.2.1

Exercise 6.10: Using pointers, write a function to swap the values of two ints. Test
the function by calling it and printing the swapped values.

6.2.2 Passing Arguments by Reference
Recall that operations on a reference are actually operations on the object to which
the reference refers (§ 2.3.1, p. 50):

int n = 0, i = 42;
int &r = n; // r is bound to n (i.e., r is another name for n)
r = 42; // n is now 42
r = i; // n now has the same value as i
i = r; // i has the same value as n

Reference parameters exploit this behavior. They are often used to allow a function
to change the value of one or more of its arguments.

As one example, we can rewrite our reset program from the previous section
to take a reference instead of a pointer:

// function that takes a reference to an int and sets the given object to zero
void reset(int &i) // i is just another name for the object passed to reset
{

i = 0; // changes the value of the object to which i refers
}

As with any other reference, a reference parameter is bound directly to the object
from which it is initialized. When we call this version of reset, i will be bound to
whatever int object we pass. As with any reference, changes made to i are made
to the object to which i refers. In this case, that object is the argument to reset.

When we call this version of reset, we pass an object directly; there is no need
to pass its address:

int j = 42;
reset(j); // j is passed by reference; the value in j is changed
cout << "j = " << j << endl; // prints j = 0

In this call, the parameter i is just another name for j. Any use of i inside reset
is a use of j.
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Using References to Avoid Copies

It can be inefficient to copy objects of large class types or large containers. More-
over, some class types (including the IO types) cannot be copied. Functions must
use reference parameters to operate on objects of a type that cannot be copied.

As an example, we’ll write a function to compare the length of two strings.
Because strings can be long, we’d like to avoid copying them, so we’ll make our
parameters references. Because comparing two strings does not involve chang-
ing the strings, we’ll make the parameters references to const (§ 2.4.1, p. 61):

// compare the length of two strings
bool isShorter(const string &s1, const string &s2)
{

return s1.size() < s2.size();
}

As we’ll see in § 6.2.3 (p. 213), functions should use references to const for refer-
ence parameters they do not need to change.

Reference parameters that are not changed inside a function should be
references to const.

Using Reference Parameters to Return Additional Information

A function can return only a single value. However, sometimes a function has
more than one value to return. Reference parameters let us effectively return mul-
tiple results. As an example, we’ll define a function named find_char that will
return the position of the first occurrence of a given character in a string. We’d
also like the function to return a count of how many times that character occurs.

How can we define a function that returns a position and an occurrence count?
We could define a new type that contains the position and the count. An easier
solution is to pass an additional reference argument to hold the occurrence count:

// returns the index of the first occurrence of c in s
// the reference parameter occurs counts how often c occurs
string::size_type find_char(const string &s, char c,

string::size_type &occurs)
{

auto ret = s.size(); // position of the first occurrence, if any
occurs = 0; // set the occurrence count parameter

for (decltype(ret) i = 0; i != s.size(); ++i) {
if (s[i] == c) {

if (ret == s.size())
ret = i; // remember the first occurrence of c

++occurs; // increment the occurrence count
}

}
return ret; // count is returned implicitly in occurs

}
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When we call find_char, we have to pass three arguments: a string in which
to look, the character to look for, and a size_type (§ 3.2.2, p. 88) object to hold
the occurrence count. Assuming s is a string, and ctr is a size_type object,
we can call find_char as follows:

auto index = find_char(s, ’o’, ctr);

After the call, the value of ctr will be the number of times o occurs, and index
will refer to the first occurrence if there is one. Otherwise, index will be equal to
s.size() and ctr will be zero.

EXE R C I S E S SE C TI ON 6.2.2

Exercise 6.11: Write and test your own version of reset that takes a reference.

Exercise 6.12: Rewrite the program from exercise 6.10 in § 6.2.1 (p. 210) to use refer-
ences instead of pointers to swap the value of two ints. Which version do you think
would be easier to use and why?

Exercise 6.13: Assuming T is the name of a type, explain the difference between a
function declared as void f(T) and void f(T&).

Exercise 6.14: Give an example of when a parameter should be a reference type. Give
an example of when a parameter should not be a reference.

Exercise 6.15: Explain the rationale for the type of each of find_char’s parameters
In particular, why is s a reference to const but occurs is a plain reference? Why are
these parameters references, but the char parameter c is not? What would happen if
we made s a plain reference? What if we made occurs a reference to const?

6.2.3 const Parameters and Arguments
When we use parameters that are const, it is important to remember the discus-
sion of top-level const from § 2.4.3 (p. 63). As we saw in that section, a top-level
const is one that applies to the object itself:

const int ci = 42; // we cannot change ci; const is top-level
int i = ci; // ok: when we copy ci, its top-level const is ignored
int * const p = &i; // const is top-level; we can’t assign to p
*p = 0; // ok: changes through p are allowed; i is now 0

Just as in any other initialization, when we copy an argument to initialize a param-
eter, top-level consts are ignored. As a result, top-level const on parameters are
ignored. We can pass either a const or a nonconst object to a parameter that has
a top-level const:

void fcn(const int i) { /* fcn can read but not write to i */ }

We can call fcn passing it either a const int or a plain int. The fact that top-
level consts are ignored on a parameter has one possibly surprising implication:
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void fcn(const int i) { /* fcn can read but not write to i */ }
void fcn(int i) { /* . . . */ } // error: redefines fcn(int)

In C++, we can define several different functions that have the same name. How-
ever, we can do so only if their parameter lists are sufficiently different. Because
top-level consts are ignored, we can pass exactly the same types to either version
of fcn. The second version of fcn is an error. Despite appearances, its parameter
list doesn’t differ from the list in the first version of fcn.

Pointer or Reference Parameters and const

Because parameters are initialized in the same way that variables are initialized,
it can be helpful to remember the general initialization rules. We can initialize an
object with a low-level const from a nonconst object but not vice versa, and a
plain reference must be initialized from an object of the same type.

int i = 42;
const int *cp = &i; // ok: but cp can’t change i (§ 2.4.2 (p. 62))
const int &r = i; // ok: but r can’t change i (§ 2.4.1 (p. 61))
const int &r2 = 42; // ok: (§ 2.4.1 (p. 61))

int *p = cp; // error: types of p and cp don’t match (§ 2.4.2 (p. 62))
int &r3 = r; // error: types of r3 and r don’t match (§ 2.4.1 (p. 61))
int &r4 = 42; // error: can’t initialize a plain reference from a literal (§ 2.3.1 (p. 50))

Exactly the same initialization rules apply to parameter passing:

int i = 0;
const int ci = i;
string::size_type ctr = 0;

reset(&i); // calls the version of reset that has an int* parameter
reset(&ci); // error: can’t initialize an int* from a pointer to a const int object
reset(i); // calls the version of reset that has an int& parameter
reset(ci); // error: can’t bind a plain reference to the const object ci
reset(42); // error: can’t bind a plain reference to a literal
reset(ctr); // error: types don’t match; ctr has an unsigned type
// ok: find_char’s first parameter is a reference to const
find_char("Hello World!", ’o’, ctr);

We can call the reference version of reset (§ 6.2.2, p. 210) only on int objects.
We cannot pass a literal, an expression that evaluates to an int, an object that
requires conversion, or a const int object. Similarly, we may pass only an int*
to the pointer version of reset (§ 6.2.1, p. 209). On the other hand, we can pass a
string literal as the first argument to find_char (§ 6.2.2, p. 211). That function’s
reference parameter is a reference to const, and we can initialize references to
const from literals.

Use Reference to const When Possible

It is a somewhat common mistake to define parameters that a function does not
change as (plain) references. Doing so gives the function’s caller the misleading
impression that the function might change its argument’s value. Moreover, using a
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reference instead of a reference to const unduly limits the type of arguments that
can be used with the function. As we’ve just seen, we cannot pass a const object,
or a literal, or an object that requires conversion to a plain reference parameter.

The effect of this mistake can be surprisingly pervasive. As an example, con-
sider our find_char function from § 6.2.2 (p. 211). That function (correctly) made
its string parameter a reference to const. Had we defined that parameter as a
plain string&:

// bad design: the first parameter should be a const string&
string::size_type find_char(string &s, char c,

string::size_type &occurs);

we could call find_char only on a string object. A call such as

find_char("Hello World", ’o’, ctr);

would fail at compile time.
More subtly, we could not use this version of find_char from other func-

tions that (correctly) define their parameters as references to const. For example,
we might want to use find_char inside a function that determines whether a
string represents a sentence:

bool is_sentence(const string &s)
{

// if there’s a single period at the end of s, then s is a sentence
string::size_type ctr = 0;
return find_char(s, ’.’, ctr) == s.size() - 1 && ctr == 1;

}

If find_char took a plain string&, then this call to find_char would be a
compile-time error. The problem is that s is a reference to a const string, but
find_char was (incorrectly) defined to take a plain reference.

It might be tempting to try to fix this problem by changing the type of the
parameter in is_sentence. But that fix only propagates the error—callers of
is_sentence could pass only nonconst strings.

The right way to fix this problem is to fix the parameter in find_char. If it’s
not possible to change find_char, then define a local string copy of s inside
is_sentence and pass that string to find_char.

6.2.4 Array Parameters
Arrays have two special properties that affect how we define and use functions
that operate on arrays: We cannot copy an array (§ 3.5.1, p. 114), and when we use
an array it is (usually) converted to a pointer (§ 3.5.3, p. 117). Because we cannot
copy an array, we cannot pass an array by value. Because arrays are converted to
pointers, when we pass an array to a function, we are actually passing a pointer to
the array’s first element.

Even though we cannot pass an array by value, we can write a parameter that
looks like an array:
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EXE R C I S E S SE C TI ON 6.2.3

Exercise 6.16: The following function, although legal, is less useful than it might be.
Identify and correct the limitation on this function:

bool is_empty(string& s) { return s.empty(); }

Exercise 6.17: Write a function to determine whether a string contains any capital
letters. Write a function to change a string to all lowercase. Do the parameters you
used in these functions have the same type? If so, why? If not, why not?

Exercise 6.18: Write declarations for each of the following functions. When you write
these declarations, use the name of the function to indicate what the function does.

(a) A function named compare that returns a bool and has two parameters that
are references to a class named matrix.

(b) A function named change_val that returns a vector<int> iterator and
takes two parameters: One is an int and the other is an iterator for a vector<int>.

Exercise 6.19: Given the following declarations, determine which calls are legal and
which are illegal. For those that are illegal, explain why.

double calc(double);
int count(const string &, char);
int sum(vector<int>::iterator, vector<int>::iterator, int);
vector<int> vec(10);
(a) calc(23.4, 55.1); (b) count("abcda", ’a’);
(c) calc(66); (d) sum(vec.begin(), vec.end(), 3.8);

Exercise 6.20: When should reference parameters be references to const? What hap-
pens if we make a parameter a plain reference when it could be a reference to const?

// despite appearances, these three declarations of print are equivalent
// each function has a single parameter of type const int*
void print(const int*);
void print(const int[]); // shows the intent that the function takes an array
void print(const int[10]); // dimension for documentation purposes (at best)

Regardless of appearances, these declarations are equivalent: Each declares a func-
tion with a single parameter of type const int*. When the compiler checks a call
to print, it checks only that the argument has type const int*:

int i = 0, j[2] = {0, 1};

print(&i); // ok: &i is int*
print(j); // ok: j is converted to an int* that points to j[0]

If we pass an array to print, that argument is automatically converted to a pointer
to the first element in the array; the size of the array is irrelevant.

As with any code that uses arrays, functions that take array parameters
must ensure that all uses of the array stay within the array bounds.
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Because arrays are passed as pointers, functions ordinarily don’t know the size
of the array they are given. They must rely on additional information provided by
the caller. There are three common techniques used to manage pointer parameters.

Using a Marker to Specify the Extent of an Array

The first approach to managing array arguments requires the array itself to contain
an end marker. C-style character strings (§ 3.5.4, p. 122) are an example of this
approach. C-style strings are stored in character arrays in which the last character
of the string is followed by a null character. Functions that deal with C-style strings
stop processing the array when they see a null character:

void print(const char *cp)
{

if (cp) // if cp is not a null pointer
while (*cp) // so long as the character it points to is not a null character

cout << *cp++; // print the character and advance the pointer
}

This convention works well for data where there is an obvious end-marker value
(like the null character) that does not appear in ordinary data. It works less well
with data, such as ints, where every value in the range is a legitimate value.

Using the Standard Library Conventions

A second technique used to manage array arguments is to pass pointers to the first
and one past the last element in the array. This approach is inspired by techniques
used in the standard library. We’ll learn more about this style of programming in
Part II. Using this approach, we’ll print the elements in an array as follows:

void print(const int *beg, const int *end)
{

// print every element starting at beg up to but not including end
while (beg != end)

cout << *beg++ << endl; // print the current element
// and advance the pointer

}

The while uses the dereference and postfix increment operators (§ 4.5, p. 148) to
print the current element and advance beg one element at a time through the array.
The loop stops when beg is equal to end.

To call this function, we pass two pointers—one to the first element we want to
print and one just past the last element:

int j[2] = {0, 1};

// j is converted to a pointer to the first element in j
// the second argument is a pointer to one past the end of j
print(begin(j), end(j)); // begin and end functions, see § 3.5.3 (p. 118)

This function is safe, as long as the caller correctly calculates the pointers. Here we
let the library begin and end functions (§ 3.5.3, p. 118) provide those pointers.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 6.2 Argument Passing 217

Explicitly Passing a Size Parameter

A third approach for array arguments, which is common in C programs and older
C++ programs, is to define a second parameter that indicates the size of the array.
Using this approach, we’ll rewrite print as follows:

// const int ia[] is equivalent to const int* ia
// size is passed explicitly and used to control access to elements of ia
void print(const int ia[], size_t size)
{

for (size_t i = 0; i != size; ++i) {
cout << ia[i] << endl;

}
}

This version uses the size parameter to determine how many elements there are
to print. When we call print, we must pass this additional parameter:

int j[] = { 0, 1 }; // int array of size 2

print(j, end(j) - begin(j));

The function executes safely as long as the size passed is no greater than the actual
size of the array.

Array Parameters and const

Note that all three versions of our print function defined their array parameters
as pointers to const. The discussion in § 6.2.3 (p. 213) applies equally to pointers
as to references. When a function does not need write access to the array elements,
the array parameter should be a pointer to const (§ 2.4.2, p. 62). A parameter
should be a plain pointer to a nonconst type only if the function needs to change
element values.

Array Reference Parameters

Just as we can define a variable that is a reference to an array (§ 3.5.1, p. 114),
we can define a parameter that is a reference to an array. As usual, the reference
parameter is bound to the corresponding argument, which in this case is an array:

// ok: parameter is a reference to an array; the dimension is part of the type
void print(int (&arr)[10])
{

for (auto elem : arr)
cout << elem << endl;

}

The parentheses around &arr are necessary (§ 3.5.1, p. 114):

f(int &arr[10]) // error: declares arr as an array of references
f(int (&arr)[10]) // ok: arr is a reference to an array of ten ints
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Because the size of an array is part of its type, it is safe to rely on the dimension
in the body of the function. However, the fact that the size is part of the type limits
the usefulness of this version of print. We may call this function only for an array
of exactly ten ints:

int i = 0, j[2] = {0, 1};
int k[10] = {0,1,2,3,4,5,6,7,8,9};
print(&i); // error: argument is not an array of ten ints
print(j); // error: argument is not an array of ten ints
print(k); // ok: argument is an array of ten ints

We’ll see in § 16.1.1 (p. 654) how we might write this function in a way that would
allow us to pass a reference parameter to an array of any size.

Passing a Multidimensional Array

Recall that there are no multidimensional arrays in C++ (§ 3.6, p. 125). Instead,
what appears to be a multidimensional array is an array of arrays.

As with any array, a multidimensional array is passed as a pointer to its first
element (§ 3.6, p. 128). Because we are dealing with an array of arrays, that element
is an array, so the pointer is a pointer to an array. The size of the second (and any
subsequent) dimension is part of the element type and must be specified:

// matrix points to the first element in an array whose elements are arrays of ten ints
void print(int (*matrix)[10], int rowSize) { /* . . . */ }

declares matrix as a pointer to an array of ten ints.

Again, the parentheses around *matrix are necessary:

int *matrix[10]; // array of ten pointers
int (*matrix)[10]; // pointer to an array of ten ints

We can also define our function using array syntax. As usual, the compiler
ignores the first dimension, so it is best not to include it:

// equivalent definition
void print(int matrix[][10], int rowSize) { /* . . . */ }

declares matrix to be what looks like a two-dimensional array. In fact, the param-
eter is a pointer to an array of ten ints.

6.2.5 main: Handling Command-Line Options
It turns out that main is a good example of how C++ programs pass arrays to
functions. Up to now, we have defined main with an empty parameter list:

int main() { ... }

However, we sometimes need to pass arguments to main. The most common use
of arguments to main is to let the user specify a set of options to guide the opera-
tion of the program. For example, assuming our main program is in an executable
file named prog, we might pass options to the program as follows:
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EXE R C I S E S SE C TI ON 6.2.4

Exercise 6.21: Write a function that takes an int and a pointer to an int and returns
the larger of the int value or the value to which the pointer points. What type should
you use for the pointer?

Exercise 6.22: Write a function to swap two int pointers.

Exercise 6.23: Write your own versions of each of the print functions presented in
this section. Call each of these functions to print i and j defined as follows:

int i = 0, j[2] = {0, 1};

Exercise 6.24: Explain the behavior of the following function. If there are problems in
the code, explain what they are and how you might fix them.

void print(const int ia[10])
{

for (size_t i = 0; i != 10; ++i)
cout << ia[i] << endl;

}

prog -d -o ofile data0

Such command-line options are passed to main in two (optional) parameters:

int main(int argc, char *argv[]) { ... }

The second parameter, argv, is an array of pointers to C-style character strings.
The first parameter, argc, passes the number of strings in that array. Because the
second parameter is an array, we might alternatively define main as

int main(int argc, char **argv) { ... }

indicating that argv points to a char*.
When arguments are passed to main, the first element in argv points either

to the name of the program or to the empty string. Subsequent elements pass the
arguments provided on the command line. The element just past the last pointer
is guaranteed to be 0.

Given the previous command line, argc would be 5, and argvwould hold the
following C-style character strings:

argv[0] = "prog"; // or argv[0] might point to an empty string
argv[1] = "-d";
argv[2] = "-o";
argv[3] = "ofile";
argv[4] = "data0";
argv[5] = 0;

When you use the arguments in argv, remember that the optional ar-
guments begin in argv[1]; argv[0] contains the program’s name, not
user input.
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EXE R C I S E S SE C TI ON 6.2.5

Exercise 6.25: Write a main function that takes two arguments. Concatenate the sup-
plied arguments and print the resulting string.

Exercise 6.26: Write a program that accepts the options presented in this section. Print
the values of the arguments passed to main.

6.2.6 Functions with Varying Parameters
Sometimes we do not know in advance how many arguments we need to pass to
a function. For example, we might want to write a routine to print error messages
generated from our program. We’d like to use a single function to print these error
messages in order to handle them in a uniform way. However, different calls to our
error-printing function might pass different arguments, corresponding to different
kinds of error messages.

The new standard provides two primary ways to write a function that takes a
varying number of arguments: If all the arguments have the same type, we can
pass a library type named initializer_list. If the argument types vary, we
can write a special kind of function, known as a variadic template, which we’ll
cover in § 16.4 (p. 699).

C++ also has a special parameter type, ellipsis, that can be used to pass a vary-
ing number of arguments. We’ll look briefly at ellipsis parameters in this section.
However, it is worth noting that this facility ordinarily should be used only in
programs that need to interface to C functions.

initializer_list Parameters

We can write a function that takes an unknown number of arguments of a single
type by using an initializer_list parameter. An initializer_list is
a library type that represents an array (§ 3.5, p. 113) of values of the specified
type. This type is defined in the initializer_list header. The operations that
initializer_list provides are listed in Table 6.1.

Table 6.1: Operations on initializer_lists

initializer_list<T> lst;
Default initialization; an empty list of elements of type T.

initializer_list<T> lst{a,b,c...};
lst has as many elements as there are initializers; elements are copies of
the corresponding initializers. Elements in the list are const.

lst2(lst)
lst2 = lst

Copying or assigning an initializer_list does not copy the elements
in the list. After the copy, the original and the copy share the elements.

lst.size() Number of elements in the list.

lst.begin()
lst.end()

Returns a pointer to the first and one past the last element in lst.
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Like a vector, initializer_list is a template type (§ 3.3, p. 96). When we
define an initializer_list, we must specify the type of the elements that the
list will contain:

initializer_list<string> ls; // initializer_list of strings
initializer_list<int> li; // initializer_list of ints

Unlike vector, the elements in an initializer_list are always const val-
ues; there is no way to change the value of an element in an initializer_list.

We can write our function to produce error messages from a varying number
of arguments as follows:

void error_msg(initializer_list<string> il)
{

for (auto beg = il.begin(); beg != il.end(); ++beg)
cout << *beg << " " ;

cout << endl;
}

The begin and end operations on initializer_list objects are analogous to
the corresponding vector members (§ 3.4.1, p. 106). The begin() member gives
us a pointer to the first element in the list, and end() is an off-the-end pointer one
past the last element. Our function initializes beg to denote the first element and
iterates through each element in the initializer_list. In the body of the loop
we dereference beg in order to access the current element and print its value.

When we pass a sequence of values to an initializer_list parameter, we
must enclose the sequence in curly braces:

// expected, actual are strings
if (expected != actual)

error_msg({"functionX", expected, actual});
else

error_msg({"functionX", "okay"});

Here we’re calling the same function, error_msg, passing three values in the first
call and two values in the second.

A function with an initializer_list parameter can have other parameters
as well. For example, our debugging system might have a class, named ErrCode,
that represents various kinds of errors. We can revise our program to take an
ErrCode in addition to an initializer_list as follows:

void error_msg(ErrCode e, initializer_list<string> il)
{

cout << e.msg() << ": ";
for (const auto &elem : il)

cout << elem << " " ;
cout << endl;

}

Because initializer_list has begin and end members, we can use a range
for (§ 5.4.3, p. 187) to process the elements. This program, like our previous ver-
sion, iterates an element at a time through the braced list of values passed to the
il parameter.
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To call this version, we need to revise our calls to pass an ErrCode argument:

if (expected != actual)
error_msg(ErrCode(42), {"functionX", expected, actual});

else
error_msg(ErrCode(0), {"functionX", "okay"});

Ellipsis Parameters

Ellipsis parameters are in C++ to allow programs to interface to C code that uses a
C library facility named varargs. Generally an ellipsis parameter should not be
used for other purposes. Your C compiler documentation will describe how to use
varargs.

Ellipsis parameters should be used only for types that are common to
both C and C++. In particular, objects of most class types are not copied
properly when passed to an ellipsis parameter.

An ellipsis parameter may appear only as the last element in a parameter list and
may take either of two forms:

void foo(parm_list, ...);
void foo(...);

The first form specifies the type(s) for some of foo’s parameters. Arguments that
correspond to the specified parameters are type checked as usual. No type check-
ing is done for the arguments that correspond to the ellipsis parameter. In this first
form, the comma following the parameter declarations is optional.

EXE R C I S E S SE C TI ON 6.2.6

Exercise 6.27: Write a function that takes an initializer_list<int> and pro-
duces the sum of the elements in the list.

Exercise 6.28: In the second version of error_msg that has an ErrCode parameter,
what is the type of elem in the for loop?

Exercise 6.29: When you use an initializer_list in a range for would you ever
use a reference as the loop control variable? If so, why? If not, why not?

6.3 Return Types and the return Statement
A return statement terminates the function that is currently executing and re-
turns control to the point from which the function was called. There are two forms
of return statements:

return;
return expression;
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6.3.1 Functions with No Return Value
A return with no value may be used only in a function that has a return type of
void. Functions that return void are not required to contain a return. In a void
function, an implicit return takes place after the function’s last statement.

Typically, void functions use a return to exit the function at an intermediate
point. This use of return is analogous to the use of a break statement (§ 5.5.1,
p. 190) to exit a loop. For example, we can write a swap function that does no work
if the values are identical:

void swap(int &v1, int &v2)
{

// if the values are already the same, no need to swap, just return
if (v1 == v2)

return;

// if we’re here, there’s work to do
int tmp = v2;
v2 = v1;
v1 = tmp;
// no explicit return necessary

}

This function first checks if the values are equal and, if so, exits the function. If the
values are unequal, the function swaps them. An implicit return occurs after the
last assignment statement.

A function with a void return type may use the second form of the return
statement only to return the result of calling another function that returns void.
Returning any other expression from a void function is a compile-time error.

6.3.2 Functions That Return a Value
The second form of the return statement provides the function’s result. Every
return in a function with a return type other than void must return a value. The
value returned must have the same type as the function return type, or it must
have a type that can be implicitly converted (§ 4.11, p. 159) to that type.

Although C++ cannot guarantee the correctness of a result, it can guarantee
that every return includes a result of the appropriate type. Although it cannot
do so in all cases, the compiler attempts to ensure that functions that return a value
are exited only through a valid return statement. For example:

// incorrect return values, this code will not compile
bool str_subrange(const string &str1, const string &str2)
{

// same sizes: return normal equality test
if (str1.size() == str2.size())

return str1 == str2; // ok: == returns bool

// find the size of the smaller string; conditional operator, see § 4.7 (p. 151)
auto size = (str1.size() < str2.size())

? str1.size() : str2.size();
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// look at each element up to the size of the smaller string
for (decltype(size) i = 0; i != size; ++i) {

if (str1[i] != str2[i])
return; // error #1: no return value; compiler should detect this error

}

// error #2: control might flow off the end of the function without a return
// the compiler might not detect this error

}

The return from within the for loop is an error because it fails to return a value.
The compiler should detect this error.

The second error occurs because the function fails to provide a return after
the loop. If we call this function with one string that is a subset of the other,
execution would fall out of the for. There should be a return to handle this case.
The compiler may or may not detect this error. If it does not detect the error, what
happens at run time is undefined.

Failing to provide a return after a loop that contains a return is an
error. However, many compilers will not detect such errors.

How Values Are Returned

Values are returned in exactly the same way as variables and parameters are ini-
tialized: The return value is used to initialize a temporary at the call site, and that
temporary is the result of the function call.

It is important to keep in mind the initialization rules in functions that return
local variables. As an example, we might write a function that, given a counter, a
word, and an ending, gives us back the plural version of the word if the counter is
greater than 1:

// return the plural version of word if ctr is greater than 1
string make_plural(size_t ctr, const string &word,

const string &ending)
{

return (ctr > 1) ? word + ending : word;
}

The return type of this function is string, which means the return value is copied
to the call site. This function returns a copy of word, or it returns an unnamed
temporary string that results from adding word and ending.

As with any other reference, when a function returns a reference, that reference
is just another name for the object to which it refers. As an example, consider a
function that returns a reference to the shorter of its two string parameters:

// return a reference to the shorter of two strings
const string &shorterString(const string &s1, const string &s2)
{

return s1.size() <= s2.size() ? s1 : s2;
}
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The parameters and return type are references to const string. The strings
are not copied when the function is called or when the result is returned.

Never Return a Reference or Pointer to a Local Object

When a function completes, its storage is freed (§ 6.1.1, p. 204). After a function
terminates, references to local objects refer to memory that is no longer valid:

// disaster: this function returns a reference to a local object
const string &manip()
{

string ret;
// transform ret in some way

if (!ret.empty())
return ret; // WRONG: returning a reference to a local object!

else
return "Empty"; // WRONG: "Empty" is a local temporary string

}

Both of these return statements return an undefined value—what happens if we
try to use the value returned from manip is undefined. In the first return, it
should be obvious that the function returns a reference to a local object. In the
second case, the string literal is converted to a local temporary string object. That
object, like the string named ret, is local to manip. The storage in which the
temporary resides is freed when the function ends. Both returns refer to memory
that is no longer available.

One good way to ensure that the return is safe is to ask: To what preex-
isting object is the reference referring?

For the same reasons that it is wrong to return a reference to a local object, it is
also wrong to return a pointer to a local object. Once the function completes, the
local objects are freed. The pointer would point to a nonexistent object.

Functions That Return Class Types and the Call Operator

Like any operator the call operator has associativity and precedence (§ 4.1.2, p. 136).
The call operator has the same precedence as the dot and arrow operators (§ 4.6,
p. 150). Like those operators, the call operator is left associative. As a result, if a
function returns a pointer, reference or object of class type, we can use the result of
a call to call a member of the resulting object.

For example, we can determine the size of the shorter string as follows:

// call the size member of the string returned by shorterString
auto sz = shorterString(s1, s2).size();

Because these operators are left associative, the result of shorterString is the
left-hand operand of the dot operator. That operator fetches the size member of
that string. That member is the left-hand operand of the second call operator.
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Reference Returns Are Lvalues

Whether a function call is an lvalue (§ 4.1.1, p. 135) depends on the return type
of the function. Calls to functions that return references are lvalues; other return
types yield rvalues. A call to a function that returns a reference can be used in
the same ways as any other lvalue. In particular, we can assign to the result of a
function that returns a reference to nonconst:

char &get_val(string &str, string::size_type ix)
{

return str[ix]; // get_val assumes the given index is valid
}

int main()
{

string s("a value");
cout << s << endl; // prints a value
get_val(s, 0) = ’A’; // changes s[0] to A
cout << s << endl; // prints A value
return 0;

}

It may be surprising to see a function call on the left-hand side of an assignment.
However, nothing special is involved. The return value is a reference, so the call
is an lvalue. Like any other lvalue, it may appear as the left-hand operand of the
assignment operator.

If the return type is a reference to const, then (as usual) we may not assign to
the result of the call:

shorterString("hi", "bye") = "X"; // error: return value is const

List Initializing the Return Value

Under the new standard, functions can return a braced list of values. As in any
other return, the list is used to initialize the temporary that represents the func-
tion’s return. If the list is empty, that temporary is value initialized (§ 3.3.1, p. 98).
Otherwise, the value of the return depends on the function’s return type.

As an example, recall the error_msg function from § 6.2.6 (p. 220). That func-
tion took a varying number of string arguments and printed an error message
composed from the given strings. Rather than calling error_msg, in this func-
tion we’ll return a vector that holds the error-message strings:

vector<string> process()
{

// . . .
// expected and actual are strings
if (expected.empty())

return {}; // return an empty vector
else if (expected == actual)

return {"functionX", "okay"}; // return list-initialized vector
else

return {"functionX", expected, actual};
}
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In the first return statement, we return an empty list. In this case, the vector that
process returns will be empty. Otherwise, we return a vector initialized with
two or three elements depending on whether expected and actual are equal.

In a function that returns a built-in type, a braced list may contain at most one
value, and that value must not require a narrowing conversion (§ 2.2.1, p. 43). If
the function returns a class type, then the class itself defines how the intiailizers
are used (§ 3.3.1, p. 99).

Return from main

There is one exception to the rule that a function with a return type other than
void must return a value: The main function is allowed to terminate without a
return. If control reaches the end of main and there is no return, then the compiler
implicitly inserts a return of 0.

As we saw in § 1.1 (p. 2), the value returned from main is treated as a sta-
tus indicator. A zero return indicates success; most other values indicate failure. A
nonzero value has a machine-dependent meaning. To make return values machine
independent, the cstdlib header defines two preprocessor variables (§ 2.3.2,
p. 54) that we can use to indicate success or failure:

int main()
{

if (some_failure)
return EXIT_FAILURE; // defined in cstdlib

else
return EXIT_SUCCESS; // defined in cstdlib

}

Because these are preprocessor variables, we must not precede them with std::,
nor may we mention them in using declarations.

Recursion

A function that calls itself, either directly or indirectly, is a recursive function. As
an example, we can rewrite our factorial function to use recursion:

// calculate val!, which is 1 * 2 * 3 . . . * val
int factorial(int val)
{

if (val > 1)
return factorial(val-1) * val;

return 1;
}

In this implementation, we recursively call factorial to compute the factorial of
the numbers counting down from the original value in val. Once we have reduced
val to 1, we stop the recursion by returning 1.

There must always be a path through a recursive function that does not involve
a recursive call; otherwise, the function will recurse “forever,” meaning that the
function will continue to call itself until the program stack is exhausted. Such
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functions are sometimes described as containing a recursion loop. In the case of
factorial, the stopping condition occurs when val is 1.

The following table traces the execution of factorial when passed the value
5.

Trace of factorial(5)
Call Returns Value

factorial(5) factorial(4) * 5 120
factorial(4) factorial(3) * 4 24
factorial(3) factorial(2) * 3 6
factorial(2) factorial(1) * 2 2
factorial(1) 1 1

The main function may not call itself.

EXE R C I S E S SE C TI ON 6.3.2

Exercise 6.30: Compile the version of str_subrange as presented on page 223 to see
what your compiler does with the indicated errors.

Exercise 6.31: When is it valid to return a reference? A reference to const?

Exercise 6.32: Indicate whether the following function is legal. If so, explain what it
does; if not, correct any errors and then explain it.

int &get(int *arry, int index) { return arry[index]; }

int main() {
int ia[10];
for (int i = 0; i != 10; ++i)

get(ia, i) = i;
}

Exercise 6.33: Write a recursive function to print the contents of a vector.

Exercise 6.34: What would happen if the stopping condition in factorial were

if (val != 0)

Exercise 6.35: In the call to factorial, why did we pass val - 1 rather than val--?

6.3.3 Returning a Pointer to an Array
Because we cannot copy an array, a function cannot return an array. However, a
function can return a pointer or a reference to an array (§ 3.5.1, p. 114). Unfor-
tunately, the syntax used to define functions that return pointers or references to
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arrays can be intimidating. Fortunately, there are ways to simplify such declara-
tions. The most straightforward way is to use a type alias (§ 2.5.1, p. 67):

typedef int arrT[10]; // arrT is a synonym for the type array of ten ints
using arrT = int[10]; // equivalent declaration of arrT; see § 2.5.1 (p. 68)
arrT* func(int i); // func returns a pointer to an array of ten ints

Here arrT is a synonym for an array of ten ints. Because we cannot return an
array, we define the return type as a pointer to this type. Thus, func is a function
that takes a single int argument and returns a pointer to an array of ten ints.

Declaring a Function That Returns a Pointer to an Array

To declare func without using a type alias, we must remember that the dimension
of an array follows the name being defined:

int arr[10]; // arr is an array of ten ints
int *p1[10]; // p1 is an array of ten pointers
int (*p2)[10] = &arr; // p2 points to an array of ten ints

As with these declarations, if we want to define a function that returns a pointer
to an array, the dimension must follow the function’s name. However, a function
includes a parameter list, which also follows the name. The parameter list precedes
the dimension. Hence, the form of a function that returns a pointer to an array is:

Type (*function(parameter_list))[dimension]

As in any other array declaration, Type is the type of the elements and dimension is
the size of the array. The parentheses around (*function(parameter_list)) are nec-
essary for the same reason that they were required when we defined p2. Without
them, we would be defining a function that returns an array of pointers.

As a concrete example, the following declares func without using a type alias:

int (*func(int i))[10];

To understand this declaration, it can be helpful to think about it as follows:

• func(int) says that we can call func with an int argument.

• (*func(int)) says we can dereference the result of that call.

• (*func(int))[10] says that dereferencing the result of a call to func
yields an array of size ten.

• int (*func(int))[10] says the element type in that array is int.

Using a Trailing Return Type

Under the new standard, another way to simplify the declaration of func is by us-
ing a trailing return type. Trailing returns can be defined for any function, but are
most useful for functions with complicated return types, such as pointers (or refer-
ences) to arrays. A trailing return type follows the parameter list and is preceded
by ->. To signal that the return follows the parameter list, we use auto where the
return type ordinarily appears:
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// fcn takes an int argument and returns a pointer to an array of ten ints
auto func(int i) -> int(*)[10];

Because the return type comes after the parameter list, it is easier to see that func
returns a pointer and that that pointer points to an array of ten ints.

Using decltype

As another alternative, if we know the array(s) to which our function can return a
pointer, we can use decltype to declare the return type. For example, the follow-
ing function returns a pointer to one of two arrays, depending on the value of its
parameter:

int odd[] = {1,3,5,7,9};
int even[] = {0,2,4,6,8};
// returns a pointer to an array of five int elements
decltype(odd) *arrPtr(int i)
{

return (i % 2) ? &odd : &even; // returns a pointer to the array
}

The return type for arrPtr uses decltype to say that the function returns a
pointer to whatever type odd has. That object is an array, so arrPtr returns a
pointer to an array of five ints. The only tricky part is that we must remem-
ber that decltype does not automatically convert an array to its corresponding
pointer type. The type returned by decltype is an array type, to which we must
add a * to indicate that arrPtr returns a pointer.

EXE R C I S E S SE C TI ON 6.3.3

Exercise 6.36: Write the declaration for a function that returns a reference to an array
of ten strings, without using either a trailing return, decltype, or a type alias.

Exercise 6.37: Write three additional declarations for the function in the previous ex-
ercise. One should use a type alias, one should use a trailing return, and the third
should use decltype. Which form do you prefer and why?

Exercise 6.38: Revise the arrPtr function on to return a reference to the array.

6.4 Overloaded Functions
Functions that have the same name but different parameter lists and that appear in
the same scope are overloaded. For example, in § 6.2.4 (p. 214) we defined several
functions named print:

void print(const char *cp);
void print(const int *beg, const int *end);
void print(const int ia[], size_t size);
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These functions perform the same general action but apply to different parameter
types. When we call these functions, the compiler can deduce which function we
want based on the argument type we pass:

int j[2] = {0,1};
print("Hello World"); // calls print(const char*)
print(j, end(j) - begin(j)); // calls print(const int*, size_t)
print(begin(j), end(j)); // calls print(const int*, const int*)

Function overloading eliminates the need to invent—and remember—names
that exist only to help the compiler figure out which function to call.

The main function may not be overloaded.

Defining Overloaded Functions

Consider a database application with several functions to find a record based on
name, phone number, account number, and so on. Function overloading lets us
define a collection of functions, each named lookup, that differ in terms of how
they do the search. We can call lookup passing a value of any of several types:

Record lookup(const Account&); // find by Account
Record lookup(const Phone&); // find by Phone
Record lookup(const Name&); // find by Name

Account acct;
Phone phone;
Record r1 = lookup(acct); // call version that takes an Account
Record r2 = lookup(phone); // call version that takes a Phone

Here, all three functions share the same name, yet they are three distinct functions.
The compiler uses the argument type(s) to figure out which function to call.

Overloaded functions must differ in the number or the type(s) of their parame-
ters. Each of the functions above takes a single parameter, but the parameters have
different types.

It is an error for two functions to differ only in terms of their return types. If the
parameter lists of two functions match but the return types differ, then the second
declaration is an error:

Record lookup(const Account&);
bool lookup(const Account&); // error: only the return type is different

Determining Whether Two Parameter Types Differ

Two parameter lists can be identical, even if they don’t look the same:

// each pair declares the same function
Record lookup(const Account &acct);
Record lookup(const Account&); // parameter names are ignored

typedef Phone Telno;
Record lookup(const Phone&);
Record lookup(const Telno&); // Telno and Phone are the same type
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In the first pair, the first declaration names its parameter. Parameter names are
only a documentation aid. They do not change the parameter list.

In the second pair, it looks like the types are different, but Telno is not a new
type; it is a synonym for Phone. A type alias (§ 2.5.1, p. 67) provides an alternative
name for an existing type; it does not create a new type. Therefore, two parameters
that differ only in that one uses an alias and the other uses the type to which the
alias corresponds are not different.

Overloading and const Parameters

As we saw in § 6.2.3 (p. 212), top-level const (§ 2.4.3, p. 63) has no effect on the
objects that can be passed to the function. A parameter that has a top-level const
is indistinguishable from one without a top-level const:

Record lookup(Phone);
Record lookup(const Phone); // redeclares Record lookup(Phone)

Record lookup(Phone*);
Record lookup(Phone* const); // redeclares Record lookup(Phone*)

In these declarations, the second declaration declares the same function as the first.
On the other hand, we can overload based on whether the parameter is a refer-

ence (or pointer) to the const or nonconst version of a given type; such consts
are low-level:

// functions taking const and nonconst references or pointers have different parameters
// declarations for four independent, overloaded functions
Record lookup(Account&); // function that takes a reference to Account
Record lookup(const Account&); // new function that takes a const reference

Record lookup(Account*); // new function, takes a pointer to Account
Record lookup(const Account*); // new function, takes a pointer to const

In these cases, the compiler can use the constness of the argument to distinguish
which function to call. Because there is no conversion (§ 4.11.2, p. 162) from const,
we can pass a const object (or a pointer to const) only to the version with a
const parameter. Because there is a conversion to const, we can call either func-
tion on a nonconst object or a pointer to nonconst. However, as we’ll see in
§ 6.6.1 (p. 246), the compiler will prefer the nonconst versions when we pass a
nonconst object or pointer to nonconst.

const_cast and Overloading

In § 4.11.3 (p. 163) we noted that const_casts are most useful in the context of
overloaded functions. As one example, recall our shorterString function from
§ 6.3.2 (p. 224):

// return a reference to the shorter of two strings
const string &shorterString(const string &s1, const string &s2)
{

return s1.size() <= s2.size() ? s1 : s2;
}
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ADVICE: WHEN NOT TO OVERLOAD A FUNCTION NAME

Although overloading lets us avoid having to invent (and remember) names for com-
mon operations, we should only overload operations that actually do similar things.
There are some cases where providing different function names adds information that
makes the program easier to understand. Consider a set of functions that move the
cursor on a Screen.

Screen& moveHome();
Screen& moveAbs(int, int);
Screen& moveRel(int, int, string direction);

It might at first seem better to overload this set of functions under the name move:

Screen& move();
Screen& move(int, int);
Screen& move(int, int, string direction);

However, by overloading these functions, we’ve lost information that was inherent
in the function names. Although cursor movement is a general operation shared by
all these functions, the specific nature of that movement is unique to each of these
functions. moveHome, for example, represents a special instance of cursor movement.
Whether to overload these functions depends on which of these two calls is easier to
understand:

// which is easier to understand?
myScreen.moveHome(); // we think this one!
myScreen.move();

This function takes and returns references to const string. We can call the func-
tion on a pair of nonconst string arguments, but we’ll get a reference to a const
string as the result. We might want to have a version of shorterString that,
when given nonconst arguments, would yield a plain reference. We can write
this version of our function using a const_cast:

string &shorterString(string &s1, string &s2)
{

auto &r = shorterString(const_cast<const string&>(s1),
const_cast<const string&>(s2));

return const_cast<string&>(r);
}

This version calls the const version of shorterString by casting its arguments
to references to const. That function returns a reference to a const string,
which we know is bound to one of our original, nonconst arguments. Therefore,
we know it is safe to cast that string back to a plain string& in the return.

Calling an Overloaded Function

Once we have defined a set of overloaded functions, we need to be able to call
them with appropriate arguments. Function matching (also known as overload
resolution) is the process by which a particular function call is associated with
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a specific function from a set of overloaded functions. The compiler determines
which function to call by comparing the arguments in the call with the parameters
offered by each function in the overload set.

In many—probably most—cases, it is straightforward for a programmer to de-
termine whether a particular call is legal and, if so, which function will be called.
Often the functions in the overload set differ in terms of the number of arguments,
or the types of the arguments are unrelated. In such cases, it is easy to determine
which function is called. Determining which function is called when the over-
loaded functions have the same number of parameters and those parameters are
related by conversions (§ 4.11, p. 159) can be less obvious. We’ll look at how the
compiler resolves calls involving conversions in § 6.6 (p. 242).

For now, what’s important to realize is that for any given call to an overloaded
function, there are three possible outcomes:

• The compiler finds exactly one function that is a best match for the actual
arguments and generates code to call that function.

• There is no function with parameters that match the arguments in the call, in
which case the compiler issues an error message that there was no match.

• There is more than one function that matches and none of the matches is
clearly best. This case is also an error; it is an ambiguous call.

EXE R C I S E S SE C TI ON 6.4

Exercise 6.39: Explain the effect of the second declaration in each one of the following
sets of declarations. Indicate which, if any, are illegal.

(a) int calc(int, int);
int calc(const int, const int);

(b) int get();
double get();

(c) int *reset(int *);
double *reset(double *);

6.4.1 Overloading and Scope

Ordinarily, it is a bad idea to declare a function locally. However, to ex-
plain how scope interacts with overloading, we will violate this practice
and use local function declarations.

Programmers new to C++ are often confused about the interaction between scope
and overloading. However, overloading has no special properties with respect to
scope: As usual, if we declare a name in an inner scope, that name hides uses of
that name declared in an outer scope. Names do not overload across scopes:
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string read();
void print(const string &);
void print(double); // overloads the print function

void fooBar(int ival)
{

bool read = false; // new scope: hides the outer declaration of read
string s = read(); // error: read is a bool variable, not a function

// bad practice: usually it’s a bad idea to declare functions at local scope
void print(int); // new scope: hides previous instances of print
print("Value: "); // error: print(const string &) is hidden
print(ival); // ok: print(int) is visible
print(3.14); // ok: calls print(int); print(double) is hidden

}

Most readers will not be surprised that the call to read is in error. When the
compiler processes the call to read, it finds the local definition of read. That
name is a bool variable, and we cannot call a bool. Hence, the call is illegal.

Exactly the same process is used to resolve the calls to print. The declaration
of print(int) in fooBar hides the earlier declarations of print. It is as if there
is only one print function available: the one that takes a single int parameter.

When we call print, the compiler first looks for a declaration of that name.
It finds the local declaration for print that takes an int. Once a name is found,
the compiler ignores uses of that name in any outer scope. Instead, the compiler
assumes that the declaration it found is the one for the name we are using. What
remains is to see if the use of the name is valid.

In C++, name lookup happens before type checking.

The first call passes a string literal, but the only declaration for print that is
in scope has a parameter that is an int. A string literal cannot be converted to an
int, so this call is an error. The print(const string&) function, which would
have matched this call, is hidden and is not considered.

When we call print passing a double, the process is repeated. The compiler
finds the local definition of print(int). The double argument can be converted
to an int, so the call is legal.

Had we declared print(int) in the same scope as the other print functions,
then it would be another overloaded version of print. In that case, these calls
would be resolved differently, because the compiler will see all three functions:

void print(const string &);
void print(double); // overloads the print function
void print(int); // another overloaded instance
void fooBar2(int ival)
{

print("Value: "); // calls print(const string &)
print(ival); // calls print(int)
print(3.14); // calls print(double)

}
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6.5 Features for Specialized Uses
In this section we’ll cover three function-related features that are useful in many,
but not all, programs: default arguments, inline and constexpr functions, and
some facilities that are often used during debugging.

6.5.1 Default Arguments
Some functions have parameters that are given a particular value in most, but not
all, calls. In such cases, we can declare that common value as a default argument
for the function. Functions with default arguments can be called with or without
that argument.

For example, we might use a string to represent the contents of a window.
By default, we might want the window to have a particular height, width, and
background character. However, we might also want to allow users to pass values
other than the defaults. To accommodate both default and specified values we
would declare our function to define the window as follows:

typedef string::size_type sz; // typedef see § 2.5.1 (p. 67)
string screen(sz ht = 24, sz wid = 80, char backgrnd = ’ ’);

Here we’ve provided a default for each parameter. A default argument is specified
as an initializer for a parameter in the parameter list. We may define defaults for
one or more parameters. However, if a parameter has a default argument, all the
parameters that follow it must also have default arguments.

Calling Functions with Default Arguments

If we want to use the default argument, we omit that argument when we call the
function. Because screen provides defaults for all of its parameters, we can call
screen with zero, one, two, or three arguments:

string window;
window = screen(); // equivalent to screen(24,80,’ ’)
window = screen(66);// equivalent to screen(66,80,’ ’)
window = screen(66, 256); // screen(66,256,’ ’)
window = screen(66, 256, ’#’); // screen(66,256,’#’)

Arguments in the call are resolved by position. The default arguments are used for
the trailing (right-most) arguments of a call. For example, to override the default
for backgrnd, we must also supply arguments for ht and wid:

window = screen(, , ’?’); // error: can omit only trailing arguments
window = screen(’?’); // calls screen(’?’,80,’ ’)

Note that the second call, which passes a single character value, is legal. Although
legal, it is unlikely to be what was intended. The call is legal because ’?’ is a char,
and a char can be converted (§ 4.11.1, p. 160) to the type of the left-most parame-
ter. That parameter is string::size_type, which is an unsigned integral type.
In this call, the char argument is implicitly converted to string::size_type,
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and is passed as the argument to height. On our machine, ’?’ has the hexadec-
imal value 0x3F, which is decimal 63. Thus, this call passes 63 to the height
parameter.

Part of the work of designing a function with default arguments is ordering the
parameters so that those least likely to use a default value appear first and those
most likely to use a default appear last.

Default Argument Declarations

Although it is normal practice to declare a function once inside a header, it is legal
to redeclare a function multiple times. However, each parameter can have its de-
fault specified only once in a given scope. Thus, any subsequent declaration can
add a default only for a parameter that has not previously had a default specified.
As usual, defaults can be specified only if all parameters to the right already have
defaults. For example, given

// no default for the height or width parameters
string screen(sz, sz, char = ’ ’);

we cannot change an already declared default value:

string screen(sz, sz, char = ’*’); // error: redeclaration

but we can add a default argument as follows:

string screen(sz = 24, sz = 80, char); // ok: adds default arguments

Default arguments ordinarily should be specified with the function
declaration in an appropriate header.

Default Argument Initializers

Local variables may not be used as a default argument. Excepting that restriction,
a default argument can be any expression that has a type that is convertible to the
type of the parameter:

// the declarations of wd, def, and ht must appear outside a function
sz wd = 80;
char def = ’ ’;
sz ht();

string screen(sz = ht(), sz = wd, char = def);
string window = screen(); // calls screen(ht(), 80, ’ ’)

Names used as default arguments are resolved in the scope of the function decla-
ration. The value that those names represent is evaluated at the time of the call:

void f2()
{

def = ’*’; // changes the value of a default argument
sz wd = 100; // hides the outer definition of wd but does not change the default

window = screen(); // calls screen(ht(), 80, ’*’)
}
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Inside f2, we changed the value of def. The call to screen passes this updated
value. Our function also declared a local variable that hides the outer wd. How-
ever, the local named wd is unrelated to the default argument passed to screen.

EXE R C I S E S SE C TI ON 6.5.1

Exercise 6.40: Which, if either, of the following declarations are errors? Why?

(a) int ff(int a, int b = 0, int c = 0);
(b) char *init(int ht = 24, int wd, char bckgrnd);

Exercise 6.41: Which, if any, of the following calls are illegal? Why? Which, if any, are
legal but unlikely to match the programmer’s intent? Why?

char *init(int ht, int wd = 80, char bckgrnd = ’ ’);

(a) init(); (b) init(24,10); (c) init(14, ’*’);

Exercise 6.42: Give the second parameter of make_plural (§ 6.3.2, p. 224) a default
argument of ’s’. Test your program by printing singular and plural versions of the
words success and failure.

6.5.2 Inline and constexpr Functions
In § 6.3.2 (p. 224) we wrote a small function that returned a reference to the shorter
of its two string parameters. The benefits of defining a function for such a small
operation include the following:

• It is easier to read and understand a call to shorterString than it would
be to read and understand the equivalent conditional expression.

• Using a function ensures uniform behavior. Each test is guaranteed to be
done the same way.

• If we need to change the computation, it is easier to change the function than
to find and change every occurrence of the equivalent expression.

• The function can be reused rather than rewritten for other applications.

There is, however, one potential drawback to making shorterString a func-
tion: Calling a function is apt to be slower than evaluating the equivalent expres-
sion. On most machines, a function call does a lot of work: Registers are saved
before the call and restored after the return; arguments may be copied; and the
program branches to a new location.

inline Functions Avoid Function Call Overhead

A function specified as inline (usually) is expanded “in line” at each call. If
shorterString were defined as inline, then this call
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cout << shorterString(s1, s2) << endl;

(probably) would be expanded during compilation into something like

cout << (s1.size() < s2.size() ? s1 : s2) << endl;

The run-time overhead of making shorterString a function is thus removed.
We can define shorterString as an inline function by putting the keyword

inline before the function’s return type:

// inline version: find the shorter of two strings
inline const string &
shorterString(const string &s1, const string &s2)
{

return s1.size() <= s2.size() ? s1 : s2;
}

The inline specification is only a request to the compiler. The compiler
may choose to ignore this request.

In general, the inline mechanism is meant to optimize small, straight-line func-
tions that are called frequently. Many compilers will not inline a recursive function.
A 75-line function will almost surely not be expanded inline.

constexpr Functions

A constexpr function is a function that can be used in a constant expression
(§ 2.4.4, p. 65). A constexpr function is defined like any other function but must
meet certain restrictions: The return type and the type of each parameter in a
must be a literal type (§ 2.4.4, p. 66), and the function body must contain exactly
one return statement:

constexpr int new_sz() { return 42; }
constexpr int foo = new_sz(); // ok: foo is a constant expression

Here we defined new_sz as a constexpr that takes no arguments. The compiler
can verify—at compile time—that a call to new_sz returns a constant expression,
so we can use new_sz to initialize our constexpr variable, foo.

When it can do so, the compiler will replace a call to a constexpr function
with its resulting value. In order to be able to expand the function immediately,
constexpr functions are implicitly inline.

A constexpr function body may contain other statements so long as those
statements generate no actions at run time. For example, a constexpr function
may contain null statements, type aliases (§ 2.5.1, p. 67), and using declarations.

A constexpr function is permitted to return a value that is not a constant:

// scale(arg) is a constant expression if arg is a constant expression
constexpr size_t scale(size_t cnt) { return new_sz() * cnt; }

The scale function will return a constant expression if its argument is a constant
expression but not otherwise:
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int arr[scale(2)]; // ok: scale(2) is a constant expression
int i = 2; // i is not a constant expression
int a2[scale(i)]; // error: scale(i) is not a constant expression

When we pass a constant expression—such as the literal 2—then the return is a
constant expression. In this case, the compiler will replace the call to scale with
the resulting value.

If we call scale with an expression that is not a constant expression—such as
on the int object i—then the return is not a constant expression. If we use scale
in a context that requires a constant expression, the compiler checks that the result
is a constant expression. If it is not, the compiler will produce an error message.

A constexpr function is not required to return a constant expression.

Put inline and constexpr Functions in Header Files

Unlike other functions, inline and constexpr functions may be defined multi-
ple times in the program. After all, the compiler needs the definition, not just the
declaration, in order to expand the code. However, all of the definitions of a given
inline or constexpr must match exactly. As a result, inline and constexpr
functions normally are defined in headers.

EXE R C I S E S SE C TI ON 6.5.2

Exercise 6.43: Which one of the following declarations and definitions would you put
in a header? In a source file? Explain why.

(a) inline bool eq(const BigInt&, const BigInt&) {...}
(b) void putValues(int *arr, int size);

Exercise 6.44: Rewrite the isShorter function from § 6.2.2 (p. 211) to be inline.

Exercise 6.45: Review the programs you’ve written for the earlier exercises and decide
whether they should be defined as inline. If so, do so. If not, explain why they
should not be inline.

Exercise 6.46: Would it be possible to define isShorter as a constexpr? If so, do
so. If not, explain why not.

6.5.3 Aids for Debugging
C++ programmers sometimes use a technique similar to header guards (§ 2.6.3,
p. 77) to conditionally execute debugging code. The idea is that the program will
contain debugging code that is executed only while the program is being devel-
oped. When the application is completed and ready to ship, the debugging code is
turned off. This approach uses two preprocessor facilities: assert and NDEBUG.
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The assert Preprocessor Macro

assert is a preprocessor macro. A preprocessor macro is a preprocessor vari-
able that acts somewhat like an inline function. The assert macro takes a single
expression, which it uses as a condition:

assert(expr);

evaluates expr and if the expression is false (i.e., zero), then assert writes a mes-
sage and terminates the program. If the expression is true (i.e., is nonzero), then
assert does nothing.

The assert macro is defined in the cassert header. As we’ve seen, prepro-
cessor names are managed by the preprocessor not the compiler (§ 2.3.2, p. 54). As
a result, we use preprocessor names directly and do not provide a using decla-
ration for them. That is, we refer to assert, not std::assert, and provide no
using declaration for assert.

As with preprocessor variables, macro names must be unique within the pro-
gram. Programs that include the cassert header may not define a variable, func-
tion, or other entity named assert. In practice, it is a good idea to avoid using
the name assert for our own purposes even if we don’t include cassert. Many
headers include the cassert header, which means that even if you don’t directly
include that file, your programs are likely to have it included anyway.

The assert macro is often used to check for conditions that “cannot happen.”
For example, a program that does some manipulation of input text might know
that all words it is given are always longer than a threshold. That program might
contain a statement such as

assert(word.size() > threshold);

The NDEBUG Preprocessor Variable

The behavior of assert depends on the status of a preprocessor variable named
NDEBUG. If NDEBUG is defined, assert does nothing. By default, NDEBUG is not
defined, so, by default, assert performs a run-time check.

We can “turn off” debugging by providing a #define to define NDEBUG. Al-
ternatively, most compilers provide a command-line option that lets us define pre-
processor variables:

$ CC -D NDEBUG main.C # use /D with the Microsoft compiler

has the same effect as writing #define NDEBUG at the beginning of main.C.
If NDEBUG is defined, we avoid the potential run-time overhead involved in

checking various conditions. Of course, there is also no run-time check. Therefore,
assert should be used only to verify things that truly should not be possible. It
can be useful as an aid in getting a program debugged but should not be used to
substitute for run-time logic checks or error checking that the program should do.

In addition to using assert, we can write our own conditional debugging
code using NDEBUG. If NDEBUG is not defined, the code between the #ifndef and
the #endif is executed. If NDEBUG is defined, that code is ignored:
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void print(const int ia[], size_t size)
{
#ifndef NDEBUG
// _ _func_ _ is a local static defined by the compiler that holds the function’s name
cerr << _ _func_ _ << ": array size is " << size << endl;
#endif
// . . .

Here we use a variable named _ _func_ _ to print the name of the function we
are debugging. The compiler defines _ _func_ _ in every function. It is a local
static array of const char that holds the name of the function.

In addition to _ _func_ _, which the C++ compiler defines, the preprocessor
defines four other names that can be useful in debugging:

_ _FILE_ _ string literal containing the name of the file

_ _LINE_ _ integer literal containing the current line number

_ _TIME_ _ string literal containing the time the file was compiled

_ _DATE_ _ string literal containing the date the file was compiled

We might use these constants to report additional information in error messages:

if (word.size() < threshold)
cerr << "Error: " << _ _FILE_ _

<< " : in function " << _ _func_ _
<< " at line " << _ _LINE_ _ << endl
<< " Compiled on " << _ _DATE_ _
<< " at " << _ _TIME_ _ << endl
<< " Word read was \"" << word
<< "\": Length too short" << endl;

If we give this program a string that is shorter than the threshold, then the
following error message will be generated:

Error: wdebug.cc : in function main at line 27
Compiled on Jul 11 2012 at 20:50:03
Word read was "foo": Length too short

6.6 Function Matching
In many (if not most) cases, it is easy to figure out which overloaded function
matches a given call. However, it is not so simple when the overloaded functions
have the same number of parameters and when one or more of the parameters
have types that are related by conversions. As an example, consider the following
set of functions and function call:

void f();
void f(int);
void f(int, int);
void f(double, double = 3.14);
f(5.6); // calls void f(double, double)
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EXE R C I S E S SE C TI ON 6.5.3

Exercise 6.47: Revise the program you wrote in the exercises in § 6.3.2 (p. 228) that
used recursion to print the contents of a vector to conditionally print information
about its execution. For example, you might print the size of the vector on each call.
Compile and run the program with debugging turned on and again with it turned off.

Exercise 6.48: Explain what this loop does and whether it is a good use of assert:

string s;
while (cin >> s && s != sought) { } // empty body
assert(cin);

Determining the Candidate and Viable Functions

The first step of function matching identifies the set of overloaded functions con-
sidered for the call. The functions in this set are the candidate functions. A can-
didate function is a function with the same name as the called function and for
which a declaration is visible at the point of the call. In this example, there are four
candidate functions named f.

The second step selects from the set of candidate functions those functions that
can be called with the arguments in the given call. The selected functions are the vi-
able functions. To be viable, a function must have the same number of parameters
as there are arguments in the call, and the type of each argument must match—or
be convertible to—the type of its corresponding parameter.

We can eliminate two of our candidate functions based on the number of argu-
ments. The function that has no parameters and the one that has two int parame-
ters are not viable for this call. Our call has only one argument, and these functions
have zero and two parameters, respectively.

The function that takes a single int and the function that takes two doubles
might be viable. Either of these functions can be called with a single argument.
The function taking two doubles has a default argument, which means it can be
called with a single argument.

When a function has default arguments (§ 6.5.1, p. 236), a call may ap-
pear to have fewer arguments than it actually does.

Having used the number of arguments to winnow the candidate functions, we
next look at whether the argument types match those of the parameters. As with
any call, an argument might match its parameter either because the types match
exactly or because there is a conversion from the argument type to the type of the
parameter. In this example, both of our remaining functions are viable:

• f(int) is viable because a conversion exists that can convert the argument
of type double to the parameter of type int.

• f(double, double) is viable because a default argument is provided for
the function’s second parameter and its first parameter is of type double,
which exactly matches the type of the argument in the call.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

244 Functions

If there are no viable functions, the compiler will complain that there is
no matching function.

Finding the Best Match, If Any

The third step of function matching determines which viable function provides
the best match for the call. This process looks at each argument in the call and
selects the viable function (or functions) for which the corresponding parameter
best matches the argument. We’ll explain the details of “best” in the next section,
but the idea is that the closer the types of the argument and parameter are to each
other, the better the match.

In our case, there is only one (explicit) argument in the call. That argument has
type double. To call f(int), the argument would have to be converted from
double to int. The other viable function, f(double, double), is an exact
match for this argument. An exact match is better than a match that requires a
conversion. Therefore, the compiler will resolve the call f(5.6) as a call to the
function that has two double parameters. The compiler will add the default ar-
gument for the second, missing argument.

Function Matching with Multiple Parameters

Function matching is more complicated if there are two or more arguments. Given
the same functions named f, let’s analyze the following call:

f(42, 2.56);

The set of viable functions is selected in the same way as when there is only one
parameter. The compiler selects those functions that have the required number
of parameters and for which the argument types match the parameter types. In
this case, the viable functions are f(int, int) and f(double, double). The
compiler then determines, argument by argument, which function is (or functions
are) the best match. There is an overall best match if there is one and only one
function for which

• The match for each argument is no worse than the match required by any
other viable function

• There is at least one argument for which the match is better than the match
provided by any other viable function

If after looking at each argument there is no single function that is preferable, then
the call is in error. The compiler will complain that the call is ambiguous.

In this call, when we look only at the first argument, we find that the function
f(int, int) is an exact match. To match the second function, the int argument
42 must be converted to double. A match through a built-in conversion is “less
good” than one that is exact. Considering only the first argument, f(int, int)
is a better match than f(double, double).
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When we look at the second argument, f(double, double) is an exact match
to the argument 2.56. Calling f(int, int) would require that 2.56 be con-
verted from double to int. When we consider only the second parameter, the
function f(double, double) is a better match.

The compiler will reject this call because it is ambiguous: Each viable function is
a better match than the other on one of the arguments to the call. It might be tempt-
ing to force a match by explicitly casting (§ 4.11.3, p. 162) one of our arguments.
However, in well-designed systems, argument casts should not be necessary.

Casts should not be needed to call an overloaded function. The need
for a cast suggests that the parameter sets are designed poorly.

EXE R C I S E S SE C TI ON 6.6

Exercise 6.49: What is a candidate function? What is a viable function?

Exercise 6.50: Given the declarations for f from page 242, list the viable functions, if
any for each of the following calls. Indicate which function is the best match, or if the
call is illegal whether there is no match or why the call is ambiguous.

(a) f(2.56, 42) (b) f(42) (c) f(42, 0) (d) f(2.56, 3.14)

Exercise 6.51: Write all four versions of f. Each function should print a distinguish-
ing message. Check your answers for the previous exercise. If your answers were
incorrect, study this section until you understand why your answers were wrong.

6.6.1 Argument Type Conversions
In order to determine the best match, the compiler ranks the conversions that could
be used to convert each argument to the type of its corresponding parameter. Con-
versions are ranked as follows:

1. An exact match. An exact match happens when:

• The argument and parameter types are identical.

• The argument is converted from an array or function type to the corre-
sponding pointer type. (§ 6.7 (p. 247) covers function pointers.)

• A top-level const is added to or discarded from the argument.

2. Match through a const conversion (§ 4.11.2, p. 162).

3. Match through a promotion (§ 4.11.1, p. 160).

4. Match through an arithmetic (§ 4.11.1, p. 159) or pointer conversion (§ 4.11.2,
p. 161).

5. Match through a class-type conversion. (§ 14.9 (p. 579) covers these conver-
sions.)
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Matches Requiring Promotion or Arithmetic Conversion

Promotions and conversions among the built-in types can yield sur-
prising results in the context of function matching. Fortunately, well-
designed systems rarely include functions with parameters as closely
related as those in the following examples.

In order to analyze a call, it is important to remember that the small integral
types always promote to int or to a larger integral type. Given two functions, one
of which takes an int and the other a short, the short version will be called only
on values of type short. Even though the smaller integral values might appear
to be a closer match, those values are promoted to int, whereas calling the short
version would require a conversion:

void ff(int);
void ff(short);
ff(’a’); // char promotes to int; calls f(int)

All the arithmetic conversions are treated as equivalent to each other. The con-
version from int to unsigned int, for example, does not take precedence over
the conversion from int to double. As a concrete example, consider

void manip(long);
void manip(float);
manip(3.14); // error: ambiguous call

The literal 3.14 is a double. That type can be converted to either long or float.
Because there are two possible arithmetic conversions, the call is ambiguous.

Function Matching and const Arguments

When we call an overloaded function that differs on whether a reference or pointer
parameter refers or points to const, the compiler uses the constness of the argu-
ment to decide which function to call:

Record lookup(Account&); // function that takes a reference to Account
Record lookup(const Account&); // new function that takes a const reference
const Account a;
Account b;

lookup(a); // calls lookup(const Account&)
lookup(b); // calls lookup(Account&)

In the first call, we pass the const object a. We cannot bind a plain reference
to a const object. In this case the only viable function is the version that takes a
reference to const. Moreover, that call is an exact match to the argument a.

In the second call, we pass the nonconst object b. For this call, both functions
are viable. We can use b to initialize a reference to either const or nonconst
type. However, initializing a reference to const from a nonconst object requires
a conversion. The version that takes a nonconst parameter is an exact match for
b. Hence, the nonconst version is preferred.
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Pointer parameters work in a similar way. If two functions differ only as to
whether a pointer parameter points to const or nonconst, the compiler can dis-
tinguish which function to call based on the constness of the argument: If the ar-
gument is a pointer to const, the call will match the function that takes a const*;
otherwise, if the argument is a pointer to nonconst, the function taking a plain
pointer is called.

EXE R C I S E S SE C TI ON 6.6.1

Exercise 6.52: Given the following declarations,

void manip(int, int);
double dobj;

what is the rank (§ 6.6.1, p. 245) of each conversion in the following calls?

(a) manip(’a’, ’z’); (b) manip(55.4, dobj);

Exercise 6.53: Explain the effect of the second declaration in each one of the following
sets of declarations. Indicate which, if any, are illegal.

(a) int calc(int&, int&);
int calc(const int&, const int&);

(b) int calc(char*, char*);
int calc(const char*, const char*);

(c) int calc(char*, char*);
int calc(char* const, char* const);

6.7 Pointers to Functions
A function pointer is just that—a pointer that denotes a function rather than an
object. Like any other pointer, a function pointer points to a particular type. A
function’s type is determined by its return type and the types of its parameters.
The function’s name is not part of its type. For example:

// compares lengths of two strings
bool lengthCompare(const string &, const string &);

has type bool(const string&, const string&). To declare a pointer that can
point at this function, we declare a pointer in place of the function name:

// pf points to a function returning bool that takes two const string references
bool (*pf)(const string &, const string &); // uninitialized

Starting from the name we are declaring, we see that pf is preceded by a *, so pf is
a pointer. To the right is a parameter list, which means that pf points to a function.
Looking left, we find that the type the function returns is bool. Thus, pf points to
a function that has two const string& parameters and returns bool.
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The parentheses around *pf are necessary. If we omit the parentheses,
then we declare pf as a function that returns a pointer to bool:

// declares a function named pf that returns a bool*
bool *pf(const string &, const string &);

Using Function Pointers

When we use the name of a function as a value, the function is automatically con-
verted to a pointer. For example, we can assign the address of lengthCompare to
pf as follows:

pf = lengthCompare; // pf now points to the function named lengthCompare
pf = &lengthCompare; // equivalent assignment: address-of operator is optional

Moreover, we can use a pointer to a function to call the function to which the
pointer points. We can do so directly—there is no need to dereference the pointer:

bool b1 = pf("hello", "goodbye"); // calls lengthCompare
bool b2 = (*pf)("hello", "goodbye"); // equivalent call
bool b3 = lengthCompare("hello", "goodbye"); // equivalent call

There is no conversion between pointers to one function type and pointers to
another function type. However, as usual, we can assign nullptr (§ 2.3.2, p. 53)
or a zero-valued integer constant expression to a function pointer to indicate that
the pointer does not point to any function:

string::size_type sumLength(const string&, const string&);
bool cstringCompare(const char*, const char*);

pf = 0; // ok: pf points to no function
pf = sumLength; // error: return type differs
pf = cstringCompare; // error: parameter types differ
pf = lengthCompare; // ok: function and pointer types match exactly

Pointers to Overloaded Functions

As usual, when we use an overloaded function, the context must make it clear
which version is being used. When we declare a pointer to an overloaded function

void ff(int*);
void ff(unsigned int);

void (*pf1)(unsigned int) = ff; // pf1 points to ff(unsigned)

the compiler uses the type of the pointer to determine which overloaded function
to use. The type of the pointer must match one of the overloaded functions exactly:

void (*pf2)(int) = ff; // error: no ff with a matching parameter list
double (*pf3)(int*) = ff; // error: return type of ff and pf3 don’t match
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Function Pointer Parameters

Just as with arrays (§ 6.2.4, p. 214), we cannot define parameters of function type
but can have a parameter that is a pointer to function. As with arrays, we can write
a parameter that looks like a function type, but it will be treated as a pointer:

// third parameter is a function type and is automatically treated as a pointer to function
void useBigger(const string &s1, const string &s2,

bool pf(const string &, const string &));

// equivalent declaration: explicitly define the parameter as a pointer to function
void useBigger(const string &s1, const string &s2,

bool (*pf)(const string &, const string &));

When we pass a function as an argument, we can do so directly. It will be auto-
matically converted to a pointer:

// automatically converts the function lengthCompare to a pointer to function
useBigger(s1, s2, lengthCompare);

As we’ve just seen in the declaration of useBigger, writing function pointer
types quickly gets tedious. Type aliases (§ 2.5.1, p. 67), along with decltype
(§ 2.5.3, p. 70), let us simplify code that uses function pointers:

// Func and Func2 have function type
typedef bool Func(const string&, const string&);
typedef decltype(lengthCompare) Func2; // equivalent type

// FuncP and FuncP2 have pointer to function type
typedef bool(*FuncP)(const string&, const string&);
typedef decltype(lengthCompare) *FuncP2; // equivalent type

Here we’ve used typedef to define our types. Both Func and Func2 are function
types, whereas FuncP and FuncP2 are pointer types. It is important to note that
decltype returns the function type; the automatic conversion to pointer is not
done. Because decltype returns a function type, if we want a pointer we must
add the * ourselves. We can redeclare useBigger using any of these types:

// equivalent declarations of useBigger using type aliases
void useBigger(const string&, const string&, Func);
void useBigger(const string&, const string&, FuncP2);

Both declarations declare the same function. In the first case, the compiler will
automatically convert the function type represented by Func to a pointer.

Returning a Pointer to Function

As with arrays (§ 6.3.3, p. 228), we can’t return a function type but can return a
pointer to a function type. Similarly, we must write the return type as a pointer
type; the compiler will not automatically treat a function return type as the corre-
sponding pointer type. Also as with array returns, by far the easiest way to declare
a function that returns a pointer to function is by using a type alias:

using F = int(int*, int); // F is a function type, not a pointer
using PF = int(*)(int*, int); // PF is a pointer type
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Here we used type alias declarations (§ 2.5.1, p. 68) to define F as a function type
and PF as a pointer to function type. The thing to keep in mind is that, unlike what
happens to parameters that have function type, the return type is not automatically
converted to a pointer type. We must explicitly specify that the return type is a
pointer type:

PF f1(int); // ok: PF is a pointer to function; f1 returns a pointer to function
F f1(int); // error: F is a function type; f1 can’t return a function
F *f1(int); // ok: explicitly specify that the return type is a pointer to function

Of course, we can also declare f1 directly, which we’d do as

int (*f1(int))(int*, int);

Reading this declaration from the inside out, we see that f1 has a parameter list,
so f1 is a function. f1 is preceded by a * so f1 returns a pointer. The type of that
pointer itself has a parameter list, so the pointer points to a function. That function
returns an int.

For completeness, it’s worth noting that we can simplify declarations of func-
tions that return pointers to function by using a trailing return (§ 6.3.3, p. 229):

auto f1(int) -> int (*)(int*, int);

Using auto or decltype for Function Pointer Types

If we know which function(s) we want to return, we can use decltype to sim-
plify writing a function pointer return type. For example, assume we have two
functions, both of which return a string::size_type and have two const
string& parameters. We can write a third function that takes a string parame-
ter and returns a pointer to one of these two functions as follows:

string::size_type sumLength(const string&, const string&);
string::size_type largerLength(const string&, const string&);

// depending on the value of its string parameter,
// getFcn returns a pointer to sumLength or to largerLength
decltype(sumLength) *getFcn(const string &);

The only tricky part in declaring getFcn is to remember that when we apply
decltype to a function, it returns a function type, not a pointer to function type.
We must add a * to indicate that we are returning a pointer, not a function.

EXE R C I S E S SE C TI ON 6.7

Exercise 6.54: Write a declaration for a function that takes two int parameters and
returns an int, and declare a vectorwhose elements have this function pointer type.

Exercise 6.55: Write four functions that add, subtract, multiply, and divide two int
values. Store pointers to these functions in your vector from the previous exercise.

Exercise 6.56: Call each element in the vector and print their result.
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CH A P T E R SU M M A R Y
Functions are named units of computation and are essential to structuring even
modest programs. Every function has a return type, a name, a (possibly empty) list
of parameters, and a function body. The function body is a block that is executed
when the function is called. When a function is called, the arguments passed to the
function must be compatible with the types of the corresponding parameters.

In C++, functions may be overloaded: The same name may be used to define
different functions as long as the number or types of the parameters in the func-
tions differ. The compiler automatically figures out which function to call based
on the arguments in a call. The process of selecting the right function from a set of
overloaded functions is referred to as function matching.

DEFINED TERMS

ambiguous call Compile-time error that
results during function matching when two
or more functions provide an equally good
match for a call.

arguments Values supplied in a function
call that are used to initialize the function’s
parameters.

assert Preprocessor macro that takes a sin-
gle expression, which it uses as a condition.
When the preprocessor variable NDEBUG is
not defined, assert evaluates the condi-
tion and, if the condition is false, writes a
message and terminates the program.

automatic objects Objects that exist only
during the execution of a function. They are
created when control passes through their
definition and are destroyed at the end of
the block in which they are defined.

best match Function selected from a set of
overloaded functions for a call. If a best
match exists, the selected function is a better
match than all the other viable candidates
for at least one argument in the call and is
no worse on the rest of the arguments.

call by reference See pass by reference.

call by value See pass by value.

candidate functions Set of functions that
are considered when resolving a function
call. The candidate functions are all the

functions with the name used in the call for
which a declaration is in scope at the time
of the call.

constexpr Function that may return a con-
stant expression. A constexpr function is
implicitly inline.

default argument Value specified to be
used when an argument is omitted in a call
to the function.

executable file File, which the operating
system executes, that contains code corre-
sponding to our program.

function Callable unit of computation.

function body Block that defines the ac-
tions of a function.

function matching Compiler process by
which a call to an overloaded function is
resolved. Arguments used in the call are
compared to the parameter list of each over-
loaded function.

function prototype Function declaration,
consisting of the name, return type, and pa-
rameter types of a function. To call a func-
tion, its prototype must have been declared
before the point of call.

hidden names Names declared inside a
scope hide previously declared entities with
the same names declared outside that scope.
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initializer_list Library class that represents
a comma-separated list of objects of a single
type enclosed inside curly braces.

inline function Request to the compiler to
expand a function at the point of call, if
possible. Inline functions avoid the normal
function-calling overhead.

link Compilation step in which multiple
object files are put together to form an ex-
ecutable program.

local static objects Local objects whose
value persists across calls to the function.
Local static objects that are created and
initialized before control reaches their use
and are destroyed when the program ends.

local variables Variables defined inside a
block.

no match Compile-time error that results
during function matching when there is no
function with parameters that match the ar-
guments in a given call.

object code Format into which the com-
piler transforms our source code.

object file File holding object code gener-
ated by the compiler from a given source
file. An executable file is generated from
one or more object files after the files are
linked together.

object lifetime Every object has an associ-
ated lifetime. Nonstatic objects that are
defined inside a block exist from when their
definition is encountered until the end of
the block in which they are defined. Global
objects are created during program startup.
Local static objects are created before
the first time execution passes through the
object’s definition. Global objects and lo-
cal static objects are destroyed when the
main function ends.

overload resolution See function match-
ing.

overloaded function Function that has the
same name as at least one other function.
Overloaded functions must differ in the
number or type of their parameters.

parameters Local variables declared in-
side the function parameter list. Parameters
are initialized by the arguments provided in
each function call.

pass by reference Description of how ar-
guments are passed to parameters of refer-
ence type. Reference parameters work the
same way as any other use of references; the
parameter is bound to its corresponding ar-
gument.

pass by value How arguments are passed
to parameters of a nonreference type. A
nonreference parameter is a copy of the
value of its corresponding argument.

preprocessor macro Preprocessor facility
that behaves like an inline function. Aside
from assert, modern C++ programs make
very little use of preprocessor macros.

recursion loop Description of a recursive
function that omits a stopping condition
and which calls itself until exhasuting the
program stack.

recursive function Function that calls it-
self directly or indirectly.

return type Part of a function declaration
that specifies the type of the value that the
function returns.

separate compilation Ability to split a
program into multiple separate source files.

trailing return type Return type specified
after the parameter list.

viable functions Subset of the candidate
functions that could match a given call. Vi-
able functions have the same number of pa-
rameters as arguments to the call, and each
argument type can be converted to the cor-
responding parameter type.

() operator Call operator. Executes a
function. The name of a function or a
function pointer precedes the parentheses,
which enclose a (possibly empty) comma-
separated list of arguments.
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In C++ we use classes to define our own data types. By defining
types that mirror concepts in the problems we are trying to solve, we
can make our programs easier to write, debug, and modify.

This chapter continues the coverage of classes begun in Chapter 2.
Here we will focus on the importance of data abstraction, which
lets us separate the implementation of an object from the operations
that that object can perform. In Chapter 13 we’ll learn how to con-
trol what happens when objects are copied, moved, assigned, or de-
stroyed. In Chapter 14 we’ll learn how to define our own operators.
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The fundamental ideas behind classes are data abstraction and encapsu-
lation. Data abstraction is a programming (and design) technique that relies on
the separation of interface and implementation. The interface of a class consists
of the operations that users of the class can execute. The implementation includes
the class’ data members, the bodies of the functions that constitute the interface,
and any functions needed to define the class that are not intended for general use.

Encapsulation enforces the separation of a class’ interface and implementation.
A class that is encapsulated hides its implementation—users of the class can use
the interface but have no access to the implementation.

A class that uses data abstraction and encapsulation defines an abstract data
type. In an abstract data type, the class designer worries about how the class is
implemented. Programmers who use the class need not know how the type works.
They can instead think abstractly about what the type does.

7.1 Defining Abstract Data Types
The Sales_item class that we used in Chapter 1 is an abstract data type. We use
a Sales_item object by using its interface (i.e., the operations described in § 1.5.1
(p. 20)). We have no access to the data members stored in a Sales_item object.
Indeed, we don’t even know what data members that class has.

Our Sales_data class (§ 2.6.1, p. 72) is not an abstract data type. It lets users
of the class access its data members and forces users to write their own operations.
To make Sales_data an abstract type, we need to define operations for users
of Sales_data to use. Once Sales_data defines its own operations, we can
encapsulate (that is, hide) its data members.

7.1.1 Designing the Sales_data Class
Ultimately, we want Sales_data to support the same set of operations as the
Sales_item class. The Sales_item class had one member function (§ 1.5.2,
p. 23), named isbn, and supported the +, =, +=, <<, and >> operators.

We’ll learn how to define our own operators in Chapter 14. For now, we’ll
define ordinary (named) functions for these operations. For reasons that we will
explain in § 14.1 (p. 555), the functions that do addition and IO will not be members
of Sales_data. Instead, we’ll define those functions as ordinary functions. The
function that handles compound assignment will be a member, and for reasons
we’ll explain in § 7.1.5 (p. 267), our class doesn’t need to define assignment.

Thus, the interface to Sales_data consists of the following operations:

• An isbn member function to return the object’s ISBN

• A combine member function to add one Sales_data object into another

• A function named add to add two Sales_data objects

• A read function to read data from an istream into a Sales_data object

• A print function to print the value of a Sales_data object on an ostream
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KEY CONCEPT: DIFFERENT KINDS OF PROGRAMMING ROLES

Programmers tend to think about the people who will run their applications as users.
Similarly a class designer designs and implements a class for users of that class. In
this case, the user is a programmer, not the ultimate user of the application.

When we refer to a user, the context makes it clear which kind of user is meant. If
we speak of user code or the user of the Sales_data class, we mean a programmer
who is using a class. If we speak of the user of the bookstore application, we mean
the manager of the store who is running the application.

C++ programmers tend to speak of users interchangeably as users of the
application or users of a class.

In simple applications, the user of a class and the designer of the class might be
one and the same person. Even in such cases, it is useful to keep the roles distinct.
When we design the interface of a class, we should think about how easy it will be to
use the class. When we use the class, we shouldn’t think about how the class works.

Authors of successful applications do a good job of understanding and implement-
ing the needs of the application’s users. Similarly, good class designers pay close at-
tention to the needs of the programmers who will use the class. A well-designed class
has an interface that is intuitive and easy to use and has an implementation that is
efficient enough for its intended use.

Using the Revised Sales_data Class

Before we think about how to implement our class, let’s look at how we can use
our interface functions. As one example, we can use these functions to write a
version of the bookstore program from § 1.6 (p. 24) that works with Sales_data
objects rather than Sales_items:

Sales_data total; // variable to hold the running sum
if (read(cin, total)) { // read the first transaction

Sales_data trans; // variable to hold data for the next transaction
while(read(cin, trans)) { // read the remaining transactions

if (total.isbn() == trans.isbn()) // check the isbns
total.combine(trans); // update the running total

else {
print(cout, total) << endl; // print the results
total = trans; // process the next book

}
}
print(cout, total) << endl; // print the last transaction

} else { // there was no input
cerr << "No data?!" << endl; // notify the user

}

We start by defining a Sales_data object to hold the running total. Inside the
if condition, we call read to read the first transaction into total. This condi-
tion works like other loops we’ve written that used the >> operator. Like the >>
operator, our read function will return its stream parameter, which the condition
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checks (§ 4.11.2, p. 162). If the read fails, we fall through to the else to print an
error message.

If there are data to read, we define trans, which we’ll use to hold each trans-
action. The condition in the while also checks the stream returned by read. So
long as the input operations in read succeed, the condition succeeds and we have
another transaction to process.

Inside the while, we call the isbnmembers of total and trans to fetch their
respective ISBNs. If total and trans refer to the same book, we call combine to
add the components of trans into the running total in total. If trans represents
a new book, we call print to print the total for the previous book. Because print
returns a reference to its stream parameter, we can use the result of print as the
left-hand operand of the <<. We do so to print a newline following the output
generated by print. We next assign trans to total, thus setting up to process
the records for the next book in the file.

After we have exhausted the input, we have to remember to print the data for
the last transaction, which we do in the call to print following the while loop.

EXE R C I S E S SE C TI ON 7.1.1

Exercise 7.1: Write a version of the transaction-processing program from § 1.6 (p. 24)
using the Sales_data class you defined for the exercises in § 2.6.1 (p. 72).

7.1.2 Defining the Revised Sales_data Class
Our revised class will have the same data members as the version we defined
in § 2.6.1 (p. 72): bookNo, a string representing the ISBN; units_sold, an
unsigned that says how many copies of the book were sold; and revenue, a
double representing the total revenue for those sales.

As we’ve seen, our class will also have two member functions, combine and
isbn. In addition, we’ll give Sales_data another member function to return
the average price at which the books were sold. This function, which we’ll name
avg_price, isn’t intended for general use. It will be part of the implementation,
not part of the interface.

We define (§ 6.1, p. 202) and declare (§ 6.1.2, p. 206) member functions similarly
to ordinary functions. Member functions must be declared inside the class. Mem-
ber functions may be defined inside the class itself or outside the class body. Non-
member functions that are part of the interface, such as add, read, and print, are
declared and defined outside the class.

With this knowledge, we’re ready to write our revised version of Sales_data:

struct Sales_data {
// new members: operations on Sales_data objects
std::string isbn() const { return bookNo; }
Sales_data& combine(const Sales_data&);
double avg_price() const;
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// data members are unchanged from § 2.6.1 (p. 72)
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};
// nonmember Sales_data interface functions
Sales_data add(const Sales_data&, const Sales_data&);
std::ostream &print(std::ostream&, const Sales_data&);
std::istream &read(std::istream&, Sales_data&);

Functions defined in the class are implicitly inline (§ 6.5.2, p. 238).

Defining Member Functions

Although every member must be declared inside its class, we can define a member
function’s body either inside or outside of the class body. In Sales_data, isbn
is defined inside the class; combine and avg_price will be defined elsewhere.

We’ll start by explaining the isbn function, which returns a string and has
an empty parameter list:

std::string isbn() const { return bookNo; }

As with any function, the body of a member function is a block. In this case, the
block contains a single return statement that returns the bookNo data member
of a Sales_data object. The interesting thing about this function is how it gets
the object from which to fetch the bookNo member.

Introducing this

Let’s look again at a call to the isbn member function:

total.isbn()

Here we use the dot operator (§ 4.6, p. 150) to fetch the isbn member of the object
named total, which we then call.

With one exception that we’ll cover in § 7.6 (p. 300), when we call a mem-
ber function we do so on behalf of an object. When isbn refers to members of
Sales_data (e.g., bookNo), it is referring implicitly to the members of the object
on which the function was called. In this call, when isbn returns bookNo, it is
implicitly returning total.bookNo.

Member functions access the object on which they were called through an ex-
tra, implicit parameter named this. When we call a member function, this is
initialized with the address of the object on which the function was invoked. For
example, when we call

total.isbn()

the compiler passes the address of total to the implicit this parameter in isbn.
It is as if the compiler rewrites this call as
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// pseudo-code illustration of how a call to a member function is translated
Sales_data::isbn(&total)

which calls the isbn member of Sales_data passing the address of total.
Inside a member function, we can refer directly to the members of the object on

which the function was called. We do not have to use a member access operator to
use the members of the object to which this points. Any direct use of a member
of the class is assumed to be an implicit reference through this. That is, when
isbn uses bookNo, it is implicitly using the member to which this points. It is as
if we had written this->bookNo.

The this parameter is defined for us implicitly. Indeed, it is illegal for us to
define a parameter or variable named this. Inside the body of a member function,
we can use this. It would be legal, although unnecessary, to define isbn as

std::string isbn() const { return this->bookNo; }

Because this is intended to always refer to “this” object, this is a const
pointer (§ 2.4.2, p. 62). We cannot change the address that this holds.

Introducing const Member Functions

The other important part about the isbn function is the keyword const that fol-
lows the parameter list. The purpose of that const is to modify the type of the
implicit this pointer.

By default, the type of this is a const pointer to the nonconst version of the
class type. For example, by default, the type of this in a Sales_data member
function is Sales_data *const. Although this is implicit, it follows the normal
initialization rules, which means that (by default) we cannot bind this to a const
object (§ 2.4.2, p. 62). This fact, in turn, means that we cannot call an ordinary
member function on a const object.

If isbn were an ordinary function and if this were an ordinary pointer pa-
rameter, we would declare this as const Sales_data *const. After all, the
body of isbn doesn’t change the object to which this points, so our function
would be more flexible if this were a pointer to const (§ 6.2.3, p. 213).

However, this is implicit and does not appear in the parameter list. There is
no place to indicate that this should be a pointer to const. The language resolves
this problem by letting us put const after the parameter list of a member function.
A const following the parameter list indicates that this is a pointer to const.
Member functions that use const in this way are const member functions.

We can think of the body of isbn as if it were written as

// pseudo-code illustration of how the implicit this pointer is used
// this code is illegal: we may not explicitly define the this pointer ourselves
// note that this is a pointer to const because isbn is a const member
std::string Sales_data::isbn(const Sales_data *const this)
{ return this->isbn; }

The fact that this is a pointer to const means that const member functions
cannot change the object on which they are called. Thus, isbn may read but not
write to the data members of the objects on which it is called.
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Objects that are const, and references or pointers to const objects,
may call only const member functions.

Class Scope and Member Functions

Recall that a class is itself a scope (§ 2.6.1, p. 72). The definitions of the member
functions of a class are nested inside the scope of the class itself. Hence, isbn’s use
of the name bookNo is resolved as the data member defined inside Sales_data.

It is worth noting that isbn can use bookNo even though bookNo is defined
after isbn. As we’ll see in § 7.4.1 (p. 283), the compiler processes classes in two
steps—the member declarations are compiled first, after which the member func-
tion bodies, if any, are processed. Thus, member function bodies may use other
members of their class regardless of where in the class those members appear.

Defining a Member Function outside the Class

As with any other function, when we define a member function outside the class
body, the member’s definition must match its declaration. That is, the return type,
parameter list, and name must match the declaration in the class body. If the mem-
ber was declared as a const member function, then the definition must also spec-
ify const after the parameter list. The name of a member defined outside the class
must include the name of the class of which it is a member:

double Sales_data::avg_price() const {
if (units_sold)

return revenue/units_sold;
else

return 0;
}

The function name, Sales_data::avg_price, uses the scope operator (§ 1.2,
p. 8) to say that we are defining the function named avg_price that is declared
in the scope of the Sales_data class. Once the compiler sees the function name,
the rest of the code is interpreted as being inside the scope of the class. Thus, when
avg_price refers to revenue and units_sold, it is implicitly referring to the
members of Sales_data.

Defining a Function to Return “This” Object

The combine function is intended to act like the compound assignment operator,
+=. The object on which this function is called represents the left-hand operand of
the assignment. The right-hand operand is passed as an explicit argument:

Sales_data& Sales_data::combine(const Sales_data &rhs)
{

units_sold += rhs.units_sold; // add the members of rhs into
revenue += rhs.revenue; // the members of ‘‘this’’ object
return *this; // return the object on which the function was called

}
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When our transaction-processing program calls

total.combine(trans); // update the running total

the address of total is bound to the implicit this parameter and rhs is bound
to trans. Thus, when combine executes

units_sold += rhs.units_sold; // add the members of rhs into

the effect is to add total.units_sold and trans.units_sold, storing the
result back into total.units_sold.

The interesting part about this function is its return type and the return state-
ment. Ordinarily, when we define a function that operates like a built-in operator,
our function should mimic the behavior of that operator. The built-in assignment
operators return their left-hand operand as an lvalue (§ 4.4, p. 144). To return an
lvalue, our combine function must return a reference (§ 6.3.2, p. 226). Because the
left-hand operand is a Sales_data object, the return type is Sales_data&.

As we’ve seen, we do not need to use the implicit this pointer to access the
members of the object on which a member function is executing. However, we do
need to use this to access the object as a whole:

return *this; // return the object on which the function was called

Here the return statement dereferences this to obtain the object on which the
function is executing. That is, for the call above, we return a reference to total.

EXE R C I S E S SE C TI ON 7.1.2

Exercise 7.2: Add the combine and isbn members to the Sales_data class you
wrote for the exercises in § 2.6.2 (p. 76).

Exercise 7.3: Revise your transaction-processing program from § 7.1.1 (p. 256) to use
these members.

Exercise 7.4: Write a class named Person that represents the name and address of
a person. Use a string to hold each of these elements. Subsequent exercises will
incrementally add features to this class.

Exercise 7.5: Provide operations in your Person class to return the name and ad-
dress. Should these functions be const? Explain your choice.

7.1.3 Defining Nonmember Class-Related Functions
Class authors often define auxiliary functions, such as our add, read, and print
functions. Although such functions define operations that are conceptually part of
the interface of the class, they are not part of the class itself.

We define nonmember functions as we would any other function. As with
any other function, we normally separate the declaration of the function from its
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definition (§ 6.1.2, p. 206). Functions that are conceptually part of a class, but not
defined inside the class, are typically declared (but not defined) in the same header
as the class itself. That way users need to include only one file to use any part of
the interface.

Ordinarily, nonmember functions that are part of the interface of a class
should be declared in the same header as the class itself.

Defining the read and print Functions

The read and print functions do the same job as the code in § 2.6.2 (p. 75) and not
surprisingly, the bodies of our functions look a lot like the code presented there:

// input transactions contain ISBN, number of copies sold, and sales price
istream &read(istream &is, Sales_data &item)
{

double price = 0;
is >> item.bookNo >> item.units_sold >> price;
item.revenue = price * item.units_sold;
return is;

}

ostream &print(ostream &os, const Sales_data &item)
{

os << item.isbn() << " " << item.units_sold << " "
<< item.revenue << " " << item.avg_price();

return os;
}

The read function reads data from the given stream into the given object. The
print function prints the contents of the given object on the given stream.

However, there are two points worth noting about these functions. First, both
read and print take a reference to their respective IO class types. The IO classes
are types that cannot be copied, so we may only pass them by reference (§ 6.2.2,
p. 210). Moreover, reading or writing to a stream changes that stream, so both
functions take ordinary references, not references to const.

The second thing to note is that print does not print a newline. Ordinarily,
functions that do output should do minimal formatting. That way user code can
decide whether the newline is needed.

Defining the add Function

The add function takes two Sales_data objects and returns a new Sales_data
representing their sum:

Sales_data add(const Sales_data &lhs, const Sales_data &rhs)
{

Sales_data sum = lhs; // copy data members from lhs into sum
sum.combine(rhs); // add data members from rhs into sum
return sum;

}
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In the body of the function we define a new Sales_data object named sum to
hold the sum of our two transactions. We initialize sum as a copy of lhs. By
default, copying a class object copies that object’s members. After the copy, the
bookNo, units_sold, and revenue members of sum will have the same values
as those in lhs. Next we call combine to add the units_sold and revenue
members of rhs into sum. When we’re done, we return a copy of sum.

EXE R C I S E S SE C TI ON 7.1.3

Exercise 7.6: Define your own versions of the add, read, and print functions.

Exercise 7.7: Rewrite the transaction-processing program you wrote for the exercises
in § 7.1.2 (p. 260) to use these new functions.

Exercise 7.8: Why does read define its Sales_data parameter as a plain reference
and print define its parameter as a reference to const?

Exercise 7.9: Add operations to read and print Person objects to the code you wrote
for the exercises in § 7.1.2 (p. 260).

Exercise 7.10: What does the condition in the following if statement do?

if (read(read(cin, data1), data2))

7.1.4 Constructors
Each class defines how objects of its type can be initialized. Classes control object
initialization by defining one or more special member functions known as con-
structors. The job of a constructor is to initialize the data members of a class object.
A constructor is run whenever an object of a class type is created.

In this section, we’ll introduce the basics of how to define a constructor. Con-
structors are a surprisingly complex topic. Indeed, we’ll have more to say about
constructors in § 7.5 (p. 288), § 15.7 (p. 622), and § 18.1.3 (p. 777), and in Chapter 13.

Constructors have the same name as the class. Unlike other functions, con-
structors have no return type. Like other functions, constructors have a (possibly
empty) parameter list and a (possibly empty) function body. A class can have
multiple constructors. Like any other overloaded function (§ 6.4, p. 230), the con-
structors must differ from each other in the number or types of their parameters.

Unlike other member functions, constructors may not be declared as const
(§ 7.1.2, p. 258). When we create a const object of a class type, the object does not
assume its “constness” until after the constructor completes the object’s initial-
ization. Thus, constructors can write to const objects during their construction.

The Synthesized Default Constructor

Our Sales_data class does not define any constructors, yet the programs we’ve
written that use Sales_data objects compile and run correctly. As an example,
the program on page 255 defined two objects:
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Sales_data total; // variable to hold the running sum
Sales_data trans; // variable to hold data for the next transaction

The question naturally arises: How are total and trans initialized?
We did not supply an initializer for these objects, so we know that they are

default initialized (§ 2.2.1, p. 43). Classes control default initialization by defining
a special constructor, known as the default constructor. The default constructor is
one that takes no arguments.

As we’ll, see the default constructor is special in various ways, one of which
is that if our class does not explicitly define any constructors, the compiler will
implicitly define the default constructor for us

The compiler-generated constructor is known as the synthesized default con-
structor. For most classes, this synthesized constructor initializes each data mem-
ber of the class as follows:

• If there is an in-class initializer (§ 2.6.1, p. 73), use it to initialize the member.

• Otherwise, default-initialize (§ 2.2.1, p. 43) the member.

Because Sales_data provides initializers for units_sold and revenue, the
synthesized default constructor uses those values to initialize those members. It
default initializes bookNo to the empty string.

Some Classes Cannot Rely on the Synthesized Default Constructor

Only fairly simple classes—such as the current definition of Sales_data—can
rely on the synthesized default constructor. The most common reason that a class
must define its own default constructor is that the compiler generates the default
for us only if we do not define any other constructors for the class. If we define any
constructors, the class will not have a default constructor unless we define that
constructor ourselves. The basis for this rule is that if a class requires control to
initialize an object in one case, then the class is likely to require control in all cases.

The compiler generates a default constructor automatically only if a
class declares no constructors.

A second reason to define the default constructor is that for some classes, the
synthesized default constructor does the wrong thing. Remember that objects of
built-in or compound type (such as arrays and pointers) that are defined inside a
block have undefined value when they are default initialized (§ 2.2.1, p. 43). The
same rule applies to members of built-in type that are default initialized. There-
fore, classes that have members of built-in or compound type should ordinarily
either initialize those members inside the class or define their own version of the
default constructor. Otherwise, users could create objects with members that have
undefined value.

Classes that have members of built-in or compound type usually should
rely on the synthesized default constructor only if all such members have
in-class initializers.
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A third reason that some classes must define their own default constructor is
that sometimes the compiler is unable to synthesize one. For example, if a class has
a member that has a class type, and that class doesn’t have a default constructor,
then the compiler can’t initialize that member. For such classes, we must define
our own version of the default constructor. Otherwise, the class will not have a
usable default constructor. We’ll see in § 13.1.6 (p. 508) additional circumstances
that prevent the compiler from generating an appropriate default constructor.

Defining the Sales_data Constructors

For our Sales_data class we’ll define four constructors with the following pa-
rameters:

• An istream& from which to read a transaction.

• A const string& representing an ISBN, an unsigned representing the
count of how many books were sold, and a double representing the price at
which the books sold.

• A const string& representing an ISBN. This constructor will use default
values for the other members.

• An empty parameter list (i.e., the default constructor) which as we’ve just
seen we must define because we have defined other constructors.

Adding these members to our class, we now have

struct Sales_data {
// constructors added
Sales_data() = default;
Sales_data(const std::string &s): bookNo(s) { }
Sales_data(const std::string &s, unsigned n, double p):

bookNo(s), units_sold(n), revenue(p*n) { }
Sales_data(std::istream &);
// other members as before
std::string isbn() const { return bookNo; }
Sales_data& combine(const Sales_data&);
double avg_price() const;
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};

What = default Means

We’ll start by explaining the default constructor:

Sales_data() = default;

First, note that this constructor defines the default constructor because it takes no
arguments. We are defining this constructor only because we want to provide other
constructors as well as the default constructor. We want this constructor to do
exactly the same work as the synthesized version we had been using.
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Under the new standard, if we want the default behavior, we can ask the com-
piler to generate the constructor for us by writing = default after the parameter
list. The = default can appear with the declaration inside the class body or on
the definition outside the class body. Like any other function, if the = default
appears inside the class body, the default constructor will be inlined; if it appears
on the definition outside the class, the member will not be inlined by default.

The default constructor works for Sales_data only because we pro-
vide initializers for the data members with built-in type. If your com-
piler does not support in-class initializers, your default constructor
should use the constructor initializer list (described immediately follow-
ing) to initialize every member of the class.

Constructor Initializer List

Next we’ll look at the other two constructors that were defined inside the class:

Sales_data(const std::string &s): bookNo(s) { }
Sales_data(const std::string &s, unsigned n, double p):

bookNo(s), units_sold(n), revenue(p*n) { }

The new parts in these definitions are the colon and the code between it and the
curly braces that define the (empty) function bodies. This new part is a constructor
initializer list, which specifies initial values for one or more data members of the
object being created. The constructor initializer is a list of member names, each of
which is followed by that member’s initial value in parentheses (or inside curly
braces). Multiple member initializations are separated by commas.

The constructor that has three parameters uses its first two parameters to ini-
tialize the bookNo and units_sold members. The initializer for revenue is
calculated by multiplying the number of books sold by the price per book.

The constructor that has a single string parameter uses that string to ini-
tialize bookNo but does not explicitly initialize the units_sold and revenue
members. When a member is omitted from the constructor initializer list, it is im-
plicitly initialized using the same process as is used by the synthesized default
constructor. In this case, those members are initialized by the in-class initializers.
Thus, the constructor that takes a string is equivalent to

// has the same behavior as the original constructor defined above
Sales_data(const std::string &s):

bookNo(s), units_sold(0), revenue(0){ }

It is usually best for a constructor to use an in-class initializer if one exists and
gives the member the correct value. On the other hand, if your compiler does not
yet support in-class initializers, then every constructor should explicitly initialize
every member of built-in type.

Constructors should not override in-class initializers except to use a
different initial value. If you can’t use in-class initializers, each con-
structor should explicitly initialize every member of built-in type.
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It is worth noting that both constructors have empty function bodies. The only
work these constructors need to do is give the data members their values. If there
is no further work, then the function body is empty.

Defining a Constructor outside the Class Body

Unlike our other constructors, the constructor that takes an istream does have
work to do. Inside its function body, this constructor calls read to give the data
members new values:

Sales_data::Sales_data(std::istream &is)
{

read(is, *this); // read will read a transaction from is into this object
}

Constructors have no return type, so this definition starts with the name of the
function we are defining. As with any other member function, when we define a
constructor outside of the class body, we must specify the class of which the con-
structor is a member. Thus, Sales_data::Sales_data says that we’re defining
the Sales_data member named Sales_data. This member is a constructor be-
cause it has the same name as its class.

In this constructor there is no constructor initializer list, although technically
speaking, it would be more correct to say that the constructor initializer list is
empty. Even though the constructor initializer list is empty, the members of this
object are still initialized before the constructor body is executed.

Members that do not appear in the constructor initializer list are initialized by
the corresponding in-class initializer (if there is one) or are default initialized. For
Sales_data that means that when the function body starts executing, bookNo
will be the empty string, and units_sold and revenue will both be 0.

To understand the call to read, remember that read’s second parameter is a
reference to a Sales_data object. In § 7.1.2 (p. 259), we noted that we use this
to access the object as a whole, rather than a member of the object. In this case, we
use *this to pass “this” object as an argument to the read function.

EXE R C I S E S SE C TI ON 7.1.4

Exercise 7.11: Add constructors to your Sales_data class and write a program to
use each of the constructors.

Exercise 7.12: Move the definition of the Sales_data constructor that takes an
istream into the body of the Sales_data class.

Exercise 7.13: Rewrite the program from page 255 to use the istream constructor.

Exercise 7.14: Write a version of the default constructor that explicitly initializes the
members to the values we have provided as in-class initializers.

Exercise 7.15: Add appropriate constructors to your Person class.
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7.1.5 Copy, Assignment, and Destruction
In addition to defining how objects of the class type are initialized, classes also
control what happens when we copy, assign, or destroy objects of the class type.
Objects are copied in several contexts, such as when we initialize a variable or
when we pass or return an object by value (§ 6.2.1, p. 209, and § 6.3.2, p. 224).
Objects are assigned when we use the assignment operator (§ 4.4, p. 144). Objects
are destroyed when they cease to exist, such as when a local object is destroyed
on exit from the block in which it was created (§ 6.1.1, p. 204). Objects stored in a
vector (or an array) are destroyed when that vector (or array) is destroyed.

If we do not define these operations, the compiler will synthesize them for us.
Ordinarily, the versions that the compiler generates for us execute by copying,
assigning, or destroying each member of the object. For example, in our bookstore
program in § 7.1.1 (p. 255), when the compiler executes this assignment

total = trans; // process the next book

it executes as if we had written

// default assignment for Sales_data is equivalent to:
total.bookNo = trans.bookNo;
total.units_sold = trans.units_sold;
total.revenue = trans.revenue;

We’ll show how we can define our own versions of these operations in Chapter 13.

Some Classes Cannot Rely on the Synthesized Versions

Although the compiler will synthesize the copy, assignment, and destruction op-
erations for us, it is important to understand that for some classes the default ver-
sions do not behave appropriately. In particular, the synthesized versions are un-
likely to work correctly for classes that allocate resources that reside outside the
class objects themselves. As one example, in Chapter 12 we’ll see how C++ pro-
grams allocate and manage dynamic memory. As we’ll see in § 13.1.4 (p. 504),
classes that manage dynamic memory, generally cannot rely on the synthesized
versions of these operations.

However, it is worth noting that many classes that need dynamic memory can
(and generally should) use a vector or a string to manage the necessary stor-
age. Classes that use vectors and strings avoid the complexities involved in
allocating and deallocating memory.

Moreover, the synthesized versions for copy, assignment, and destruction work
correctly for classes that have vector or string members. When we copy or
assign an object that has a vector member, the vector class takes care of copy-
ing or assigning the elements in that member. When the object is destroyed, the
vector member is destroyed, which in turn destroys the elements in the vector.
Similarly for strings.

Until you know how to define the operations covered in Chapter 13, the
resources your classes allocate should be stored directly as data mem-
bers of the class.
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7.2 Access Control and Encapsulation
At this point, we have defined an interface for our class; but nothing forces users
to use that interface. Our class is not yet encapsulated—users can reach inside a
Sales_data object and meddle with its implementation. In C++ we use access
specifiers to enforce encapsulation:

• Members defined after a public specifier are accessible to all parts of the
program. The public members define the interface to the class.

• Members defined after a private specifier are accessible to the member
functions of the class but are not accessible to code that uses the class. The
private sections encapsulate (i.e., hide) the implementation.

Redefining Sales_data once again, we now have

class Sales_data {
public: // access specifier added

Sales_data() = default;
Sales_data(const std::string &s, unsigned n, double p):

bookNo(s), units_sold(n), revenue(p*n) { }
Sales_data(const std::string &s): bookNo(s) { }
Sales_data(std::istream&);
std::string isbn() const { return bookNo; }
Sales_data &combine(const Sales_data&);

private: // access specifier added
double avg_price() const

{ return units_sold ? revenue/units_sold : 0; }
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};

The constructors and member functions that are part of the interface (e.g., isbn
and combine) follow the public specifier; the data members and the functions
that are part of the implementation follow the private specifier.

A class may contain zero or more access specifiers, and there are no restrictions
on how often an access specifier may appear. Each access specifier specifies the
access level of the succeeding members. The specified access level remains in effect
until the next access specifier or the end of the class body.

Using the class or struct Keyword

We also made another, more subtle, change: We used the class keyword rather
than struct to open the class definition. This change is strictly stylistic; we can
define a class type using either keyword. The only difference between struct
and class is the default access level.

A class may define members before the first access specifier. Access to such
members depends on how the class is defined. If we use the struct keyword,
the members defined before the first access specifier are public; if we use class,
then the members are private.
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As a matter of programming style, when we define a class intending for all of its
members to be public, we use struct. If we intend to have private members,
then we use class.

The only difference between using class and using struct to define a
class is the default access level.

EXE R C I S E S SE C TI ON 7.2

Exercise 7.16: What, if any, are the constraints on where and how often an access spec-
ifier may appear inside a class definition? What kinds of members should be defined
after a public specifier? What kinds should be private?

Exercise 7.17: What, if any, are the differences between using class or struct?

Exercise 7.18: What is encapsulation? Why is it useful?

Exercise 7.19: Indicate which members of your Person class you would declare as
public and which you would declare as private. Explain your choice.

7.2.1 Friends
Now that the data members of Sales_data are private, our read, print, and
add functions will no longer compile. The problem is that although these functions
are part of the Sales_data interface, they are not members of the class.

A class can allow another class or function to access its nonpublic members
by making that class or function a friend. A class makes a function its friend by
including a declaration for that function preceded by the keyword friend:

class Sales_data {
// friend declarations for nonmember Sales_data operations added
friend Sales_data add(const Sales_data&, const Sales_data&);
friend std::istream &read(std::istream&, Sales_data&);
friend std::ostream &print(std::ostream&, const Sales_data&);
// other members and access specifiers as before
public:

Sales_data() = default;
Sales_data(const std::string &s, unsigned n, double p):

bookNo(s), units_sold(n), revenue(p*n) { }
Sales_data(const std::string &s): bookNo(s) { }
Sales_data(std::istream&);
std::string isbn() const { return bookNo; }
Sales_data &combine(const Sales_data&);

private:
std::string bookNo;
unsigned units_sold = 0;
double revenue = 0.0;

};
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// declarations for nonmember parts of the Sales_data interface
Sales_data add(const Sales_data&, const Sales_data&);
std::istream &read(std::istream&, Sales_data&);
std::ostream &print(std::ostream&, const Sales_data&);

Friend declarations may appear only inside a class definition; they may appear
anywhere in the class. Friends are not members of the class and are not affected
by the access control of the section in which they are declared. We’ll have more to
say about friendship in § 7.3.4 (p. 279).

Ordinarily it is a good idea to group friend declarations together at the
beginning or end of the class definition.

KEY CONCEPT: BENEFITS OF ENCAPSULATION

Encapsulation provides two important advantages:

• User code cannot inadvertently corrupt the state of an encapsulated object.

• The implementation of an encapsulated class can change over time without re-
quiring changes in user-level code.

By defining data members as private, the class author is free to make changes in
the data. If the implementation changes, only the class code needs to be examined to
see what effect the change may have. User code needs to change only when the inter-
face changes. If the data are public, then any code that used the old data members
might be broken. It would be necessary to locate and rewrite any code that relied on
the old representation before the program could be used again.

Another advantage of making data members private is that the data are protected
from mistakes that users might introduce. If there is a bug that corrupts an object’s
state, the places to look for the bug are localized: Only code that is part of the imple-
mentation could be responsible for the error. The search for the mistake is limited,
greatly easing the problems of maintenance and program correctness.

Although user code need not change when a class definition changes, the
source files that use a class must be recompiled any time the class changes.

Declarations for Friends

A friend declaration only specifies access. It is not a general declaration of the
function. If we want users of the class to be able to call a friend function, then we
must also declare the function separately from the friend declaration.

To make a friend visible to users of the class, we usually declare each friend
(outside the class) in the same header as the class itself. Thus, our Sales_data
header should provide separate declarations (aside from the friend declarations
inside the class body) for read, print, and add.

Many compilers do not enforce the rule that friend functions must be
declared outside the class before they can be used.
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Some compilers allow calls to a friend function when there is no ordinary
declaration for that function. Even if your compiler allows such calls, it is a good
idea to provide separate declarations for friends. That way you won’t have to
change your code if you use a compiler that enforces this rule.

EXE R C I S E S SE C TI ON 7.2.1

Exercise 7.20: When are friends useful? Discuss the pros and cons of using friends.

Exercise 7.21: Update your Sales_data class to hide its implementation. The pro-
grams you’ve written to use Sales_data operations should still continue to work.
Recompile those programs with your new class definition to verify that they still work.

Exercise 7.22: Update your Person class to hide its implementation.

7.3 Additional Class Features
The Sales_data class is pretty simple, yet it allowed us to explore quite a bit of
the language support for classes. In this section, we’ll cover some additional class-
related features that Sales_data doesn’t need to use. These features include type
members, in-class initializers for members of class type, mutable data members,
inlinemember functions, returning *this from a member function, more about
how we define and use class types, and class friendship.

7.3.1 Class Members Revisited
To explore several of these additional features, we’ll define a pair of cooperating
classes named Screen and Window_mgr.

Defining a Type Member

A Screen represents a window on a display. Each Screen has a stringmember
that holds the Screen’s contents, and three string::size_type members that
represent the position of the cursor, and the height and width of the screen.

In addition to defining data and function members, a class can define its own
local names for types. Type names defined by a class are subject to the same access
controls as any other member and may be either public or private:

class Screen {
public:

typedef std::string::size_type pos;
private:

pos cursor = 0;
pos height = 0, width = 0;
std::string contents;

};
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We defined pos in the public part of Screen because we want users to use that
name. Users of Screen shouldn’t know that Screen uses a string to hold its
data. By defining pos as a publicmember, we can hide this detail of how Screen
is implemented.

There are two points to note about the declaration of pos. First, although we
used a typedef (§ 2.5.1, p. 67), we can equivalently use a type alias (§ 2.5.1, p. 68):

class Screen {
public:

// alternative way to declare a type member using a type alias
using pos = std::string::size_type;
// other members as before

};

The second point is that, for reasons we’ll explain in § 7.4.1 (p. 284), unlike ordinary
members, members that define types must appear before they are used. As a result,
type members usually appear at the beginning of the class.

Member Functions of class Screen

To make our class more useful, we’ll add a constructor that will let users define the
size and contents of the screen, along with members to move the cursor and to get
the character at a given location:

class Screen {
public:

typedef std::string::size_type pos;
Screen() = default; // needed because Screen has another constructor
// cursor initialized to 0 by its in-class initializer
Screen(pos ht, pos wd, char c): height(ht), width(wd),

contents(ht * wd, c) { }
char get() const // get the character at the cursor

{ return contents[cursor]; } // implicitly inline
inline char get(pos ht, pos wd) const; // explicitly inline
Screen &move(pos r, pos c); // can be made inline later

private:
pos cursor = 0;
pos height = 0, width = 0;
std::string contents;

};

Because we have provided a constructor, the compiler will not automatically gen-
erate a default constructor for us. If our class is to have a default constructor, we
must say so explicitly. In this case, we use = default to ask the compiler to syn-
thesize the default constructor’s definition for us (§ 7.1.4, p. 264).

It’s also worth noting that our second constructor (that takes three arguments)
implicitly uses the in-class initializer for the cursor member (§ 7.1.4, p. 266). If
our class did not have an in-class initializer for cursor, we would have explicitly
initialized cursor along with the other members.
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Making Members inline

Classes often have small functions that can benefit from being inlined. As we’ve
seen, member functions defined inside the class are automatically inline (§ 6.5.2,
p. 238). Thus, Screen’s constructors and the version of get that returns the char-
acter denoted by the cursor are inline by default.

We can explicitly declare a member function as inline as part of its declara-
tion inside the class body. Alternatively, we can specify inline on the function
definition that appears outside the class body:

inline // we can specify inline on the definition
Screen &Screen::move(pos r, pos c)
{

pos row = r * width; // compute the row location
cursor = row + c; // move cursor to the column within that row
return *this; // return this object as an lvalue

}

char Screen::get(pos r, pos c) const // declared as inline in the class
{

pos row = r * width; // compute row location
return contents[row + c]; // return character at the given column

}

Although we are not required to do so, it is legal to specify inline on both the
declaration and the definition. However, specifying inline only on the definition
outside the class can make the class easier to read.

For the same reasons that we define inline functions in headers
(§ 6.5.2, p. 240), inline member functions should be defined in the
same header as the corresponding class definition.

Overloading Member Functions

As with nonmember functions, member functions may be overloaded (§ 6.4, p. 230)
so long as the functions differ by the number and/or types of parameters. The
same function-matching (§ 6.4, p. 233) process is used for calls to member functions
as for nonmember functions.

For example, our Screen class defined two versions of get. One version re-
turns the character currently denoted by the cursor; the other returns the character
at a given position specified by its row and column. The compiler uses the number
of arguments to determine which version to run:

Screen myscreen;

char ch = myscreen.get();// calls Screen::get()
ch = myscreen.get(0,0); // calls Screen::get(pos, pos)

mutable Data Members

It sometimes (but not very often) happens that a class has a data member that we
want to be able to modify, even inside a constmember function. We indicate such
members by including the mutable keyword in their declaration.
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A mutabledata member is never const, even when it is a member of a const
object. Accordingly, a const member function may change a mutable mem-
ber. As an example, we’ll give Screen a mutable member named access_ctr,
which we’ll use to track how often each Screen member function is called:

class Screen {
public:

void some_member() const;
private:

mutable size_t access_ctr; // may change even in a const object
// other members as before

};
void Screen::some_member() const
{

++access_ctr; // keep a count of the calls to any member function
// whatever other work this member needs to do

}

Despite the fact that some_member is a const member function, it can change
the value of access_ctr. That member is a mutable member, so any member
function, including const functions, can change its value.

Initializers for Data Members of Class Type

In addition to defining the Screen class, we’ll define a window manager class
that represents a collection of Screens on a given display. This class will have a
vector of Screens in which each element represents a particular Screen. By de-
fault, we’d like our Window_mgr class to start up with a single, default-initialized
Screen. Under the new standard, the best way to specify this default value is as
an in-class initializer (§ 2.6.1, p. 73):

class Window_mgr {
private:

// Screens this Window_mgr is tracking
// by default, a Window_mgr has one standard sized blank Screen
std::vector<Screen> screens{Screen(24, 80, ’ ’)};

};

When we initialize a member of class type, we are supplying arguments to a con-
structor of that member’s type. In this case, we list initialize our vector member
(§ 3.3.1, p. 98) with a single element initializer. That initializer contains a Screen
value that is passed to the vector<Screen> constructor to create a one-element
vector. That value is created by the Screen constructor that takes two size pa-
rameters and a character to create a blank screen of the given size.

As we’ve seen, in-class initializers must use either the = form of initialization
(which we used when we initialized the the data members of Screen) or the direct
form of initialization using curly braces (as we do for screens).

When we provide an in-class initializer, we must do so following an =
sign or inside braces.
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EXE R C I S E S SE C TI ON 7.3.1

Exercise 7.23: Write your own version of the Screen class.

Exercise 7.24: Give your Screen class three constructors: a default constructor; a con-
structor that takes values for height and width and initializes the contents to hold the
given number of blanks; and a constructor that takes values for height, width, and a
character to use as the contents of the screen.

Exercise 7.25: Can Screen safely rely on the default versions of copy and assign-
ment? If so, why? If not, why not?

Exercise 7.26: Define Sales_data::avg_price as an inline function.

7.3.2 Functions That Return *this
Next we’ll add functions to set the character at the cursor or at a given location:

class Screen {
public:

Screen &set(char);
Screen &set(pos, pos, char);
// other members as before

};
inline Screen &Screen::set(char c)
{

contents[cursor] = c; // set the new value at the current cursor location
return *this; // return this object as an lvalue

}
inline Screen &Screen::set(pos r, pos col, char ch)
{

contents[r*width + col] = ch; // set specified location to given value
return *this; // return this object as an lvalue

}

Like the move operation, our set members return a reference to the object on
which they are called (§ 7.1.2, p. 259). Functions that return a reference are lvalues
(§ 6.3.2, p. 226), which means that they return the object itself, not a copy of the
object. If we concatenate a sequence of these actions into a single expression:

// move the cursor to a given position, and set that character
myScreen.move(4,0).set(’#’);

these operations will execute on the same object. In this expression, we first move
the cursor inside myScreen and then set a character in myScreen’s contents
member. That is, this statement is equivalent to

myScreen.move(4,0);
myScreen.set(’#’);

Had we defined move and set to return Screen, rather than Screen&, this state-
ment would execute quite differently. In this case it would be equivalent to:
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// if move returns Screen not Screen&
Screen temp = myScreen.move(4,0); // the return value would be copied
temp.set(’#’); // the contents inside myScreen would be unchanged

If move had a nonreference return type, then the return value of move would be a
copy of *this (§ 6.3.2, p. 224). The call to set would change the temporary copy,
not myScreen.

Returning *this from a const Member Function

Next, we’ll add an operation, which we’ll name display, to print the contents of
the Screen. We’d like to be able to include this operation in a sequence of set
and move operations. Therefore, like set and move, our display function will
return a reference to the object on which it executes.

Logically, displaying a Screen doesn’t change the object, so we should make
display a constmember. If display is a constmember, then this is a pointer
to const and *this is a const object. Hence, the return type of display must
be const Sales_data&. However, if display returns a reference to const, we
won’t be able to embed display into a series of actions:

Screen myScreen;
// if display returns a const reference, the call to set is an error
myScreen.display(cout).set(’*’);

Even though myScreen is a nonconst object, the call to set won’t compile. The
problem is that the const version of display returns a reference to const and
we cannot call set on a const object.

A const member function that returns *this as a reference should
have a return type that is a reference to const.

Overloading Based on const

We can overload a member function based on whether it is const for the same
reasons that we can overload a function based on whether a pointer parameter
points to const (§ 6.4, p. 232). The nonconst version will not be viable for const
objects; we can only call const member functions on a const object. We can call
either version on a nonconst object, but the nonconst version will be a better
match.

In this example, we’ll define a private member named do_display to do
the actual work of printing the Screen. Each of the display operations will call
this function and then return the object on which it is executing:

class Screen {
public:

// display overloaded on whether the object is const or not
Screen &display(std::ostream &os)

{ do_display(os); return *this; }
const Screen &display(std::ostream &os) const

{ do_display(os); return *this; }
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private:
// function to do the work of displaying a Screen
void do_display(std::ostream &os) const {os << contents;}

// other members as before
};

As in any other context, when one member calls another the this pointer is passed
implicitly. Thus, when display calls do_display, its own this pointer is im-
plicitly passed to do_display. When the nonconst version of display calls
do_display, its this pointer is implicitly converted from a pointer to nonconst
to a pointer to const (§ 4.11.2, p. 162).

When do_display completes, the display functions each return the object
on which they execute by dereferencing this. In the nonconst version, this
points to a nonconst object, so that version of display returns an ordinary
(nonconst) reference; the const member returns a reference to const.

When we call display on an object, whether that object is const determines
which version of display is called:

Screen myScreen(5,3);
const Screen blank(5, 3);
myScreen.set(’#’).display(cout); // calls nonconst version
blank.display(cout); // calls const version

ADVICE: USE PRIVATE UTILITY FUNCTIONS FOR COMMON CODE

Some readers might be surprised that we bothered to define a separate do_display
operation. After all, the calls to do_display aren’t much simpler than the action done
inside do_display. Why bother? We do so for several reasons:

• A general desire to avoid writing the same code in more than one place.

• We expect that the display operation will become more complicated as our
class evolves. As the actions involved become more complicated, it makes more
obvious sense to write those actions in one place, not two.

• It is likely that we might want to add debugging information to do_display
during development that would be eliminated in the final product version of
the code. It will be easier to do so if only one definition of do_display needs
to be changed to add or remove the debugging code.

• There needn’t be any overhead involved in this extra function call. We defined
do_display inside the class body, so it is implicitly inline. Thus, there likely
be no run-time overhead associating with calling do_display.

In practice, well-designed C++ programs tend to have lots of small functions such as
do_display that are called to do the “real” work of some other set of functions.

7.3.3 Class Types
Every class defines a unique type. Two different classes define two different types
even if they define the same members. For example:
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EXE R C I S E S SE C TI ON 7.3.2

Exercise 7.27: Add the move, set, and display operations to your version of
Screen. Test your class by executing the following code:

Screen myScreen(5, 5, ’X’);
myScreen.move(4,0).set(’#’).display(cout);
cout << "\n";
myScreen.display(cout);
cout << "\n";

Exercise 7.28: What would happen in the previous exercise if the return type of move,
set, and display was Screen rather than Screen&?

Exercise 7.29: Revise your Screen class so that move, set, and display functions
return Screen and check your prediction from the previous exercise.

Exercise 7.30: It is legal but redundant to refer to members through the this pointer.
Discuss the pros and cons of explicitly using the this pointer to access members.

struct First {
int memi;
int getMem();

};

struct Second {
int memi;
int getMem();

};

First obj1;
Second obj2 = obj1; // error: obj1 and obj2 have different types

Even if two classes have exactly the same member list, they are different
types. The members of each class are distinct from the members of any
other class (or any other scope).

We can refer to a class type directly, by using the class name as a type name.
Alternatively, we can use the class name following the keyword class or struct:

Sales_data item1; // default-initialized object of type Sales_data
class Sales_data item1; // equivalent declaration

Both methods of referring to a class type are equivalent. The second method is
inherited from C and is also valid in C++.

Class Declarations

Just as we can declare a function apart from its definition (§ 6.1.2, p. 206), we can
also declare a class without defining it:

class Screen; // declaration of the Screen class
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This declaration, sometimes referred to as a forward declaration, introduces the
name Screen into the program and indicates that Screen refers to a class type.
After a declaration and before a definition is seen, the type Screen is an incom-
plete type—it’s known that Screen is a class type but not known what members
that type contains.

We can use an incomplete type in only limited ways: We can define pointers or
references to such types, and we can declare (but not define) functions that use an
incomplete type as a parameter or return type.

A class must be defined—not just declared—before we can write code that cre-
ates objects of that type. Otherwise, the compiler does not know how much storage
such objects need. Similarly, the class must be defined before a reference or pointer
is used to access a member of the type. After all, if the class has not been defined,
the compiler can’t know what members the class has.

With one exception that we’ll describe in § 7.6 (p. 300), data members can be
specified to be of a class type only if the class has been defined. The type must be
complete because the compiler needs to know how much storage the data member
requires. Because a class is not defined until its class body is complete, a class
cannot have data members of its own type. However, a class is considered declared
(but not yet defined) as soon as its class name has been seen. Therefore, a class can
have data members that are pointers or references to its own type:

class Link_screen {
Screen window;
Link_screen *next;
Link_screen *prev;

};

EXE R C I S E S SE C TI ON 7.3.3

Exercise 7.31: Define a pair of classes X and Y, in which X has a pointer to Y, and Y has
an object of type X.

7.3.4 Friendship Revisited
Our Sales_data class defined three ordinary nonmember functions as friends
(§ 7.2.1, p. 269). A class can also make another class its friend or it can declare
specific member functions of another (previously defined) class as friends. In ad-
dition, a friend function can be defined inside the class body. Such functions are
implicitly inline.

Friendship between Classes

As an example of class friendship, our Window_mgr class (§ 7.3.1, p. 274) will
have members that will need access to the internal data of the Screen objects it
manages. For example, let’s assume that we want to add a member, named clear
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to Window_mgr that will reset the contents of a particular Screen to all blanks.
To do this job, clear needs to access the private data members of Screen. To
allow this access, Screen can designate Window_mgr as its friend:

class Screen {
// Window_mgr members can access the private parts of class Screen
friend class Window_mgr;
// . . . rest of the Screen class

};

The member functions of a friend class can access all the members, including the
nonpublic members, of the class granting friendship. Now that Window_mgr is
a friend of Screen, we can write the clear member of Window_mgr as follows:

class Window_mgr {
public:

// location ID for each screen on the window
using ScreenIndex = std::vector<Screen>::size_type;
// reset the Screen at the given position to all blanks
void clear(ScreenIndex);

private:
std::vector<Screen> screens{Screen(24, 80, ’ ’)};

};
void Window_mgr::clear(ScreenIndex i)
{

// s is a reference to the Screen we want to clear
Screen &s = screens[i];
// reset the contents of that Screen to all blanks
s.contents = string(s.height * s.width, ’ ’);

}

We start by defining s as a reference to the Screen at position i in the screens
vector. We then use the height and widthmembers of that Screen to compute
a new string that has the appropriate number of blank characters. We assign that
string of blanks to the contents member.

If clearwere not a friend of Screen, this code would not compile. The clear
function would not be allowed to use the height width, or contents members
of Screen. Because Screen grants friendship to Window_mgr, all the members
of Screen are accessible to the functions in Window_mgr.

It is important to understand that friendship is not transitive. That is, if class
Window_mgr has its own friends, those friends have no special access to Screen.

Each class controls which classes or functions are its friends.

Making A Member Function a Friend

Rather than making the entire Window_mgr class a friend, Screen can instead
specify that only the clear member is allowed access. When we declare a mem-
ber function to be a friend, we must specify the class of which that function is a
member:
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class Screen {
// Window_mgr::clearmust have been declared before class Screen
friend void Window_mgr::clear(ScreenIndex);
// . . . rest of the Screen class

};

Making a member function a friend requires careful structuring of our pro-
grams to accommodate interdependencies among the declarations and definitions.
In this example, we must order our program as follows:

• First, define the Window_mgr class, which declares, but cannot define, clear.
Screen must be declared before clear can use the members of Screen.

• Next, define class Screen, including a friend declaration for clear.

• Finally, define clear, which can now refer to the members in Screen.

Overloaded Functions and Friendship

Although overloaded functions share a common name, they are still different func-
tions. Therefore, a class must declare as a friend each function in a set of over-
loaded functions that it wishes to make a friend:

// overloaded storeOn functions
extern std::ostream& storeOn(std::ostream &, Screen &);
extern BitMap& storeOn(BitMap &, Screen &);
class Screen {

// ostream version of storeOn may access the private parts of Screen objects
friend std::ostream& storeOn(std::ostream &, Screen &);
// . . .

};

Class Screen makes the version of storeOn that takes an ostream& its friend.
The version that takes a BitMap& has no special access to Screen.

Friend Declarations and Scope

Classes and nonmember functions need not have been declared before they are
used in a friend declaration. When a name first appears in a friend declaration,
that name is implicitly assumed to be part of the surrounding scope. However, the
friend itself is not actually declared in that scope (§ 7.2.1, p. 270).

Even if we define the function inside the class, we must still provide a decla-
ration outside of the class itself to make that function visible. A declaration must
exist even if we only call the friend from members of the friendship granting class:

struct X {
friend void f() { /* friend function can be defined in the class body */ }
X() { f(); } // error: no declaration for f
void g();
void h();

};

void X::g() { return f(); } // error: f hasn’t been declared
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void f(); // declares the function defined inside X
void X::h() { return f(); } // ok: declaration for f is now in scope

It is important to understand that a friend declaration affects access but is not a
declaration in an ordinary sense.

Remember, some compilers do not enforce the lookup rules for friends
(§ 7.2.1, p. 270).

EXE R C I S E S SE C TI ON 7.3.4

Exercise 7.32: Define your own versions of Screen and Window_mgr in which
clear is a member of Window_mgr and a friend of Screen.

7.4 Class Scope
Every class defines its own new scope. Outside the class scope, ordinary data and
function members may be accessed only through an object, a reference, or a pointer
using a member access operator (§ 4.6, p. 150). We access type members from the
class using the scope operator . In either case, the name that follows the operator
must be a member of the associated class.

Screen::pos ht = 24, wd = 80; // use the pos type defined by Screen
Screen scr(ht, wd, ’ ’);
Screen *p = &scr;
char c = scr.get(); // fetches the get member from the object scr
c = p->get(); // fetches the get member from the object to which p points

Scope and Members Defined outside the Class

The fact that a class is a scope explains why we must provide the class name as well
as the function name when we define a member function outside its class (§ 7.1.2,
p. 259). Outside of the class, the names of the members are hidden.

Once the class name is seen, the remainder of the definition—including the
parameter list and the function body—is in the scope of the class. As a result, we
can refer to other class members without qualification.

For example, recall the clear member of class Window_mgr (§ 7.3.4, p. 280).
That function’s parameter uses a type that is defined by Window_mgr:

void Window_mgr::clear(ScreenIndex i)
{

Screen &s = screens[i];
s.contents = string(s.height * s.width, ’ ’);

}

Because the compiler sees the parameter list after noting that we are in the scope
of class Window_mgr, there is no need to specify that we want the ScreenIndex
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that is defined by Window_mgr. For the same reason, the use of screens in the
function body refers to name declared inside class Window_mgr.

On the other hand, the return type of a function normally appears before the
function’s name. When a member function is defined outside the class body, any
name used in the return type is outside the class scope. As a result, the return
type must specify the class of which it is a member. For example, we might give
Window_mgr a function, named addScreen, to add another screen to the display.
This member will return a ScreenIndex value that the user can subsequently use
to locate this Screen:

class Window_mgr {
public:

// add a Screen to the window and returns its index
ScreenIndex addScreen(const Screen&);
// other members as before

};
// return type is seen before we’re in the scope of Window_mgr
Window_mgr::ScreenIndex
Window_mgr::addScreen(const Screen &s)
{

screens.push_back(s);
return screens.size() - 1;

}

Because the return type appears before the name of the class is seen, it appears
outside the scope of class Window_mgr. To use ScreenIndex for the return type,
we must specify the class in which that type is defined.

EXE R C I S E S SE C TI ON 7.4

Exercise 7.33: What would happen if we gave Screen a size member defined as
follows? Fix any problems you identify.

pos Screen::size() const
{

return height * width;
}

7.4.1 Name Lookup and Class Scope
In the programs we’ve written so far, name lookup (the process of finding which
declarations match the use of a name) has been relatively straightforward:

• First, look for a declaration of the name in the block in which the name was
used. Only names declared before the use are considered.

• If the name isn’t found, look in the enclosing scope(s).

• If no declaration is found, then the program is in error.
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The way names are resolved inside member functions defined inside the class
may seem to behave differently than these lookup rules. However, in this case,
appearances are deceiving. Class definitions are processed in two phases:

• First, the member declarations are compiled.

• Function bodies are compiled only after the entire class has been seen.

Member function definitions are processed after the compiler processes
all of the declarations in the class.

Classes are processed in this two-phase way to make it easier to organize class
code. Because member function bodies are not processed until the entire class is
seen, they can use any name defined inside the class. If function definitions were
processed at the same time as the member declarations, then we would have to
order the member functions so that they referred only to names already seen.

Name Lookup for Class Member Declarations

This two-step process applies only to names used in the body of a member func-
tion. Names used in declarations, including names used for the return type and
types in the parameter list, must be seen before they are used. If a member dec-
laration uses a name that has not yet been seen inside the class, the compiler will
look for that name in the scope(s) in which the class is defined. For example:

typedef double Money;
string bal;

class Account {
public:

Money balance() { return bal; }
private:

Money bal;
// . . .

};

When the compiler sees the declaration of the balance function, it will look for
a declaration of Money in the Account class. The compiler considers only decla-
rations inside Account that appear before the use of Money. Because no match-
ing member is found, the compiler then looks for a declaration in the enclosing
scope(s). In this example, the compiler will find the typedef of Money. That type
will be used for the return type of the function balance and as the type for the
data member bal. On the other hand, the function body of balance is processed
only after the entire class is seen. Thus, the return inside that function returns
the member named bal, not the string from the outer scope.

Type Names Are Special

Ordinarily, an inner scope can redefine a name from an outer scope even if that
name has already been used in the inner scope. However, in a class, if a member
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uses a name from an outer scope and that name is a type, then the class may not
subsequently redefine that name:

typedef double Money;

class Account {
public:

Money balance() { return bal; } // uses Money from the outer scope
private:

typedef double Money; // error: cannot redefine Money
Money bal;
// . . .

};

It is worth noting that even though the definition of Money inside Account uses
the same type as the definition in the outer scope, this code is still in error.

Although it is an error to redefine a type name, compilers are not required to
diagnose this error. Some compilers will quietly accept such code, even though the
program is in error.

Definitions of type names usually should appear at the beginning of a
class. That way any member that uses that type will be seen after the
type name has already been defined.

Normal Block-Scope Name Lookup inside Member Definitions

A name used in the body of a member function is resolved as follows:

• First, look for a declaration of the name inside the member function. As
usual, only declarations in the function body that precede the use of the name
are considered.

• If the declaration is not found inside the member function, look for a decla-
ration inside the class. All the members of the class are considered.

• If a declaration for the name is not found in the class, look for a declaration
that is in scope before the member function definition.

Ordinarily, it is a bad idea to use the name of another member as the name for
a parameter in a member function. However, in order to show how names are
resolved, we’ll violate that normal practice in our dummy_fcn function:

// note: this code is for illustration purposes only and reflects bad practice
// it is generally a bad idea to use the same name for a parameter and a member

int height; // defines a name subsequently used inside Screen

class Screen {
public:

typedef std::string::size_type pos;
void dummy_fcn(pos height) {

cursor = width * height; // which height? the parameter
}
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private:
pos cursor = 0;
pos height = 0, width = 0;

};

When the compiler processes the multiplication expression inside dummy_fcn, it
first looks for the names used in that expression in the scope of that function. A
function’s parameters are in the function’s scope. Thus, the name height, used in
the body of dummy_fcn, refers to this parameter declaration.

In this case, the height parameter hides the member named height. If we
wanted to override the normal lookup rules, we can do so:

// bad practice: names local to member functions shouldn’t hide member names
void Screen::dummy_fcn(pos height) {

cursor = width * this->height; // member height
// alternative way to indicate the member
cursor = width * Screen::height; // member height

}

Even though the class member is hidden, it is still possible to use that
member by qualifying the member’s name with the name of its class or
by using the this pointer explicitly.

A much better way to ensure that we get the member named height would
be to give the parameter a different name:

// good practice: don’t use a member name for a parameter or other local variable
void Screen::dummy_fcn(pos ht) {

cursor = width * height; // member height
}

In this case, when the compiler looks for the name height, it won’t be found
inside dummy_fcn. The compiler next looks at all the declarations in Screen.
Even though the declaration of height appears after its use inside dummy_fcn,
the compiler resolves this use to the data member named height.

After Class Scope, Look in the Surrounding Scope

If the compiler doesn’t find the name in function or class scope, it looks for the
name in the surrounding scope. In our example, the name height is defined in
the outer scope before the definition of Screen. However, the object in the outer
scope is hidden by our member named height. If we want the name from the
outer scope, we can ask for it explicitly using the scope operator:

// bad practice: don’t hide names that are needed from surrounding scopes
void Screen::dummy_fcn(pos height) {

cursor = width * ::height;// which height? the global one
}

Even though the outer object is hidden, it is still possible to access that
object by using the scope operator.
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Names Are Resolved Where They Appear within a File

When a member is defined outside its class, the third step of name lookup includes
names declared in the scope of the member definition as well as those that appear
in the scope of the class definition. For example:

int height; // defines a name subsequently used inside Screen
class Screen {
public:

typedef std::string::size_type pos;
void setHeight(pos);
pos height = 0; // hides the declaration of height in the outer scope

};
Screen::pos verify(Screen::pos);
void Screen::setHeight(pos var) {

// var: refers to the parameter
// height: refers to the class member
// verify: refers to the global function
height = verify(var);

}

Notice that the declaration of the global function verify is not visible before the
definition of the class Screen. However, the third step of name lookup includes
the scope in which the member definition appears. In this example, the declaration
for verify appears before setHeight is defined and may, therefore, be used.

EXE R C I S E S SE C TI ON 7.4.1

Exercise 7.34: What would happen if we put the typedef of pos in the Screen class
on page 285 as the last line in the class?

Exercise 7.35: Explain the following code, indicating which definition of Type or
initVal is used for each use of those names. Say how you would fix any errors.

typedef string Type;
Type initVal();
class Exercise {
public:

typedef double Type;
Type setVal(Type);
Type initVal();

private:
int val;

};
Type Exercise::setVal(Type parm) {

val = parm + initVal();
return val;

}
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7.5 Constructors Revisited
Constructors are a crucial part of any C++ class. We covered the basics of construc-
tors in § 7.1.4 (p. 262). In this section we’ll cover some additional capabilities of
constructors, and deepen our coverage of the material introduced earlier.

7.5.1 Constructor Initializer List
When we define variables, we typically initialize them immediately rather than
defining them and then assigning to them:

string foo = "Hello World!"; // define and initialize
string bar; // default initialized to the empty string
bar = "Hello World!"; // assign a new value to bar

Exactly the same distinction between initialization and assignment applies to the
data members of objects. If we do not explicitly initialize a member in the con-
structor initializer list, that member is default initialized before the constructor
body starts executing. For example:

// legal but sloppier way to write the Sales_data constructor: no constructor initializers
Sales_data::Sales_data(const string &s,

unsigned cnt, double price)
{

bookNo = s;
units_sold = cnt;
revenue = cnt * price;

}

This version and our original definition on page 264 have the same effect: When
the constructor finishes, the data members will hold the same values. The differ-
ence is that the original version initializes its data members, whereas this version
assigns values to the data members. How significant this distinction is depends on
the type of the data member.

Constructor Initializers Are Sometimes Required

We can often, but not always, ignore the distinction between whether a member is
initialized or assigned. Members that are const or references must be initialized.
Similarly, members that are of a class type that does not define a default constructor
also must be initialized. For example:

class ConstRef {
public:

ConstRef(int ii);
private:

int i;
const int ci;
int &ri;

};
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Like any other const object or reference, the members ci and ri must be initial-
ized. As a result, omitting a constructor initializer for these members is an error:

// error: ci and ri must be initialized
ConstRef::ConstRef(int ii)
{ // assignments:

i = ii; // ok
ci = ii; // error: cannot assign to a const
ri = i; // error: ri was never initialized

}

By the time the body of the constructor begins executing, initialization is complete.
Our only chance to initialize const or reference data members is in the constructor
initializer. The correct way to write this constructor is

// ok: explicitly initialize reference and const members
ConstRef::ConstRef(int ii): i(ii), ci(ii), ri(i) { }

We must use the constructor initializer list to provide values for mem-
bers that are const, reference, or of a class type that does not have a
default constructor.

ADVICE: USE CONSTRUCTOR INITIALIZERS

In many classes, the distinction between initialization and assignment is strictly a
matter of low-level efficiency: A data member is initialized and then assigned when
it could have been initialized directly.

More important than the efficiency issue is the fact that some data members must
be initialized. By routinely using constructor initializers, you can avoid being sur-
prised by compile-time errors when you have a class with a member that requires a
constructor initializer.

Order of Member Initialization

Not surprisingly, each member may be named only once in the constructor initial-
izer. After all, what might it mean to give a member two initial values?

What may be more surprising is that the constructor initializer list specifies
only the values used to initialize the members, not the order in which those initial-
izations are performed.

Members are initialized in the order in which they appear in the class defini-
tion: The first member is initialized first, then the next, and so on. The order in
which initializers appear in the constructor initializer list does not change the or-
der of initialization.

The order of initialization often doesn’t matter. However, if one member is
initialized in terms of another, then the order in which members are initialized is
crucially important.

As an example, consider the following class:
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class X {
int i;
int j;

public:
// undefined: i is initialized before j
X(int val): j(val), i(j) { }

};

In this case, the constructor initializer makes it appear as if j is initialized with val
and then j is used to initialize i. However, i is initialized first. The effect of this
initializer is to initialize i with the undefined value of j!

Some compilers are kind enough to generate a warning if the data members are
listed in the constructor initializer in a different order from the order in which the
members are declared.

It is a good idea to write constructor initializers in the same order as the
members are declared. Moreover, when possible, avoid using mem-
bers to initialize other members.

If possible, it is a good idea write member initializers to use the constructor’s
parameters rather than another data member from the same object. That way we
don’t even have to think about the order of member initialization. For example, it
would be better to write the constructor for X as

X(int val): i(val), j(val) { }

In this version, the order in which i and j are initialized doesn’t matter.

Default Arguments and Constructors

The actions of the Sales_data default constructor are similar to those of the con-
structor that takes a single string argument. The only difference is that the con-
structor that takes a string argument uses that argument to initialize bookNo.
The default constructor (implicitly) uses the string default constructor to ini-
tialize bookNo. We can rewrite these constructors as a single constructor with a
default argument (§ 6.5.1, p. 236):

class Sales_data {
public:

// defines the default constructor as well as one that takes a string argument
Sales_data(std::string s = ""): bookNo(s) { }
// remaining constructors unchanged
Sales_data(std::string s, unsigned cnt, double rev):

bookNo(s), units_sold(cnt), revenue(rev*cnt) { }
Sales_data(std::istream &is) { read(is, *this); }
// remaining members as before

};

This version of our class provides the same interface as our original on page 264.
Both versions create the same object when given no arguments or when given a
single string argument. Because we can call this constructor with no arguments,
this constructor defines a default constructor for our class.
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A constructor that supplies default arguments for all its parameters also
defines the default constructor.

It is worth noting that we probably should not use default arguments with the
Sales_data constructor that takes three arguments. If a user supplies a nonzero
count for the number of books sold, we want to ensure that the user also supplies
the price at which those books were sold.

EXE R C I S E S SE C TI ON 7.5.1

Exercise 7.36: The following initializer is in error. Identify and fix the problem.

struct X {
X (int i, int j): base(i), rem(base % j) { }
int rem, base;

};

Exercise 7.37: Using the version of Sales_data from this section, determine which
constructor is used to initialize each of the following variables and list the values of the
data members in each object:

Sales_data first_item(cin);

int main() {
Sales_data next;
Sales_data last("9-999-99999-9");

}

Exercise 7.38: We might want to supply cin as a default argument to the constructor
that takes an istream&. Write the constructor declaration that uses cin as a default
argument.

Exercise 7.39: Would it be legal for both the constructor that takes a string and the
one that takes an istream& to have default arguments? If not, why not?

Exercise 7.40: Choose one of the following abstractions (or an abstraction of your
own choosing). Determine what data are needed in the class. Provide an appropriate
set of constructors. Explain your decisions.

(a) Book (b) Date (c) Employee
(d) Vehicle (e) Object (f) Tree

7.5.2 Delegating Constructors
The new standard extends the use of constructor initializers to let us define so-
called delegating constructors. A delegating constructor uses another constructor
from its own class to perform its initialization. It is said to “delegate” some (or all)
of its work to this other constructor.

Like any other constructor, a delegating constructor has a member initializer
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list and a function body. In a delegating constructor, the member initializer list has
a single entry that is the name of the class itself. Like other member initializers, the
name of the class is followed by a parenthesized list of arguments. The argument
list must match another constructor in the class.

As an example, we’ll rewrite the Sales_data class to use delegating construc-
tors as follows:

class Sales_data {
public:

// nondelegating constructor initializes members from corresponding arguments
Sales_data(std::string s, unsigned cnt, double price):

bookNo(s), units_sold(cnt), revenue(cnt*price) { }
// remaining constructors all delegate to another constructor
Sales_data(): Sales_data("", 0, 0) {}
Sales_data(std::string s): Sales_data(s, 0,0) {}
Sales_data(std::istream &is): Sales_data()

{ read(is, *this); }
// other members as before

};

In this version of Sales_data, all but one of the constructors delegate their work.
The first constructor takes three arguments, uses those arguments to initialize the
data members, and does no further work. In this version of the class, we define the
default constructor to use the three-argument constructor to do its initialization.
It too has no additional work, as indicated by the empty constructor body. The
constructor that takes a string also delegates to the three-argument version.

The constructor that takes an istream& also delegates. It delegates to the de-
fault constructor, which in turn delegates to the three-argument constructor. Once
those constructors complete their work, the body of the istream& constructor is
run. Its constructor body calls read to read the given istream.

When a constructor delegates to another constructor, the constructor initial-
izer list and function body of the delegated-to constructor are both executed. In
Sales_data, the function bodies of the delegated-to constructors happen to be
empty. Had the function bodies contained code, that code would be run before
control returned to the function body of the delegating constructor.

EXE R C I S E S SE C TI ON 7.5.2

Exercise 7.41: Rewrite your own version of the Sales_data class to use delegating
constructors. Add a statement to the body of each of the constructors that prints a
message whenever it is executed. Write declarations to construct a Sales_data object
in every way possible. Study the output until you are certain you understand the order
of execution among delegating constructors.

Exercise 7.42: For the class you wrote for exercise 7.40 in § 7.5.1 (p. 291), decide
whether any of the constructors might use delegation. If so, write the delegating con-
structor(s) for your class. If not, look at the list of abstractions and choose one that you
think would use a delegating constructor. Write the class definition for that abstraction.
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7.5.3 The Role of the Default Constructor
The default constructor is used automatically whenever an object is default or
value initialized. Default initialization happens

• When we define nonstatic variables (§ 2.2.1, p. 43) or arrays (§ 3.5.1, p. 114)
at block scope without initializers

• When a class that itself has members of class type uses the synthesized de-
fault constructor (§ 7.1.4, p. 262)

• When members of class type are not explicitly initialized in a constructor
initializer list (§ 7.1.4, p. 265)

Value initialization happens

• During array initialization when we provide fewer initializers than the size
of the array (§ 3.5.1, p. 114)

• When we define a local static object without an initializer (§ 6.1.1, p. 205)

• When we explicitly request value initialization by writing an expressions of
the form T() where T is the name of a type (The vector constructor that
takes a single argument to specify the vector’s size (§ 3.3.1, p. 98) uses an
argument of this kind to value initialize its element initializer.)

Classes must have a default constructor in order to be used in these contexts. Most
of these contexts should be fairly obvious.

What may be less obvious is the impact on classes that have data members that
do not have a default constructor:

class NoDefault {
public:

NoDefault(const std::string&);
// additional members follow, but no other constructors

};

struct A { // my_mem is public by default; see § 7.2 (p. 268)
NoDefault my_mem;

};

A a; // error: cannot synthesize a constructor for A

struct B {
B() {} // error: no initializer for b_member
NoDefault b_member;

};

In practice, it is almost always right to provide a default constructor if
other constructors are being defined.

Using the Default Constructor

The following declaration of obj compiles without complaint. However, when we
try to use obj

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

294 Classes

Sales_data obj(); // ok: but defines a function, not an object

if (obj.isbn() == Primer_5th_ed.isbn()) // error: obj is a function

the compiler complains that we cannot apply member access notation to a func-
tion. The problem is that, although we intended to declare a default-initialized
object, obj actually declares a function taking no parameters and returning an
object of type Sales_data.

The correct way to define an object that uses the default constructor for initial-
ization is to leave off the trailing, empty parentheses:

// ok: obj is a default-initialized object
Sales_data obj;

It is a common mistake among programmers new to C++ to try to declare
an object initialized with the default constructor as follows:

Sales_data obj(); // oops! declares a function, not an object
Sales_data obj2; // ok: obj2 is an object, not a function

EXE R C I S E S SE C TI ON 7.5.3

Exercise 7.43: Assume we have a class named NoDefault that has a constructor that
takes an int, but has no default constructor. Define a class C that has a member of
type NoDefault. Define the default constructor for C.

Exercise 7.44: Is the following declaration legal? If not, why not?

vector<NoDefault> vec(10);

Exercise 7.45: What if we defined the vector in the previous execercise to hold ob-
jects of type C?

Exercise 7.46: Which, if any, of the following statements are untrue? Why?

(a) A class must provide at least one constructor.
(b) A default constructor is a constructor with an empty parameter list.
(c) If there are no meaningful default values for a class, the class should not pro-

vide a default constructor.
(d) If a class does not define a default constructor, the compiler generates one that

initializes each data member to the default value of its associated type.

7.5.4 Implicit Class-Type Conversions
As we saw in § 4.11 (p. 159), the language defines several automatic conversions
among the built-in types. We also noted that classes can define implicit conversions
as well. Every constructor that can be called with a single argument defines an
implicit conversion to a class type. Such constructors are sometimes referred to as
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converting constructors. We’ll see in § 14.9 (p. 579) how to define conversions from
a class type to another type.

A constructor that can be called with a single argument defines an im-
plicit conversion from the constructor’s parameter type to the class type.

The Sales_data constructors that take a string and that take an istream
both define implicit conversions from those types to Sales_data. That is, we can
use a string or an istream where an object of type Sales_data is expected:

string null_book = "9-999-99999-9";

// constructs a temporary Sales_data object
// with units_sold and revenue equal to 0 and bookNo equal to null_book
item.combine(null_book);

Here we call the Sales_data combine member function with a string argu-
ment. This call is perfectly legal; the compiler automatically creates a Sales_data
object from the given string. That newly generated (temporary) Sales_data is
passed to combine. Because combine’s parameter is a reference to const, we
can pass a temporary to that parameter.

Only One Class-Type Conversion Is Allowed

In § 4.11.2 (p. 162) we noted that the compiler will automatically apply only one
class-type conversion. For example, the following code is in error because it im-
plicitly uses two conversions:

// error: requires two user-defined conversions:
// (1) convert "9-999-99999-9" to string
// (2) convert that (temporary) string to Sales_data
item.combine("9-999-99999-9");

If we wanted to make this call, we can do so by explicitly converting the character
string to either a string or a Sales_data object:

// ok: explicit conversion to string, implicit conversion to Sales_data
item.combine(string("9-999-99999-9"));
// ok: implicit conversion to string, explicit conversion to Sales_data
item.combine(Sales_data("9-999-99999-9"));

Class-Type Conversions Are Not Always Useful

Whether the conversion of a string to Sales_data is desired depends on how
we think our users will use the conversion. In this case, it might be okay. The
string in null_book probably represents a nonexistent ISBN.

More problematic is the conversion from istream to Sales_data:

// uses the istream constructor to build an object to pass to combine
item.combine(cin);

This code implicitly converts cin to Sales_data. This conversion executes the
Sales_data constructor that takes an istream. That constructor creates a (tem-
porary) Sales_data object by reading the standard input. That object is then
passed to combine.
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This Sales_data object is a temporary (§ 2.4.1, p. 62). We have no access to it
once combine finishes. Effectively, we have constructed an object that is discarded
after we add its value into item.

Suppressing Implicit Conversions Defined by Constructors

We can prevent the use of a constructor in a context that requires an implicit con-
version by declaring the constructor as explicit:

class Sales_data {
public:

Sales_data() = default;
Sales_data(const std::string &s, unsigned n, double p):

bookNo(s), units_sold(n), revenue(p*n) { }
explicit Sales_data(const std::string &s): bookNo(s) { }
explicit Sales_data(std::istream&);
// remaining members as before

};

Now, neither constructor can be used to implicitly create a Sales_data object.
Neither of our previous uses will compile:

item.combine(null_book); // error: string constructor is explicit
item.combine(cin); // error: istream constructor is explicit

The explicit keyword is meaningful only on constructors that can be called
with a single argument. Constructors that require more arguments are not used to
perform an implicit conversion, so there is no need to designate such constructors
as explicit. The explicit keyword is used only on the constructor declaration
inside the class. It is not repeated on a definition made outside the class body:

// error: explicit allowed only on a constructor declaration in a class header
explicit Sales_data::Sales_data(istream& is)
{

read(is, *this);
}

explicitConstructors Can Be Used Only for Direct Initialization

One context in which implicit conversions happen is when we use the copy form
of initialization (with an =) (§ 3.2.1, p. 84). We cannot use an explicit constructor
with this form of initialization; we must use direct initialization:

Sales_data item1(null_book); // ok: direct initialization
// error: cannot use the copy form of initialization with an explicit constructor
Sales_data item2 = null_book;

When a constructor is declared explicit, it can be used only with the
direct form of initialization (§ 3.2.1, p. 84). Moroever, the compiler will
not use this constructor in an automatic conversion.
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Explicitly Using Constructors for Conversions

Although the compiler will not use an explicit constructor for an implicit con-
version, we can use such constructors explicitly to force a conversion:

// ok: the argument is an explicitly constructed Sales_data object
item.combine(Sales_data(null_book));

// ok: static_cast can use an explicit constructor
item.combine(static_cast<Sales_data>(cin));

In the first call, we use the Sales_data constructor directly. This call constructs
a temporary Sales_data object using the Sales_data constructor that takes a
string. In the second call, we use a static_cast (§ 4.11.3, p. 163) to perform
an explicit, rather than an implicit, conversion. In this call, the static_cast uses
the istream constructor to construct a temporary Sales_data object.

Library Classes with explicit Constructors

Some of the library classes that we’ve used have single-parameter constructors:

• The string constructor that takes a single parameter of type const char*
(§ 3.2.1, p. 84) is not explicit.

• The vector constructor that takes a size (§ 3.3.1, p. 98) is explicit.

EXE R C I S E S SE C TI ON 7.5.4

Exercise 7.47: Explain whether the Sales_data constructor that takes a string
should be explicit. What are the benefits of making the constructor explicit?
What are the drawbacks?

Exercise 7.48: Assuming the Sales_data constructors are not explicit, what op-
erations happen during the following definitions

string null_isbn("9-999-99999-9");
Sales_data item1(null_isbn);
Sales_data item2("9-999-99999-9");

What happens if the Sales_data constructors are explicit?

Exercise 7.49: For each of the three following declarations of combine, explain what
happens if we call i.combine(s), where i is a Sales_data and s is a string:

(a) Sales_data &combine(Sales_data);
(b) Sales_data &combine(Sales_data&);
(c) Sales_data &combine(const Sales_data&) const;

Exercise 7.50: Determine whether any of your Person class constructors should be
explicit.

Exercise 7.51: Why do you think vector defines its single-argument constructor as
explicit, but string does not?
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7.5.5 Aggregate Classes
An aggregate class gives users direct access to its members and has special initial-
ization syntax. A class is an aggregate if

• All of its data members are public

• It does not define any constructors

• It has no in-class initializers (§ 2.6.1, p. 73)

• It has no base classes or virtual functions, which are class-related features
that we’ll cover in Chapter 15

For example, the following class is an aggregate:

struct Data {
int ival;
string s;

};

We can initialize the data members of an aggregate class by providing a braced list
of member initializers:

// val1.ival = 0; val1.s = string("Anna")
Data val1 = { 0, "Anna" };

The initializers must appear in declaration order of the data members. That is,
the initializer for the first member is first, for the second is next, and so on. The
following, for example, is an error:

// error: can’t use "Anna" to initialize ival, or 1024 to initialize s
Data val2 = { "Anna" , 1024 };

As with initialization of array elements (§ 3.5.1, p. 114), if the list of initializers
has fewer elements than the class has members, the trailing members are value
initialized (§ 3.5.1, p. 114). The list of initializers must not contain more elements
than the class has members.

It is worth noting that there are three significant drawbacks to explicitly initial-
izing the members of an object of class type:

• It requires that all the data members of the class be public.

• It puts the burden on the user of the class (rather than on the class author)
to correctly initialize every member of every object. Such initialization is
tedious and error-prone because it is easy to forget an initializer or to supply
an inappropriate initializer.

• If a member is added or removed, all initializations have to be updated.
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EXE R C I S E S SE C TI ON 7.5.5

Exercise 7.52: Using our first version of Sales_data from § 2.6.1 (p. 72), explain the
following initialization. Identify and fix any problems.

Sales_data item = {"978-0590353403", 25, 15.99};

7.5.6 Literal Classes
In § 6.5.2 (p. 239) we noted that the parameters and return type of a constexpr
function must be literal types. In addition to the arithmetic types, references, and
pointers, certain classes are also literal types. Unlike other classes, classes that
are literal types may have function members that are constexpr. Such members
must meet all the requirements of a constexpr function. These member functions
are implicitly const (§ 7.1.2, p. 258).

An aggregate class (§ 7.5.5, p. 298) whose data members are all of literal type is
a literal class. A nonaggregate class, that meets the following restrictions, is also a
literal class:

• The data members all must have literal type.

• The class must have at least one constexpr constructor.

• If a data member has an in-class initializer, the initializer for a member of
built-in type must be a constant expression (§ 2.4.4, p. 65), or if the mem-
ber has class type, the initializer must use the member’s own constexpr
constructor.

• The class must use default definition for its destructor, which is the member
that destroys objects of the class type (§ 7.1.5, p. 267).

constexpr Constructors

Although constructors can’t be const (§ 7.1.4, p. 262), constructors in a literal class
can be constexpr (§ 6.5.2, p. 239) functions. Indeed, a literal class must provide
at least one constexpr constructor.

A constexpr constructor can be declared as = default (§ 7.1.4, p. 264) (or as
a deleted function, which we cover in § 13.1.6 (p. 507)). Otherwise, a constexpr
constructor must meet the requirements of a constructor—meaning it can have no
return statement—and of a constexpr function—meaning the only executable
statement it can have is a return statement (§ 6.5.2, p. 239). As a result, the body of
a constexpr constructor is typically empty. We define a constexpr constructor
by preceding its declaration with the keyword constexpr:

class Debug {
public:

constexpr Debug(bool b = true): hw(b), io(b), other(b) { }
constexpr Debug(bool h, bool i, bool o):

hw(h), io(i), other(o) { }
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constexpr bool any() { return hw || io || other; }
void set_io(bool b) { io = b; }
void set_hw(bool b) { hw = b; }
void set_other(bool b) { hw = b; }

private:
bool hw; // hardware errors other than IO errors
bool io; // IO errors
bool other; // other errors

};

A constexpr constructor must initialize every data member. The initializers must
either use a constexpr constructor or be a constant expression.

A constexpr constructor is used to generate objects that are constexpr and
for parameters or return types in constexpr functions:

constexpr Debug io_sub(false, true, false); // debugging IO
if (io_sub.any()) // equivalent to if(true)

cerr << "print appropriate error messages" << endl;

constexpr Debug prod(false); // no debugging during production
if (prod.any()) // equivalent to if(false)

cerr << "print an error message" << endl;

EXE R C I S E S SE C TI ON 7.5.6

Exercise 7.53: Define your own version of Debug.

Exercise 7.54: Should the members of Debug that begin with set_ be declared as
constexpr? If not, why not?

Exercise 7.55: Is the Data class from § 7.5.5 (p. 298) a literal class? If not, why not? If
so, explain why it is literal.

7.6 static Class Members
Classes sometimes need members that are associated with the class, rather than
with individual objects of the class type. For example, a bank account class might
need a data member to represent the current prime interest rate. In this case, we’d
want to associate the rate with the class, not with each individual object. From an
efficiency standpoint, there’d be no reason for each object to store the rate. Much
more importantly, if the rate changes, we’d want each object to use the new value.

Declaring static Members

We say a member is associated with the class by adding the keyword static
to its declaration. Like any other member, static members can be public or
private. The type of a static data member can be const, reference, array,
class type, and so forth.
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As an example, we’ll define a class to represent an account record at a bank:

class Account {
public:

void calculate() { amount += amount * interestRate; }
static double rate() { return interestRate; }
static void rate(double);

private:
std::string owner;
double amount;
static double interestRate;
static double initRate();

};

The static members of a class exist outside any object. Objects do not contain
data associated with static data members. Thus, each Account object will con-
tain two data members—owner and amount. There is only one interestRate
object that will be shared by all the Account objects.

Similarly, static member functions are not bound to any object; they do not
have a this pointer. As a result, static member functions may not be declared
as const, and we may not refer to this in the body of a static member. This
restriction applies both to explicit uses of this and to implicit uses of this by
calling a nonstatic member.

Using a Class static Member

We can access a static member directly through the scope operator:

double r;
r = Account::rate(); // access a static member using the scope operator

Even though static members are not part of the objects of its class, we can use
an object, reference, or pointer of the class type to access a static member:

Account ac1;
Account *ac2 = &ac1;

// equivalent ways to call the static member rate function
r = ac1.rate(); // through an Account object or reference
r = ac2->rate(); // through a pointer to an Account object

Member functions can use static members directly, without the scope operator:

class Account {
public:

void calculate() { amount += amount * interestRate; }
private:

static double interestRate;
// remaining members as before

};
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Defining static Members

As with any other member function, we can define a static member function
inside or outside of the class body. When we define a static member outside the
class, we do not repeat the static keyword. The keyword appears only with the
declaration inside the class body:

void Account::rate(double newRate)
{

interestRate = newRate;
}

As with any class member, when we refer to a class static member
outside the class body, we must specify the class in which the member is
defined. The static keyword, however, is used only on the declaration
inside the class body.

Because static data members are not part of individual objects of the class
type, they are not defined when we create objects of the class. As a result, they
are not initialized by the class’ constructors. Moreover, in general, we may not
initialize a staticmember inside the class. Instead, we must define and initialize
each static data member outside the class body. Like any other object, a static
data member may be defined only once.

Like global objects (§ 6.1.1, p. 204), static data members are defined outside
any function. Hence, once they are defined, they continue to exist until the pro-
gram completes.

We define a static data member similarly to how we define class member
functions outside the class. We name the object’s type, followed by the name of
the class, the scope operator, and the member’s own name:

// define and initialize a static class member
double Account::interestRate = initRate();

This statement defines the object named interestRate that is a staticmember
of class Account and has type double. Once the class name is seen, the remainder
of the definition is in the scope of the class. As a result, we can use initRate
without qualification as the initializer for interestrate. Note also that although
initRate is private, we can use it to initialize interestRate. As with any
other member definition, a static data member definition may access the private
members of its class.

The best way to ensure that the object is defined exactly once is to put
the definition of static data members in the same file that contains
the definitions of the class noninline member functions.

In-Class Initialization of static Data Members

Ordinarily, class static members may not be initialized in the class body. How-
ever, we can provide in-class initializers for static members that have const
integral type and must do so for static members that are constexprs of literal
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type (§ 7.5.6, p. 299). The initializers must be constant expressions. Such members
are themselves constant expressions; they can be used where a constant expression
is required. For example, we can use an initialized static data member to specify
the dimension of an array member:

class Account {
public:

static double rate() { return interestRate; }
static void rate(double);

private:
static constexpr int period = 30;// period is a constant expression
double daily_tbl[period];

};

If the member is used only in contexts where the compiler can substitute the mem-
ber’s value, then an initialized const or constexpr static need not be sepa-
rately defined. However, if we use the member in a context in which the value
cannot be substituted, then there must be a definition for that member.

For example, if the only use we make of period is to define the dimension of
daily_tbl, there is no need to define period outside of Account. However,
if we omit the definition, it is possible that even seemingly trivial changes to the
program might cause the program to fail to compile because of the missing defini-
tion. For example, if we pass Account::period to a function that takes a const
int&, then period must be defined.

If an initializer is provided inside the class, the member’s definition must not
specify an initial value:

// definition of a static member with no initializer
constexpr int Account::period; // initializer provided in the class definition

Even if a const static data member is initialized in the class body,
that member ordinarily should be defined outside the class definition.

static Members Can Be Used in Ways Ordinary Members Can’t

As we’ve seen, static members exist independently of any other object. As a re-
sult, they can be used in ways that would be illegal for nonstatic data members.
As one example, a static data member can have incomplete type (§ 7.3.3, p. 278).
In particular, a static data member can have the same type as the class type of
which it is a member. A nonstatic data member is restricted to being declared
as a pointer or a reference to an object of its class:

class Bar {
public:

// . . .
private:

static Bar mem1; // ok: static member can have incomplete type
Bar *mem2; // ok: pointer member can have incomplete type
Bar mem3; // error: data members must have complete type

};
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Another difference between static and ordinary members is that we can use a
static member as a default argument (§ 6.5.1, p. 236):

class Screen {
public:

// bkground refers to the static member
// declared later in the class definition
Screen& clear(char = bkground);

private:
static const char bkground;

};

A nonstatic data member may not be used as a default argument because its
value is part of the object of which it is a member. Using a nonstatic data mem-
ber as a default argument provides no object from which to obtain the member’s
value and so is an error.

EXE R C I S E S SE C TI ON 7.6

Exercise 7.56: What is a static class member? What are the advantages of static
members? How do they differ from ordinary members?

Exercise 7.57: Write your own version of the Account class.

Exercise 7.58: Which, if any, of the following static data member declarations and
definitions are errors? Explain why.

// example.h
class Example {
public:

static double rate = 6.5;
static const int vecSize = 20;
static vector<double> vec(vecSize);

};
// example.C
#include "example.h"
double Example::rate;
vector<double> Example::vec;
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CH A P T E R SU M M A R Y
Classes are the most fundamental feature in C++. Classes let us define new types
for our applications, making our programs shorter and easier to modify.

Data abstraction—the ability to define both data and function members—and
encapsulation—the ability to protect class members from general access—are fun-
damental to classes. We encapsulate a class by defining its implementation mem-
bers as private. Classes may grant access to their nonpublic member by desig-
nating another class or function as a friend.

Classes may define constructors, which are special member functions that con-
trol how objects are initialized. Constructors may be overloaded. Constructors
should use a constructor initializer list to initialize all the data members.

Classes may also define mutable or static members. A mutable member
is a data member that is never const; its value may be changed inside a const
member function. A static member can be either function or data; static
members exist independently of the objects of the class type.

DEFINED TERMS

abstract data type Data structure that en-
capsulates (hides) its implementation.

access specifier Keywords public and
private. Used to define whether members
are accessible to users of the class or only to
friends and members of the class. Specifiers
may appear multiple times within a class.
Each specifier sets the access of the follow-
ing members up to the next specifier.

aggregate class Class with only public
data members that has no in-class initializ-
ers or constructors. Members of an aggre-
gate can be initialized by a brace-enclosed
list of initializers.

class C++ mechanism for defining our
own abstract data types. Classes may have
data, function, or type members. A class de-
fines a new type and a new scope.

class declaration The keyword class (or
struct) followed by the class name fol-
lowed by a semicolon. If a class is declared
but not defined, it is an incomplete type.

class keyword Keyword used to define a
class; by default members are private.

class scope Each class defines a scope.
Class scopes are more complicated than

other scopes—member functions defined
within the class body may use names that
appear even after the definition.

const member function A member func-
tion that may not change an object’s ordi-
nary (i.e., neither static nor mutable)
data members. The this pointer in a
const member is a pointer to const. A
member function may be overloaded based
on whether the function is const.

constructor A special member function
used to initialize objects. Each construc-
tor should give each data member a well-
defined initial value.

constructor initializer list Specifies initial
values of the data members of a class. The
members are initialized to the values spec-
ified in the initializer list before the body
of the constructor executes. Class members
that are not initialized in the initializer list
are default initialized.

converting constructor A nonexplicit
constructor that can be called with a single
argument. Such constructors implicitly con-
vert from the argument’s type to the class
type.
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data abstraction Programming technique
that focuses on the interface to a type. Data
abstraction lets programmers ignore the de-
tails of how a type is represented and think
instead about the operations that the type
can perform. Data abstraction is fundamen-
tal to both object-oriented and generic pro-
gramming.

default constructor Constructor that is
used if no initializer is supplied.

delegating constructor Constructor with
a constructor-initializer list that has one en-
try that designates another constructor of
the same class to do the initialization.

encapsulation Separation of implementa-
tion from interface; encapsulation hides the
implementation details of a type. In C++,
encapsulation is enforced by putting the im-
plementation in the private part of a class.

explicit constructor Constructor that can
be called with a single argument but cannot
be used in an implicit conversion. A con-
structor is made explicit by prepending the
keyword explicit to its declaration.

forward declaration Declaration of an as
yet undefined name. Most often used to re-
fer to the declaration of a class that appears
prior to the definition of that class. See in-
complete type.

friend Mechanism by which a class grants
access to its nonpublic members. Friends
have the same access rights as members.
Both classes and functions may be named
as friends.

implementation The (usually private)
members of a class that define the data and
any operations that are not intended for use
by code that uses the type.

incomplete type Type that is declared but
not defined. It is not possible to use an in-
complete type to define a variable or class
member. It is legal to define references or
pointers to incomplete types.

interface The (public) operations sup-
ported by a type. Ordinarily, the interface
does not include data members.

member function Class member that is a
function. Ordinary member functions are
bound to an object of the class type through
the implicit this pointer. static mem-
ber functions are not bound to an object and
have no this pointer. Member functions
may be overloaded; when they are, the im-
plicit this pointer participates in the func-
tion matching.

mutable data member Data member that
is never const, even when it is a member
of a const object. A mutable member can
be changed inside a const function.

name lookup Process by which the use of
a name is matched to its declaration.

private members Members defined after a
private access specifier; accessible only to
the friends and other class members. Data
members and utility functions used by the
class that are not part of the type’s interface
are usually declared private.

public members Members defined after a
public access specifier; accessible to any
user of the class. Ordinarily, only the func-
tions that define the interface to the class
should be defined in the public sections.

struct keyword Keyword used to define a
class; by default members are public.

synthesized default constructor The de-
fault constructor created (synthesized) by
the compiler for classes that do not explic-
itly define any constructors. This construc-
tor initializes the data members from their
in-class initializers, if present; otherwise it
default initializes the data members.

this pointer Implicit value passed as an ex-
tra argument to every nonstatic member
function. The this pointer points to the ob-
ject on which the function is invoked.

= default Syntax used after the parameter
list of the declaration of the default con-
structor inside a class to signal to the com-
piler that it should generate the constructor,
even if the class has other constructors.
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With each revision of the C++ language, the library has also grown.
Indeed, more than two-thirds of the text of the new standard is de-
voted to the library. Although we cannot cover every library facility
in depth, there are core facilities that the library defines that every
C++ programmer should be comfortable using. We cover these core
facilities in this part.

We’ll start by covering the basic IO library facilities in Chapter 8.
Beyond using the library to read and write streams associated with
the console window, the library defines types that let us read and
write named files and do in-memory IO to strings.

Central to the library are a number of container classes and a fam-
ily of generic algorithms that let us write programs that are succinct
and efficient. The library worries about bookkeeping details—in par-
ticular, taking care of memory management—so that our programs
can worry about the actual problems we need to solve.

In Chapter 3 we introduced the vector container type. We’ll
learn more about vector in Chapter 9, which will cover the other
sequential container types as well. We’ll also cover more operations
provided by the string type. We can think of a string as a special
kind of container that contains only characters. The string type
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supports many, but not all, of the container operations.
Chapter 10 introduces the generic algorithms. The algorithms typ-

ically operate on a range of elements in a sequential container or
other sequence. The algorithms library offers efficient implementa-
tions of various classical algorithms, such as sorting and searching,
and other common tasks as well. For example, there is a copy algo-
rithm, which copies elements from one sequence to another; find,
which looks for a given element; and so on. The algorithms are
generic in two ways: They can be applied to different kinds of se-
quences, and those sequences may contain elements of most types.

The library also provides several associative containers, which are
the topic of Chapter 11. Elements in an associative container are
accessed by key. The associative containers share many operations
with the sequential containers and also define operations that are
specific to the associative containers.

This part concludes with Chapter 12, which looks at language and
library facilities for managing dynamic memory. This chapter cov-
ers one of the most important new library classes, which are stan-
dardized versions of smart pointers. By using smart pointers, we
can make code that uses dynamic memory much more robust. This
chapter closes with an extended example that uses library facilities
introduced throughout Part II.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

C H A P T E R 8
T H E I O L I B R A R Y

CONTENTS

Section 8.1 The IO Classes . . . . . . . . . . . . . . . . 310
Section 8.2 File Input and Output . . . . . . . . . . . . 316
Section 8.3 string Streams . . . . . . . . . . . . . . . . 321
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 324
Defined Terms . . . . . . . . . . . . . . . . . . . . . . . . . 324

The C++ language does not deal directly with input and output. In-
stead, IO is handled by a family of types defined in the standard
library. These types support IO to and from devices such as files and
console windows. Additional types allow in-memory IO to and from
strings.

The IO library defines operations to read and write values of the
built-in types. In addition, classes, such as string, typically define
similar IO operations to work on objects of their class type as well.

This chapter introduces the fundamentals of the IO library. Later
chapters will cover additional capabilities: Chapter 14 will look at
how we can write our own input and output operators, and Chap-
ter 17 will cover how to control formatting and how to perform ran-
dom access on files.
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Our programs have already used many IO library facilities. Indeed, we intro-
duced most of these facilities in § 1.2 (p. 5):

• istream (input stream) type, which provides input operations

• ostream (output stream) type, which provides output operations

• cin, an istream object that reads the standard input

• cout, an ostream object that writes to the standard output

• cerr, an ostream object, typically used for program error messages, that
writes to the standard error

• The >> operator, which is used to read input from an istream object

• The << operator, which is used to write output to an ostream object

• The getline function (§ 3.2.2, p. 87), which reads a line of input from a
given istream into a given string

8.1 The IO Classes
The IO types and objects that we’ve used so far manipulate char data. By default
these objects are connected to the user’s console window. Of course, real programs
cannot be limited to doing IO solely to or from a console window. Programs often
need to read or write named files. Moreover, it can be convenient to use IO oper-
ations to process the characters in a string. Applications also may have to read
and write languages that require wide-character support.

To support these different kinds of IO processing, the library defines a collec-
tion of IO types in addition to the istream and ostream types that we have
already used. These types, which are listed in Table 8.1, are defined in three sep-
arate headers: iostream defines the basic types used to read from and write
to a stream, fstream defines the types used to read and write named files, and
sstream defines the types used to read and write in-memory strings.

Table 8.1: IO Library Types and Headers

Header Type
iostream istream, wistream reads from a stream

ostream, wostream writes to a stream
iostream, wiostream reads and writes a stream

fstream ifstream, wifstream reads from a file
ofstream, wofstream writes to a file
fstream, wfstream reads and writes a file

sstream istringstream, wistringstream reads from a string
ostringstream, wostringstream writes to a string
stringstream, wstringstream reads and writes a string
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To support languages that use wide characters, the library defines a set of types
and objects that manipulate wchar_t data (§ 2.1.1, p. 32). The names of the wide-
character versions begin with a w. For example, wcin, wcout, and wcerr are
the wide-character objects that correspond to cin, cout, and cerr, respectively.
The wide-character types and objects are defined in the same header as the plain
char types. For example, the fstream header defines both the ifstream and
wifstream types.

Relationships among the IO Types

Conceptually, neither the kind of device nor the character size affects the IO opera-
tions we want to perform. For example, we’d like to use >> to read data regardless
of whether we’re reading a console window, a disk file, or a string. Similarly,
we’d like to use that operator regardless of whether the characters we read fit in a
char or require a wchar_t.

The library lets us ignore the differences among these different kinds of streams
by using inheritance. As with templates (§ 3.3, p. 96), we can use classes related
by inheritance without understanding the details of how inheritance works. We’ll
cover how C++ supports inheritance in Chapter 15 and in § 18.3 (p. 802).

Briefly, inheritance lets us say that a particular class inherits from another class.
Ordinarily, we can use an object of an inherited class as if it were an object of the
same type as the class from which it inherits.

The types ifstream and istringstream inherit from istream. Thus, we
can use objects of type ifstream or istringstream as if they were istream
objects. We can use objects of these types in the same ways as we have used cin.
For example, we can call getline on an ifstream or istringstream object,
and we can use the >> to read data from an ifstream or istringstream. Simi-
larly, the types ofstream and ostringstream inherit from ostream. Therefore,
we can use objects of these types in the same ways that we have used cout.

Everything that we cover in the remainder of this section applies equally
to plain streams, file streams, and string streams and to the char or
wide-character stream versions.

8.1.1 No Copy or Assign for IO Objects
As we saw in § 7.1.3 (p. 261), we cannot copy or assign objects of the IO types:

ofstream out1, out2;
out1 = out2; // error: cannot assign stream objects
ofstream print(ofstream); // error: can’t initialize the ofstream parameter
out2 = print(out2); // error: cannot copy stream objects

Because we can’t copy the IO types, we cannot have a parameter or return type
that is one of the stream types (§ 6.2.1, p. 209). Functions that do IO typically pass
and return the stream through references. Reading or writing an IO object changes
its state, so the reference must not be const.
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8.1.2 Condition States
Inherent in doing IO is the fact that errors can occur. Some errors are recoverable;
others occur deep within the system and are beyond the scope of a program to
correct. The IO classes define functions and flags, listed in Table 8.2, that let us
access and manipulate the condition state of a stream.

As an example of an IO error, consider the following code:

int ival;
cin >> ival;

If we enter Boo on the standard input, the read will fail. The input operator ex-
pected to read an int but got the character B instead. As a result, cin will be put
in an error state. Similarly, cin will be in an error state if we enter an end-of-file.

Once an error has occurred, subsequent IO operations on that stream will fail.
We can read from or write to a stream only when it is in a non-error state. Because
a stream might be in an error state, code ordinarily should check whether a stream
is okay before attempting to use it. The easiest way to determine the state of a
stream object is to use that object as a condition:

while (cin >> word)
// ok: read operation successful . . .

The while condition checks the state of the stream returned from the >> expres-
sion. If that input operation succeeds, the state remains valid and the condition
will succeed.

Interrogating the State of a Stream

Using a stream as a condition tells us only whether the stream is valid. It does
not tell us what happened. Sometimes we also need to know why the stream is
invalid. For example, what we do after hitting end-of-file is likely to differ from
what we’d do if we encounter an error on the IO device.

The IO library defines a machine-dependent integral type named iostate that
it uses to convey information about the state of a stream. This type is used as a
collection of bits, in the same way that we used the quiz1 variable in § 4.8 (p. 154).
The IO classes define four constexpr values (§ 2.4.4, p. 65) of type iostate that
represent particular bit patterns. These values are used to indicate particular kinds
of IO conditions. They can be used with the bitwise operators (§ 4.8, p. 152) to test
or set multiple flags in one operation.

The badbit indicates a system-level failure, such as an unrecoverable read or
write error. It is usually not possible to use a stream once badbit has been set. The
failbit is set after a recoverable error, such as reading a character when numeric
data was expected. It is often possible to correct such problems and continue using
the stream. Reaching end-of-file sets both eofbit and failbit. The goodbit,
which is guaranteed to have the value 0, indicates no failures on the stream. If
any of badbit, failbit, or eofbit are set, then a condition that evaluates that
stream will fail.

The library also defines a set of functions to interrogate the state of these flags.
The good operation returns true if none of the error bits is set. The bad, fail,
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Table 8.2: IO Library Condition State

strm::iostate strm is one of the IO types listed in Table 8.1 (p. 310). iostate is a
machine-dependent integral type that represents the condition state
of a stream.

strm::badbit strm::iostate value used to indicate that a stream is corrupted.
strm::failbit strm::iostate value used to indicate that an IO operation failed.
strm::eofbit strm::iostate value used to indicate that a stream hit end-of-file.
strm::goodbit strm::iostate value used to indicate that a stream is not in an

error state. This value is guaranteed to be zero.
s.eof() true if eofbit in the stream s is set.
s.fail() true if failbit or badbit in the stream s is set.
s.bad() true if badbit in the stream s is set.
s.good() true if the stream s is in a valid state.
s.clear() Reset all condition values in the stream s to valid state.

Returns void.
s.clear(flags) Reset the condition of s to flags. Type of flags is

strm::iostate. Returns void.
s.setstate(flags) Adds specified condition(s) to s. Type of flags is strm::iostate.

Returns void.

s.rdstate() Returns current condition of s as a strm::iostate value.

and eof operations return true when the corresponding bit is on. In addition,
fail returns true if bad is set. By implication, the right way to determine the
overall state of a stream is to use either good or fail. Indeed, the code that is ex-
ecuted when we use a stream as a condition is equivalent to calling !fail(). The
eof and bad operations reveal only whether those specific errors have occurred.

Managing the Condition State

The rdstate member returns an iostate value that corresponds to the current
state of the stream. The setstate operation turns on the given condition bit(s) to
indicate that a problem occurred. The clear member is overloaded (§ 6.4, p. 230):
One version takes no arguments and a second version takes a single argument of
type iostate.

The version of clear that takes no arguments turns off all the failure bits. After
clear(), a call to good returns true. We might use these members as follows:

// remember the current state of cin
auto old_state = cin.rdstate(); // remember the current state of cin
cin.clear(); // make cin valid
process_input(cin); // use cin
cin.setstate(old_state); // now reset cin to its old state

The version of clear that takes an argument expects an iostate value that
represents the new state of the stream. To turn off a single condition, we use the
rdstate member and the bitwise operators to produce the desired new state.
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For example, the following turns off failbit and badbit but leaves eofbit
untouched:

// turns off failbit and badbit but all other bits unchanged
cin.clear(cin.rdstate() & ~cin.failbit & ~cin.badbit);

EXE R C I S E S SE C TI ON 8.1.2

Exercise 8.1: Write a function that takes and returns an istream&. The function
should read the stream until it hits end-of-file. The function should print what it reads
to the standard output. Reset the stream so that it is valid before returning the stream.

Exercise 8.2: Test your function by calling it, passing cin as an argument.

Exercise 8.3: What causes the following while to terminate?

while (cin >> i) /* ... */

8.1.3 Managing the Output Buffer
Each output stream manages a buffer, which it uses to hold the data that the pro-
gram reads and writes. For example, when the following code is executed

os << "please enter a value: ";

the literal string might be printed immediately, or the operating system might store
the data in a buffer to be printed later. Using a buffer allows the operating system
to combine several output operations from our program into a single system-level
write. Because writing to a device can be time-consuming, letting the operating
system combine several output operations into a single write can provide an im-
portant performance boost.

There are several conditions that cause the buffer to be flushed—that is, to be
written—to the actual output device or file:

• The program completes normally. All output buffers are flushed as part of
the return from main.

• At some indeterminate time, the buffer can become full, in which case it will
be flushed before writing the next value.

• We can flush the buffer explicitly using a manipulator such as endl (§ 1.2,
p. 7).

• We can use the unitbuf manipulator to set the stream’s internal state to
empty the buffer after each output operation. By default, unitbuf is set for
cerr, so that writes to cerr are flushed immediately.

• An output stream might be tied to another stream. In this case, the output
stream is flushed whenever the stream to which it is tied is read or written.
By default, cin and cerr are both tied to cout. Hence, reading cin or
writing to cerr flushes the buffer in cout.
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Flushing the Output Buffer

Our programs have already used the endl manipulator, which ends the current
line and flushes the buffer. There are two other similar manipulators: flush and
ends. flush flushes the stream but adds no characters to the output; ends inserts
a null character into the buffer and then flushes it:

cout << "hi!" << endl; // writes hi and a newline, then flushes the buffer
cout << "hi!" << flush; // writes hi, then flushes the buffer; adds no data
cout << "hi!" << ends; // writes hi and a null, then flushes the buffer

The unitbuf Manipulator

If we want to flush after every output, we can use the unitbuf manipulator.
This manipulator tells the stream to do a flush after every subsequent write.
The nounitbuf manipulator restores the stream to use normal, system-managed
buffer flushing:

cout << unitbuf; // all writes will be flushed immediately
// any output is flushed immediately, no buffering
cout << nounitbuf; // returns to normal buffering

CAUTION: BUFFERS ARE NOT FLUSHED IF THE PROGRAM CRASHES

Output buffers are not flushed if the program terminates abnormally. When a program
crashes, it is likely that data the program wrote may be sitting in an output buffer
waiting to be printed.

When you debug a program that has crashed, it is essential to make sure that any
output you think should have been written was actually flushed. Countless hours of
programmer time have been wasted tracking through code that appeared not to have
executed when in fact the buffer had not been flushed and the output was pending
when the program crashed.

Tying Input and Output Streams Together

When an input stream is tied to an output stream, any attempt to read the input
stream will first flush the buffer associated with the output stream. The library ties
cout to cin, so the statement

cin >> ival;

causes the buffer associated with cout to be flushed.

Interactive systems usually should tie their input stream to their output
stream. Doing so means that all output, which might include prompts
to the user, will be written before attempting to read the input.

There are two overloaded (§ 6.4, p. 230) versions of tie: One version takes no
argument and returns a pointer to the output stream, if any, to which this object
is currently tied. The function returns the null pointer if the stream is not tied.
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The second version of tie takes a pointer to an ostream and ties itself to that
ostream. That is, x.tie(&o) ties the stream x to the output stream o.

We can tie either an istream or an ostream object to another ostream:

cin.tie(&cout); // illustration only: the library ties cin and cout for us
// old_tie points to the stream (if any) currently tied to cin
ostream *old_tie = cin.tie(nullptr); // cin is no longer tied
// ties cin and cerr; not a good idea because cin should be tied to cout
cin.tie(&cerr); // reading cin flushes cerr, not cout
cin.tie(old_tie); // reestablish normal tie between cin and cout

To tie a given stream to a new output stream, we pass tie a pointer to the new
stream. To untie the stream completely, we pass a null pointer. Each stream can be
tied to at most one stream at a time. However, multiple streams can tie themselves
to the same ostream.

8.2 File Input and Output
The fstream header defines three types to support file IO: ifstream to read
from a given file, ofstream to write to a given file, and fstream, which reads
and writes a given file. In § 17.5.3 (p. 763) we’ll describe how to use the same file
for both input and output.

These types provide the same operations as those we have previously used on
the objects cin and cout. In particular, we can use the IO operators (<< and >>)
to read and write files, we can use getline (§ 3.2.2, p. 87) to read an ifstream,
and the material covered in § 8.1 (p. 310) applies to these types.

In addition to the behavior that they inherit from the iostream types, the
types defined in fstream add members to manage the file associated with the
stream. These operations, listed in Table 8.3, can be called on objects of fstream,
ifstream, or ofstream but not on the other IO types.

Table 8.3: fstream-Specific Operations

fstream fstrm; Creates an unbound file stream. fstream is one of the types
defined in the fstream header.

fstream fstrm(s); Creates an fstream and opens the file named s. s can have type
string or can be a pointer to a C-style character string
(§ 3.5.4, p. 122). These constructors are explicit (§ 7.5.4,
p. 296). The default file mode depends on the type of fstream.

fstream fstrm(s, mode); Like the previous constructor, but opens s in the given mode.
fstrm.open(s)
fstrm.open(s, mode)

Opens the file named by the s and binds that file to fstrm. s
can be a string or a pointer to a C-style character string. The
default file mode depends on the type of fstream. Returns void.

fstrm.close() Closes the file to which fstrm is bound. Returns void.

fstrm.is_open() Returns a bool indicating whether the file associated with
fstrm was successfully opened and has not been closed.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 8.2 File Input and Output 317

8.2.1 Using File Stream Objects
When we want to read or write a file, we define a file stream object and asso-
ciate that object with the file. Each file stream class defines a member function
named open that does whatever system-specific operations are required to locate
the given file and open it for reading or writing as appropriate.

When we create a file stream, we can (optionally) provide a file name. When
we supply a file name, open is called automatically:

ifstream in(ifile); // construct an ifstream and open the given file
ofstream out; // output file stream that is not associated with any file

This code defines in as an input stream that is initialized to read from the file
named by the string argument ifile. It defines out as an output stream that
is not yet associated with a file. With the new standard, file names can be either
library strings or C-style character arrays (§ 3.5.4, p. 122). Previous versions of
the library allowed only C-style character arrays.

Using an fstream in Place of an iostream&

As we noted in § 8.1 (p. 311), we can use an object of an inherited type in places
where an object of the original type is expected. This fact means that functions that
are written to take a reference (or pointer) to one of the iostream types can be
called on behalf of the corresponding fstream (or sstream) type. That is, if we
have a function that takes an ostream&, we can call that function passing it an
ofstream object, and similarly for istream& and ifstream.

For example, we can use the read and print functions from § 7.1.3 (p. 261) to
read from and write to named files. In this example, we’ll assume that the names
of the input and output files are passed as arguments to main (§ 6.2.5, p. 218):

ifstream input(argv[1]); // open the file of sales transactions
ofstream output(argv[2]); // open the output file
Sales_data total; // variable to hold the running sum
if (read(input, total)) { // read the first transaction

Sales_data trans; // variable to hold data for the next transaction
while(read(input, trans)) { // read the remaining transactions

if (total.isbn() == trans.isbn()) // check isbns
total.combine(trans); // update the running total

else {
print(output, total) << endl; // print the results
total = trans; // process the next book

}
}
print(output, total) << endl; // print the last transaction

} else // there was no input
cerr << "No data?!" << endl;

Aside from using named files, this code is nearly identical to the version of the ad-
dition program on page 255. The important part is the calls to read and to print.
We can pass our fstream objects to these functions even though the parameters
to those functions are defined as istream& and ostream&, respectively.
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The open and close Members

When we define an empty file stream object, we can subsequently associate that
object with a file by calling open:

ifstream in(ifile); // construct an ifstream and open the given file
ofstream out; // output file stream that is not associated with any file
out.open(ifile + ".copy"); // open the specified file

If a call to open fails, failbit is set (§ 8.1.2, p. 312). Because a call to open
might fail, it is usually a good idea to verify that the open succeeded:

if (out) // check that the open succeeded
// the open succeeded, so we can use the file

This condition is similar to those we’ve used on cin. If the open fails, this condi-
tion will fail and we will not attempt to use out.

Once a file stream has been opened, it remains associated with the specified
file. Indeed, calling open on a file stream that is already open will fail and set
failbit. Subsequent attempts to use that file stream will fail. To associate a file
stream with a different file, we must first close the existing file. Once the file is
closed, we can open a new one:

in.close(); // close the file
in.open(ifile + "2"); // open another file

If the open succeeds, then open sets the stream’s state so that good() is true.

Automatic Construction and Destruction

Consider a program whose main function takes a list of files it should process
(§ 6.2.5, p. 218). Such a program might have a loop like the following:

// for each file passed to the program
for (auto p = argv + 1; p != argv + argc; ++p) {

ifstream input(*p); // create input and open the file
if (input) { // if the file is ok, ‘‘process’’ this file

process(input);
} else

cerr << "couldn’t open: " + string(*p);
} // input goes out of scope and is destroyed on each iteration

Each iteration constructs a new ifstream object named input and opens it to
read the given file. As usual, we check that the open succeeded. If so, we pass
that file to a function that will read and process the input. If not, we print an error
message and continue.

Because input is defined inside the block that forms the for body, it is created
and destroyed on each iteration (§ 6.1.1, p. 205). When an fstream object goes
out of scope, the file it is bound to is automatically closed. On the next iteration,
input is created anew.

When an fstream object is destroyed, close is called automatically.
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EXE R C I S E S SE C TI ON 8.2.1

Exercise 8.4: Write a function to open a file for input and read its contents into a
vector of strings, storing each line as a separate element in the vector.

Exercise 8.5: Rewrite the previous program to store each word in a separate element.

Exercise 8.6: Rewrite the bookstore program from § 7.1.1 (p. 256) to read its transac-
tions from a file. Pass the name of the file as an argument to main (§ 6.2.5, p. 218).

8.2.2 File Modes
Each stream has an associated file mode that represents how the file may be used.
Table 8.4 lists the file modes and their meanings.

Table 8.4: File Modes

in Open for input
out Open for output
app Seek to the end before every write
ate Seek to the end immediately after the open
trunc Truncate the file

binary Do IO operations in binary mode

We can supply a file mode whenever we open a file—either when we call open
or when we indirectly open the file when we initialize a stream from a file name.
The modes that we can specify have the following restrictions:

• out may be set only for an ofstream or fstream object.

• in may be set only for an ifstream or fstream object.

• trunc may be set only when out is also specified.

• app mode may be specified so long as trunc is not. If app is specified, the
file is always opened in output mode, even if outwas not explicitly specified.

• By default, a file opened in out mode is truncated even if we do not specify
trunc. To preserve the contents of a file opened with out, either we must
also specify app, in which case we can write only at the end of the file, or we
must also specify in, in which case the file is open for both input and output
(§ 17.5.3 (p. 763) will cover using the same file for input and output).

• The ate and binary modes may be specified on any file stream object type
and in combination with any other file modes.

Each file stream type defines a default file mode that is used whenever we do
not otherwise specify a mode. Files associated with an ifstream are opened in
in mode; files associated with an ofstream are opened in out mode; and files
associated with an fstream are opened with both in and out modes.
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Opening a File in out Mode Discards Existing Data

By default, when we open an ofstream, the contents of the file are discarded. The
only way to prevent an ostream from emptying the given file is to specify app:

// file1 is truncated in each of these cases
ofstream out("file1"); // out and trunc are implicit
ofstream out2("file1", ofstream::out); // trunc is implicit
ofstream out3("file1", ofstream::out | ofstream::trunc);

// to preserve the file’s contents, we must explicitly specify app mode
ofstream app("file2", ofstream::app); // out is implicit
ofstream app2("file2", ofstream::out | ofstream::app);

The only way to preserve the existing data in a file opened by an
ofstream is to specify app or in mode explicitly.

File Mode Is Determined Each Time open Is Called

The file mode of a given stream may change each time a file is opened.

ofstream out; // no file mode is set

out.open("scratchpad"); // mode implicitly out and trunc
out.close(); // close out so we can use it for a different file

out.open("precious", ofstream::app); // mode is out and app
out.close();

The first call to open does not specify an output mode explicitly; this file is implic-
itly opened in out mode. As usual, out implies trunc. Therefore, the file named
scratchpad in the current directory will be truncated. When we open the file
named precious, we ask for append mode. Any data in the file remains, and all
writes are done at the end of the file.

Any time open is called, the file mode is set, either explicitly or implic-
itly. Whenever a mode is not specified, the default value is used.

EXE R C I S E S SE C TI ON 8.2.2

Exercise 8.7: Revise the bookstore program from the previous section to write its out-
put to a file. Pass the name of that file as a second argument to main.

Exercise 8.8: Revise the program from the previous exercise to append its output to
its given file. Run the program on the same output file at least twice to ensure that the
data are preserved.
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8.3 string Streams
The sstream header defines three types to support in-memory IO; these types
read from or write to a string as if the string were an IO stream.

The istringstream type reads a string, ostringstreamwrites a string,
and stringstream reads and writes the string. Like the fstream types, the
types defined in sstream inherit from the types we have used from the iostream
header. In addition to the operations they inherit, the types defined in sstream
add members to manage the string associated with the stream. These operations
are listed in Table 8.5. They may be called on stringstream objects but not on
the other IO types.

Note that although fstream and sstream share the interface to iostream,
they have no other interrelationship. In particular, we cannot use open and close
on a stringstream, nor can we use str on an fstream.

Table 8.5: stringstream-Specific Operations

sstream strm; strm is an unbound stringstream. sstream is one of the types
defined in the sstream header.

sstream strm(s); strm is an sstream that holds a copy of the string s. This constructor
is explicit (§ 7.5.4, p. 296).

strm.str() Returns a copy of the string that strm holds.

strm.str(s) Copies the string s into strm. Returns void.

8.3.1 Using an istringstream
An istringstream is often used when we have some work to do on an entire
line, and other work to do with individual words within a line.

As one example, assume we have a file that lists people and their associated
phone numbers. Some people have only one number, but others have several—a
home phone, work phone, cell number, and so on. Our input file might look like
the following:

morgan 2015552368 8625550123
drew 9735550130
lee 6095550132 2015550175 8005550000

Each record in this file starts with a name, which is followed by one or more phone
numbers. We’ll start by defining a simple class to represent our input data:

// members are public by default; see § 7.2 (p. 268)
struct PersonInfo {

string name;
vector<string> phones;

};

Objects of type PersonInfo will have one member that represents the person’s
name and a vector holding a varying number of associated phone numbers.
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Our program will read the data file and build up a vector of PersonInfo.
Each element in the vector will correspond to one record in the file. We’ll pro-
cess the input in a loop that reads a record and then extracts the name and phone
numbers for each person:

string line, word; // will hold a line and word from input, respectively
vector<PersonInfo> people; // will hold all the records from the input

// read the input a line at a time until cin hits end-of-file (or another error)
while (getline(cin, line)) {

PersonInfo info; // create an object to hold this record’s data
istringstream record(line); // bind record to the line we just read
record >> info.name; // read the name
while (record >> word) // read the phone numbers

info.phones.push_back(word); // and store them
people.push_back(info); // append this record to people

}

Here we use getline to read an entire record from the standard input. If the call
to getline succeeds, then line holds a record from the input file. Inside the
while we define a local PersonInfo object to hold data from the current record.

Next we bind an istringstream to the line that we just read. We can now
use the input operator on that istringstream to read each element in the current
record. We first read the name followed by a while loop that will read the phone
numbers for that person.

The inner while ends when we’ve read all the data in line. This loop works
analogously to others we’ve written to read cin. The difference is that this loop
reads data from a string rather than from the standard input. When the string
has been completely read, “end-of-file” is signaled and the next input operation on
record will fail.

We end the outer while loop by appending the PersonInfo we just pro-
cessed to the vector. The outer while continues until we hit end-of-file on cin.

EXE R C I S E S SE C TI ON 8.3.1

Exercise 8.9: Use the function you wrote for the first exercise in § 8.1.2 (p. 314) to print
the contents of an istringstream object.

Exercise 8.10: Write a program to store each line from a file in a vector<string>.
Now use an istringstream to read each element from the vector a word at a time.

Exercise 8.11: The program in this section defined its istringstream object inside
the outer while loop. What changes would you need to make if record were defined
outside that loop? Rewrite the program, moving the definition of record outside the
while, and see whether you thought of all the changes that are needed.

Exercise 8.12: Why didn’t we use in-class initializers in PersonInfo?
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8.3.2 Using ostringstreams
An ostringstream is useful when we need to build up our output a little at a
time but do not want to print the output until later. For example, we might want
to validate and reformat the phone numbers we read in the previous example. If
all the numbers are valid, we want to print a new file containing the reformatted
numbers. If a person has any invalid numbers, we won’t put them in the new file.
Instead, we’ll write an error message containing the person’s name and a list of
their invalid numbers.

Because we don’t want to include any data for a person with an invalid number,
we can’t produce the output until we’ve seen and validated all their numbers. We
can, however, “write” the output to an in-memory ostringstream:

for (const auto &entry : people) { // for each entry in people
ostringstream formatted, badNums; // objects created on each loop
for (const auto &nums : entry.phones) { // for each number

if (!valid(nums)) {
badNums << " " << nums; // string in badNums

} else
// ‘‘writes’’ to formatted’s string
formatted << " " << format(nums);

}
if (badNums.str().empty()) // there were no bad numbers

os << entry.name << " " // print the name
<< formatted.str() << endl; // and reformatted numbers

else // otherwise, print the name and bad numbers
cerr << "input error: " << entry.name

<< " invalid number(s) " << badNums.str() << endl;
}

In this program, we’ve assumed two functions, valid and format, that vali-
date and reformat phone numbers, respectively. The interesting part of the pro-
gram is the use of the string streams formatted and badNums. We use the nor-
mal output operator (<<) to write to these objects. But, these “writes” are really
string manipulations. They add characters to the strings inside formatted
and badNums, respectively.

EXE R C I S E S SE C TI ON 8.3.2

Exercise 8.13: Rewrite the phone number program from this section to read from a
named file rather than from cin.

Exercise 8.14: Why did we declare entry and nums as const auto &?
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CH A P T E R SU M M A R Y
C++ uses library classes to handle stream-oriented input and output:

• The iostream classes handle IO to console

• The fstream classes handle IO to named files

• The stringstream classes do IO to in-memory strings

The fstream and stringstream classes are related by inheritance to the
iostream classes. The input classes inherit from istream and the output classes
from ostream. Thus, operations that can be performed on an istream object can
also be performed on either an ifstream or an istringstream. Similarly for
the output classes, which inherit from ostream.

Each IO object maintains a set of condition states that indicate whether IO can
be done through this object. If an error is encountered—such as hitting end-of-file
on an input stream—then the object’s state will be such that no further input can
be done until the error is rectified. The library provides a set of functions to set and
test these states.

DEFINED TERMS

condition state Flags and associated func-
tions usable by any of the stream classes
that indicate whether a given stream is us-
able.

file mode Flags defined by the fstream
classes that are specified when opening a
file and control how a file can be used.

file stream Stream object that reads or
writes a named file. In addition to the
normal iostream operations, file streams
also define open and close members. The
open member takes a string or a C-style
character string that names the file to open
and an optional open mode argument. The
close member closes the file to which the
stream is attached. It must be called before
another file can be opened.

fstream File stream that reads and writes
to the same file. By default fstreams are
opened with in and out mode set.

ifstream File stream that reads an input
file. By default ifstreams are opened with
in mode set.

inheritance Programming feature that lets
a type inherit the interface of another
type. The ifstream and istringstream
classes inherit from istream and the
ofstream and ostringstream classes
inherit from ostream. Chapter 15 covers
inheritance.

istringstream String stream that reads a
given string.

ofstream File stream that writes to an out-
put file. By default, ofstreams are opened
with out mode set.

ostringstream String stream that writes to
a given string.

string stream Stream object that reads or
writes a string. In addition to the nor-
mal iostream operations, string streams
define an overloaded member named str.
Calling str with no arguments returns the
string to which the string stream is at-
tached. Calling it with a string attaches
the string stream to a copy of that string.

stringstream String stream that reads and
writes to a given string.
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This chapter expands on the material from Chapter 3 and completes
our discussion of the standard-library sequential containers. The
order of the elements in a sequential container corresponds to the
positions in which the elements are added to the container. The
library also defines several associative containers, which hold ele-
ments whose position depends on a key associated with each ele-
ment. We’ll cover operations specific to the associative containers in
Chapter 11.

The container classes share a common interface, which each of the
containers extends in its own way. This common interface makes the
library easier to learn; what we learn about one kind of container
applies to another. Each kind of container offers a different set of
performance and functionality trade-offs.
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A container holds a collection of objects of a specified type. The sequential
containers let the programmer control the order in which the elements are stored
and accessed. That order does not depend on the values of the elements. Instead,
the order corresponds to the position at which elements are put into the container.
By contrast, the ordered and unordered associative containers, which we cover in
Chapter 11, store their elements based on the value of a key.

The library also provides three container adaptors, each of which adapts a con-
tainer type by defining a different interface to the container’s operations. We cover
the adaptors at the end of this chapter.

This chapter builds on the material covered in § 3.2, § 3.3, and § 3.4. We
assume that the reader is familiar with the material covered there.

9.1 Overview of the Sequential Containers
The sequential containers, which are listed in Table 9.1, all provide fast sequential
access to their elements. However, these containers offer different performance
trade-offs relative to

• The costs to add or delete elements to the container

• The costs to perform nonsequential access to elements of the container

Table 9.1: Sequential Container Types

vector Flexible-size array. Supports fast random access.
Inserting or deleting elements other than at the back may be slow.

deque Double-ended queue. Supports fast random access.
Fast insert/delete at front or back.

list Doubly linked list. Supports only bidirectional sequential access.
Fast insert/delete at any point in the list.

forward_list Singly linked list. Supports only sequential access in one direction.
Fast insert/delete at any point in the list.

array Fixed-size array. Supports fast random access.
Cannot add or remove elements.

string A specialized container, similar to vector, that contains characters.
Fast random access. Fast insert/delete at the back.

With the exception of array, which is a fixed-size container, the containers
provide efficient, flexible memory management. We can add and remove elements,
growing and shrinking the size of the container. The strategies that the containers
use for storing their elements have inherent, and sometimes significant, impact
on the efficiency of these operations. In some cases, these strategies also affect
whether a particular container supplies a particular operation.

For example, string and vector hold their elements in contiguous memory.
Because elements are contiguous, it is fast to compute the address of an element
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from its index. However, adding or removing elements in the middle of one of
these containers takes time: All the elements after the one inserted or removed
have to be moved to maintain contiguity. Moreover, adding an element can some-
times require that additional storage be allocated. In that case, every element must
be moved into the new storage.

The list and forward_list containers are designed to make it fast to add
or remove an element anywhere in the container. In exchange, these types do not
support random access to elements: We can access an element only by iterating
through the container. Moreover, the memory overhead for these containers is
often substantial, when compared to vector, deque, and array.

A deque is a more complicated data structure. Like string and vector,
deque supports fast random access. As with string and vector, adding or re-
moving elements in the middle of a deque is a (potentially) expensive operation.
However, adding or removing elements at either end of the deque is a fast opera-
tion, comparable to adding an element to a list or forward_list.

The forward_list and array types were added by the new standard. An
array is a safer, easier-to-use alternative to built-in arrays. Like built-in arrays,
library arrays have fixed size. As a result, array does not support operations
to add and remove elements or to resize the container. A forward_list is in-
tended to be comparable to the best handwritten, singly linked list. Consequently,
forward_list does not have the size operation because storing or computing
its size would entail overhead compared to a handwritten list. For the other con-
tainers, size is guaranteed to be a fast, constant-time operation.

For reasons we’ll explain in § 13.6 (p. 531), the new library containers
are dramatically faster than in previous releases. The library containers
almost certainly perform as well as (and usually better than) even the
most carefully crafted alternatives. Modern C++ programs should use
the library containers rather than more primitive structures like arrays.

Deciding Which Sequential Container to Use

Ordinarily, it is best to use vector unless there is a good reason to
prefer another container.

There are a few rules of thumb that apply to selecting which container to use:

• Unless you have a reason to use another container, use a vector.

• If your program has lots of small elements and space overhead matters, don’t
use list or forward_list.

• If the program requires random access to elements, use a vector or a deque.

• If the program needs to insert or delete elements in the middle of the con-
tainer, use a list or forward_list.

• If the program needs to insert or delete elements at the front and the back,
but not in the middle, use a deque.
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• If the program needs to insert elements in the middle of the container only
while reading input, and subsequently needs random access to the elements:

– First, decide whether you actually need to add elements in the middle
of a container. It is often easier to append to a vector and then call
the library sort function (which we shall cover in § 10.2.3 (p. 384)) to
reorder the container when you’re done with input.

– If you must insert into the middle, consider using a list for the input
phase. Once the input is complete, copy the list into a vector.

What if the program needs random access and needs to insert and delete ele-
ments in the middle of the container? This decision will depend on the relative cost
of accessing the elements in a list or forward_list versus the cost of inserting
or deleting elements in a vector or deque. In general, the predominant opera-
tion of the application (whether it does more access or more insertion or deletion)
will determine the choice of container type. In such cases, performance testing the
application using both containers will probably be necessary.

If you’re not sure which container to use, write your code so that it uses
only operations common to both vectors and lists: Use iterators,
not subscripts, and avoid random access to elements. That way it will
be easy to use either a vector or a list as necessary.

EXE R C I S E S SE C TI ON 9.1

Exercise 9.1: Which is the most appropriate—a vector, a deque, or a list—for the
following program tasks? Explain the rationale for your choice. If there is no reason to
prefer one or another container, explain why not.

(a) Read a fixed number of words, inserting them in the container alphabetically
as they are entered. We’ll see in the next chapter that associative containers are better
suited to this problem.

(b) Read an unknown number of words. Always insert new words at the back.
Remove the next value from the front.

(c) Read an unknown number of integers from a file. Sort the numbers and then
print them to standard output.

9.2 Container Library Overview
The operations on the container types form a kind of hierarchy:

• Some operations (Table 9.2 (p. 330)) are provided by all container types.

• Other operations are specific to the sequential (Table 9.3 (p. 335)), the asso-
ciative (Table 11.7 (p. 438)), or the unordered (Table 11.8 (p. 445)) containers.

• Still others are common to only a smaller subset of the containers.
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In this section, we’ll cover aspects common to all of the containers. The remainder
of this chapter will then focus solely on sequential containers; we’ll cover opera-
tions specific to the associative containers in Chapter 11.

In general, each container is defined in a header file with the same name as the
type. That is, deque is in the deque header, list in the list header, and so on.
The containers are class templates (§ 3.3, p. 96). As with vectors, we must supply
additional information to generate a particular container type. For most, but not
all, of the containers, the information we must supply is the element type:

list<Sales_data> // list that holds Sales_data objects
deque<double> // deque that holds doubles

Constraints on Types That a Container Can Hold

Almost any type can be used as the element type of a sequential container. In
particular, we can define a container whose element type is itself another container.
We define such containers exactly as we do any other container type: We specify
the element type (which in this case is a container type) inside angle brackets:

vector<vector<string>> lines; // vector of vectors

Here lines is a vector whose elements are vectors of strings.

Older compilers may require a space between the angle brackets, for
example, vector<vector<string> >.

Although we can store almost any type in a container, some container opera-
tions impose requirements of their own on the element type. We can define a con-
tainer for a type that does not support an operation-specific requirement, but we
can use an operation only if the element type meets that operation’s requirements.

As an example, the sequential container constructor that takes a size argument
(§ 3.3.1, p. 98) uses the element type’s default constructor. Some classes do not
have a default constructor. We can define a container that holds objects of such
types, but we cannot construct such containers using only an element count:

// assume noDefault is a type without a default constructor
vector<noDefault> v1(10, init); // ok: element initializer supplied
vector<noDefault> v2(10); // error: must supply an element initializer

As we describe the container operations, we’ll note the additional constraints, if
any, that each container operation places on the element type.

EXE R C I S E S SE C TI ON 9.2

Exercise 9.2: Define a list that holds elements that are deques that hold ints.
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Table 9.2: Container Operations

Type Aliases
iterator Type of the iterator for this container type
const_iterator Iterator type that can read but not change its elements
size_type Unsigned integral type big enough to hold the size of

the largest possible container of this container type
difference_type Signed integral type big enough to hold the

distance between two iterators
value_type Element type
reference Element’s lvalue type; synonym for value_type&
const_reference Element’s const lvalue type (i.e., const value_type&)

Construction
C c; Default constructor, empty container (array; see p. 336)
C c1(c2); Construct c1 as a copy of c2
C c(b, e); Copy elements from the range denoted by iterators b and e;

(not valid for array)
C c{a,b,c...}; List initialize c

Assignment and swap
c1 = c2 Replace elements in c1 with those in c2
c1 = {a,b,c...} Replace elements in c1 with those in the list (not valid for array)
a.swap(b) Swap elements in a with those in b
swap(a, b) Equivalent to a.swap(b)

Size
c.size() Number of elements in c (not valid for forward_list)
c.max_size() Maximum number of elements c can hold
c.empty() false if c has any elements, true otherwise

Add/Remove Elements (not valid for array)
Note: the interface to these operations varies by container type
c.insert(args) Copy element(s) as specified by args into c
c.emplace(inits) Use inits to construct an element in c
c.erase(args) Remove element(s) specified by args
c.clear() Remove all elements from c; returns void

Equality and Relational Operators
==, != Equality valid for all container types
<, <=, >, >= Relationals (not valid for unordered associative containers)

Obtain Iterators
c.begin(), c.end() Return iterator to the first, one past the last element in c
c.cbegin(), c.cend() Return const_iterator

Additional Members of Reversible Containers (not valid for forward_list)
reverse_iterator Iterator that addresses elements in reverse order
const_reverse_iterator Reverse iterator that cannot write the elements
c.rbegin(), c.rend() Return iterator to the last, one past the first element in c
c.crbegin(), c.crend() Return const_reverse_iterator
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9.2.1 Iterators
As with the containers, iterators have a common interface: If an iterator provides
an operation, then the operation is supported in the same way for each iterator that
supplies that operation. For example, all the iterators on the standard container
types let us access an element from a container, and they all do so by providing the
dereference operator. Similarly, the iterators for the library containers all define
the increment operator to move from one element to the next.

With one exception, the container iterators support all the operations listed in
Table 3.6 (p. 107). The exception is that the forward_list iterators do not sup-
port the decrement (--) operator. The iterator arithmetic operations listed in Ta-
ble 3.7 (p. 111) apply only to iterators for string, vector, deque, and array.
We cannot use these operations on iterators for any of the other container types.

Iterator Ranges

The concept of an iterator range is fundamental to the standard library.

An iterator range is denoted by a pair of iterators each of which refers to an el-
ement, or to one past the last element, in the same container. These two iterators,
often referred to as begin and end—or (somewhat misleadingly) as first and
last—mark a range of elements from the container.

The name last, although commonly used, is a bit misleading, because the
second iterator never refers to the last element of the range. Instead, it refers to
a point one past the last element. The elements in the range include the element
denoted by first and every element from first up to but not including last.

This element range is called a left-inclusive interval. The standard mathemat-
ical notation for such a range is

[ begin, end )

indicating that the range begins with begin and ends with, but does not include,
end. The iterators begin and end must refer to the same container. The itera-
tor end may be equal to begin but must not refer to an element before the one
denoted by begin.

REQUIREMENTS ON ITERATORS FORMING AN ITERATOR RANGE

Two iterators, begin and end, form an iterator range, if

• They refer to elements of, or one past the end of, the same container, and

• It is possible to reach end by repeatedly incrementing begin. In other words,
end must not precede begin.

The compiler cannot enforce these requirements. It is up to us to ensure
that our programs follow these conventions.
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Programming Implications of Using Left-Inclusive Ranges

The library uses left-inclusive ranges because such ranges have three convenient
properties. Assuming begin and end denote a valid iterator range, then

• If begin equals end, the range is empty

• If begin is not equal to end, there is at least one element in the range, and
begin refers to the first element in that range

• We can increment begin some number of times until begin == end

These properties mean that we can safely write loops such as the following to
process a range of elements:

while (begin != end) {

*begin = val; // ok: range isn’t empty so begin denotes an element
++begin; // advance the iterator to get the next element

}

Given that begin and end form a valid iterator range, we know that if begin
== end, then the range is empty. In this case, we exit the loop. If the range
is nonempty, we know that begin refers to an element in this nonempty range.
Therefore, inside the body of the while, we know that it is safe to dereference
begin because begin must refer to an element. Finally, because the loop body
increments begin, we also know the loop will eventually terminate.

EXE R C I S E S SE C TI ON 9.2.1

Exercise 9.3: What are the constraints on the iterators that form iterator ranges?

Exercise 9.4: Write a function that takes a pair of iterators to a vector<int> and an
int value. Look for that value in the range and return a bool indicating whether it
was found.

Exercise 9.5: Rewrite the previous program to return an iterator to the requested ele-
ment. Note that the program must handle the case where the element is not found.

Exercise 9.6: What is wrong with the following program? How might you correct it?

list<int> lst1;
list<int>::iterator iter1 = lst1.begin(),

iter2 = lst1.end();
while (iter1 < iter2) /* ... */

9.2.2 Container Type Members
Each container defines several types, shown in Table 9.2 (p. 330). We have al-
ready used three of these container-defined types: size_type (§ 3.2.2, p. 88),
iterator, and const_iterator (§ 3.4.1, p. 108).
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In addition to the iterator types we’ve already used, most containers provide re-
verse iterators. Briefly, a reverse iterator is an iterator that goes backward through
a container and inverts the meaning of the iterator operations. For example, saying
++ on a reverse iterator yields the previous element. We’ll have more to say about
reverse iterators in § 10.4.3 (p. 407).

The remaining type aliases let us use the type of the elements stored in a con-
tainer without knowing what that type is. If we need the element type, we re-
fer to the container’s value_type. If we need a reference to that type, we use
reference or const_reference. These element-related type aliases are most
useful in generic programs, which we’ll cover in Chapter 16.

To use one of these types, we must name the class of which they are a member:

// iter is the iterator type defined by list<string>
list<string>::iterator iter;

// count is the difference_type type defined by vector<int>
vector<int>::difference_type count;

These declarations use the scope operator (§ 1.2, p. 8) to say that we want the
iterator member of the list<string> class and the difference_type de-
fined by vector<int>, respectively.

EXE R C I S E S SE C TI ON 9.2.2

Exercise 9.7: What type should be used as the index into a vector of ints?

Exercise 9.8: What type should be used to read elements in a list of strings? To
write them?

9.2.3 begin and end Members
The begin and end operations (§ 3.4.1, p. 106) yield iterators that refer to the first
and one past the last element in the container. These iterators are most often used
to form an iterator range that encompasses all the elements in the container.

As shown in Table 9.2 (p. 330), there are several versions of begin and end:
The versions with an r return reverse iterators (which we cover in § 10.4.3 (p. 407)).
Those that start with a c return the const version of the related iterator:

list<string> a = {"Milton", "Shakespeare", "Austen"};
auto it1 = a.begin(); // list<string>::iterator
auto it2 = a.rbegin(); // list<string>::reverse_iterator
auto it3 = a.cbegin(); // list<string>::const_iterator
auto it4 = a.crbegin();// list<string>::const_reverse_iterator

The functions that do not begin with a c are overloaded. That is, there are actually
two members named begin. One is a const member (§ 7.1.2, p. 258) that re-
turns the container’s const_iterator type. The other is nonconst and returns
the container’s iterator type. Similarly for rbegin, end, and rend. When we
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call one of these members on a nonconst object, we get the version that returns
iterator. We get a const version of the iterators only when we call these func-
tions on a const object. As with pointers and references to const, we can convert
a plain iterator to the corresponding const_iterator, but not vice versa.

The c versions were introduced by the new standard to support using auto
with begin and end functions (§ 2.5.2, p. 68). In the past, we had no choice but to
say which type of iterator we want:

// type is explicitly specified
list<string>::iterator it5 = a.begin();
list<string>::const_iterator it6 = a.begin();
// iterator or const_iterator depending on a’s type of a
auto it7 = a.begin(); // const_iterator only if a is const
auto it8 = a.cbegin(); // it8 is const_iterator

When we use auto with begin or end, the iterator type we get depends on the
container type. How we intend to use the iterator is irrelevant. The c versions let
us get a const_iterator regardless of the type of the container.

When write access is not needed, use cbegin and cend.

EXE R C I S E S SE C TI ON 9.2.3

Exercise 9.9: What is the difference between the begin and cbegin functions?

Exercise 9.10: What are the types of the following four objects?

vector<int> v1;
const vector<int> v2;
auto it1 = v1.begin(), it2 = v2.begin();
auto it3 = v1.cbegin(), it4 = v2.cbegin();

9.2.4 Defining and Initializing a Container
Every container type defines a default constructor (§ 7.1.4, p. 263). With the excep-
tion of array, the default constructor creates an empty container of the specified
type. Again excepting array, the other constructors take arguments that specify
the size of the container and initial values for the elements.

Initializing a Container as a Copy of Another Container

There are two ways to create a new container as a copy of another one: We can
directly copy the container, or (excepting array) we can copy a range of elements
denoted by a pair of iterators.

To create a container as a copy of another container, the container and element
types must match. When we pass iterators, there is no requirement that the con-
tainer types be identical. Moreover, the element types in the new and original
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Table 9.3: Defining and Initializing Containers

C c; Default constructor. If C is array, then the elements in c are
default-initialized; otherwise c is empty.

C c1(c2)
C c1 = c2

c1 is a copy of c2. c1 and c2 must have the same type (i.e., they must be
the same container type and hold the same element type; for array must
also have the same size).

C c{a,b,c...}
C c = {a,b,c...}

c is a copy of the elements in the initializer list. Type of elements in the
list must be compatible with the element type of C. For array, the list
must have same number or fewer elements than the size of the array,
any missing elements are value-initialized (§ 3.3.1, p. 98).

C c(b, e) c is a copy of the elements in the range denoted by iterators b and e.
Type of the elements must be compatible with the element type of C.
(Not valid for array.)

Constructors that take a size are valid for sequential containers (not including array) only

C seq(n) seq has n value-initialized elements; this constructor is explicit (§ 7.5.4,
p. 296). (Not valid for string.)

C seq(n,t) seq has n elements with value t.

containers can differ as long as it is possible to convert (§ 4.11, p. 159) the elements
we’re copying to the element type of the container we are initializing:

// each container has three elements, initialized from the given initializers
list<string> authors = {"Milton", "Shakespeare", "Austen"};
vector<const char*> articles = {"a", "an", "the"};

list<string> list2(authors); // ok: types match
deque<string> authList(authors); // error: container types don’t match
vector<string> words(articles); // error: element types must match
// ok: converts const char* elements to string
forward_list<string> words(articles.begin(), articles.end());

When we initialize a container as a copy of another container, the con-
tainer type and element type of both containers must be identical.

The constructor that takes two iterators uses them to denote a range of elements
that we want to copy. As usual, the iterators mark the first and one past the last
element to be copied. The new container has the same size as the number of ele-
ments in the range. Each element in the new container is initialized by the value
of the corresponding element in the range.

Because the iterators denote a range, we can use this constructor to copy a
subsequence of a container. For example, assuming it is an iterator denoting an
element in authors, we can write

// copies up to but not including the element denoted by it
deque<string> authList(authors.begin(), it);
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List Initialization

Under the new standard, we can list initialize (§ 3.3.1, p. 98) a container:

// each container has three elements, initialized from the given initializers
list<string> authors = {"Milton", "Shakespeare", "Austen"};
vector<const char*> articles = {"a", "an", "the"};

When we do so, we explicitly specify values for each element in the container. For
types other than array, the initializer list also implicitly specifies the size of the
container: The container will have as many elements as there are initializers.

Sequential Container Size-Related Constructors

In addition to the constructors that sequential containers have in common with
associative containers, we can also initialize the sequential containers (other than
array) from a size and an (optional) element initializer. If we do not supply an
element initializer, the library creates a value-initialized one for us § 3.3.1 (p. 98):

vector<int> ivec(10, -1); // ten int elements, each initialized to -1
list<string> svec(10, "hi!"); // ten strings; each element is "hi!"
forward_list<int> ivec(10); // ten elements, each initialized to 0
deque<string> svec(10); // ten elements, each an empty string

We can use the constructor that takes a size argument if the element type is
a built-in type or a class type that has a default constructor (§ 9.2, p. 329). If the
element type does not have a default constructor, then we must specify an explicit
element initializer along with the size.

The constructors that take a size are valid only for sequential containers;
they are not supported for the associative containers.

Library arrays Have Fixed Size

Just as the size of a built-in array is part of its type, the size of a library array is
part of its type. When we define an array, in addition to specifying the element
type, we also specify the container size:

array<int, 42> // type is: array that holds 42 ints
array<string, 10> // type is: array that holds 10 strings

To use an array type we must specify both the element type and the size:

array<int, 10>::size_type i; // array type includes element type and size
array<int>::size_type j; // error: array<int> is not a type

Because the size is part of the array’s type, array does not support the normal
container constructors. Those constructors, implicitly or explicitly, determine the
size of the container. It would be redundant (at best) and error-prone to allow users
to pass a size argument to an array constructor.

The fixed-size nature of arrays also affects the behavior of the constructors
that array does define. Unlike the other containers, a default-constructed array
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is not empty: It has as many elements as its size. These elements are default ini-
tialized (§ 2.2.1, p. 43) just as are elements in a built-in array (§ 3.5.1, p. 114). If we
list initialize the array, the number of the initializers must be equal to or less than
the size of the array. If there are fewer initializers than the size of the array, the
initializers are used for the first elements and any remaining elements are value
initialized (§ 3.3.1, p. 98). In both cases, if the element type is a class type, the class
must have a default constructor in order to permit value initialization:

array<int, 10> ia1; // ten default-initialized ints
array<int, 10> ia2 = {0,1,2,3,4,5,6,7,8,9}; // list initialization
array<int, 10> ia3 = {42}; // ia3[0] is 42, remaining elements are 0

It is worth noting that although we cannot copy or assign objects of built-in
array types (§ 3.5.1, p. 114), there is no such restriction on array:

int digs[10] = {0,1,2,3,4,5,6,7,8,9};
int cpy[10] = digs; // error: no copy or assignment for built-in arrays

array<int, 10> digits = {0,1,2,3,4,5,6,7,8,9};
array<int, 10> copy = digits; // ok: so long as array types match

As with any container, the initializer must have the same type as the container we
are creating. For arrays, the element type and the size must be the same, because
the size of an array is part of its type.

EXE R C I S E S SE C TI ON 9.2.4

Exercise 9.11: Show an example of each of the six ways to create and initialize a
vector. Explain what values each vector contains.

Exercise 9.12: Explain the differences between the constructor that takes a container
to copy and the constructor that takes two iterators.

Exercise 9.13: How would you initialize a vector<double> from a list<int>?
From a vector<int>? Write code to check your answers.

9.2.5 Assignment and swap
The assignment-related operators, listed in Table 9.4 (overleaf) act on the entire
container. The assignment operator replaces the entire range of elements in the
left-hand container with copies of the elements from the right-hand operand:

c1 = c2; // replace the contents of c1 with a copy of the elements in c2
c1 = {a,b,c}; // after the assignment c1 has size 3

After the first assignment, the left- and right-hand containers are equal. If the
containers had been of unequal size, after the assignment both containers would
have the size of the right-hand operand. After the second assignment, the size of
c1 is 3, which is the number of values provided in the braced list.
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Unlike built-in arrays, the library array type does allow assignment. The left-
and right-hand operands must have the same type:

array<int, 10> a1 = {0,1,2,3,4,5,6,7,8,9};
array<int, 10> a2 = {0}; // elements all have value 0
a1 = a2; // replaces elements in a1
a2 = {0}; // error: cannot assign to an array from a braced list

Because the size of the right-hand operand might differ from the size of the left-
hand operand, the array type does not support assign and it does not allow
assignment from a braced list of values.

Table 9.4: Container Assignment Operations

c1 = c2 Replace the elements in c1 with copies of the elements in c2. c1 and c2
must be the same type.

c = {a,b,c. . .} Replace the elements in c1 with copies of the elements in the initializer
list. (Not valid for array.)

swap(c1, c2)
c1.swap(c2)

Exchanges elements in c1 with those in c2. c1 and c2 must be the same
type. swap is usually much faster than copying elements from c2 to c1.

assign operations not valid for associative containers or array

seq.assign(b,e) Replaces elements in seq with those in the range denoted by iterators
b and e. The iterators b and e must not refer to elements in seq.

seq.assign(il) Replaces the elements in seq with those in the initializer list il.

seq.assign(n,t) Replaces the elements in seq with n elements with value t.

Assignment related operations invalidate iterators, references, and pointers into the
left-hand container. Aside from string they remain valid after a swap, and (except-
ing arrays) the containers to which they refer are swapped.

Using assign (Sequential Containers Only)

The assignment operator requires that the left-hand and right-hand operands have
the same type. It copies all the elements from the right-hand operand into the left-
hand operand. The sequential containers (except array) also define a member
named assign that lets us assign from a different but compatible type, or assign
from a subsequence of a container. The assign operation replaces all the elements
in the left-hand container with (copies of) the elements specified by its arguments.
For example, we can use assign to assign a range of char* values from a vector
into a list of string:

list<string> names;
vector<const char*> oldstyle;
names = oldstyle; // error: container types don’t match
// ok: can convert from const char* to string
names.assign(oldstyle.cbegin(), oldstyle.cend());
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The call to assign replaces the elements in names with copies of the elements
in the range denoted by the iterators. The arguments to assign determine how
many elements and what values the container will have.

Because the existing elements are replaced, the iterators passed to
assign must not refer to the container on which assign is called.

A second version of assign takes an integral value and an element value. It
replaces the elements in the container with the specified number of elements, each
of which has the specified element value:

// equivalent to slist1.clear();
// followed by slist1.insert(slist1.begin(), 10, "Hiya!");
list<string> slist1(1); // one element, which is the empty string
slist1.assign(10, "Hiya!"); // ten elements; each one is Hiya!

Using swap

The swap operation exchanges the contents of two containers of the same type.
After the call to swap, the elements in the two containers are interchanged:

vector<string> svec1(10); // vector with ten elements
vector<string> svec2(24); // vector with 24 elements
swap(svec1, svec2);

After the swap, svec1 contains 24 string elements and svec2 contains ten.
With the exception of arrays, swapping two containers is guaranteed to be fast—
the elements themselves are not swapped; internal data structures are swapped.

Excepting array, swap does not copy, delete, or insert any elements
and is guaranteed to run in constant time.

The fact that elements are not moved means that, with the exception of string,
iterators, references, and pointers into the containers are not invalidated. They re-
fer to the same elements as they did before the swap. However, after the swap,
those elements are in a different container. For example, had iter denoted the
string at position svec1[3] before the swap, it will denote the element at posi-
tion svec2[3] after the swap. Differently from the containers, a call to swap on a
string may invalidate iterators, references and pointers.

Unlike how swap behaves for the other containers, swapping two arrays does
exchange the elements. As a result, swapping two arrays requires time propor-
tional to the number of elements in the array.

After the swap, pointers, references, and iterators remain bound to the same
element they denoted before the swap. Of course, the value of that element has
been swapped with the corresponding element in the other array.

In the new library, the containers offer both a member and nonmember version
of swap. Earlier versions of the library defined only the member version of swap.
The nonmember swap is of most importance in generic programs. As a matter of
habit, it is best to use the nonmember version of swap.
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EXE R C I S E S SE C TI ON 9.2.5

Exercise 9.14: Write a program to assign the elements from a list of char* pointers
to C-style character strings to a vector of strings.

9.2.6 Container Size Operations
With one exception, the container types have three size-related operations. The
size member (§ 3.2.2, p. 87) returns the number of elements in the container;
empty returns a bool that is true if size is zero and false otherwise; and
max_size returns a number that is greater than or equal to the number of ele-
ments a container of that type can contain. For reasons we’ll explain in the next
section, forward_list provides max_size and empty, but not size.

9.2.7 Relational Operators
Every container type supports the equality operators (== and !=); all the contain-
ers except the unordered associative containers also support the relational oper-
ators (>, >=, <, <=). The right- and left-hand operands must be the same kind
of container and must hold elements of the same type. That is, we can com-
pare a vector<int> only with another vector<int>. We cannot compare a
vector<int> with a list<int> or a vector<double>.

Comparing two containers performs a pairwise comparison of the elements.
These operators work similarly to the string relationals (§ 3.2.2, p. 88):

• If both containers are the same size and all the elements are equal, then the
two containers are equal; otherwise, they are unequal.

• If the containers have different sizes but every element of the smaller one is
equal to the corresponding element of the larger one, then the smaller one is
less than the other.

• If neither container is an initial subsequence of the other, then the comparison
depends on comparing the first unequal elements.

The following examples illustrate how these operators work:

vector<int> v1 = { 1, 3, 5, 7, 9, 12 };
vector<int> v2 = { 1, 3, 9 };
vector<int> v3 = { 1, 3, 5, 7 };
vector<int> v4 = { 1, 3, 5, 7, 9, 12 };
v1 < v2 // true; v1 and v2 differ at element[2]: v1[2] is less than v2[2]
v1 < v3 // false; all elements are equal, but v3 has fewer of them;
v1 == v4 // true; each element is equal and v1 and v4 have the same size()
v1 == v2 // false; v2 has fewer elements than v1
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Relational Operators Use Their Element’s Relational Operator

We can use a relational operator to compare two containers only if the
appropriate comparison operator is defined for the element type.

The container equality operators use the element’s == operator, and the relational
operators use the element’s < operator. If the element type doesn’t support the
required operator, then we cannot use the corresponding operations on containers
holding that type. For example, the Sales_data type that we defined in Chap-
ter 7 does not define either the == or the < operation. Therefore, we cannot com-
pare two containers that hold Sales_data elements:

vector<Sales_data> storeA, storeB;
if (storeA < storeB) // error: Sales_data has no less-than operator

EXE R C I S E S SE C TI ON 9.2.7

Exercise 9.15: Write a program to determine whether two vector<int>s are equal.

Exercise 9.16: Repeat the previous program, but compare elements in a list<int>
to a vector<int>.

Exercise 9.17: Assuming c1 and c2 are containers, what (if any) constraints does the
following usage place on the types of c1 and c2?

if (c1 < c2)

9.3 Sequential Container Operations
The sequential and associative containers differ in how they organize their ele-
ments. These differences affect how elements are stored, accessed, added, and re-
moved. The previous section covered operations common to all containers (those
listed in Table 9.2 (p. 330)). We’ll cover the operations specific to the sequential
containers in the remainder of this chapter.

9.3.1 Adding Elements to a Sequential Container
Excepting array, all of the library containers provide flexible memory manage-
ment. We can add or remove elements dynamically changing the size of the con-
tainer at run time. Table 9.5 (p. 343) lists the operations that add elements to a
(nonarray) sequential container.

When we use these operations, we must remember that the containers use
different strategies for allocating elements and that these strategies affect perfor-
mance. Adding elements anywhere but at the end of a vector or string, or
anywhere but the beginning or end of a deque, requires elements to be moved.
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Moreover, adding elements to a vector or a string may cause the entire ob-
ject to be reallocated. Reallocating an object requires allocating new memory and
moving elements from the old space to the new.

Using push_back

In § 3.3.2 (p. 100) we saw that push_back appends an element to the back of
a vector. Aside from array and forward_list, every sequential container
(including the string type) supports push_back.

As an example, the following loop reads one string at a time into word:

// read from standard input, putting each word onto the end of container
string word;
while (cin >> word)

container.push_back(word);

The call to push_back creates a new element at the end of container, increasing
the size of container by 1. The value of that element is a copy of word. The
type of container can be any of list, vector, or deque.

Because string is just a container of characters, we can use push_back to
add characters to the end of the string:

void pluralize(size_t cnt, string &word)
{

if (cnt > 1)
word.push_back(’s’); // same as word += ’s’

}

KEY CONCEPT: CONTAINER ELEMENTS ARE COPIES

When we use an object to initialize a container, or insert an object into a container, a
copy of that object’s value is placed in the container, not the object itself. Just as when
we pass an object to a nonreference parameter (§ 6.2.1, p. 209), there is no relationship
between the element in the container and the object from which that value originated.
Subsequent changes to the element in the container have no effect on the original
object, and vice versa.

Using push_front

In addition to push_back, the list, forward_list, and deque containers sup-
port an analogous operation named push_front. This operation inserts a new
element at the front of the container:

list<int> ilist;
// add elements to the start of ilist
for (size_t ix = 0; ix != 4; ++ix)

ilist.push_front(ix);

This loop adds the elements 0, 1, 2, 3 to the beginning of ilist. Each element
is inserted at the new beginning of the list. That is, when we insert 1, it goes in
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front of 0, and 2 in front of 1, and so forth. Thus, the elements added in a loop
such as this one wind up in reverse order. After executing this loop, ilist holds
the sequence 3,2,1,0.

Note that deque, which like vector offers fast random access to its elements,
provides the push_frontmember even though vector does not. A deque guar-
antees constant-time insert and delete of elements at the beginning and end of the
container. As with vector, inserting elements other than at the front or back of a
deque is a potentially expensive operation.

Table 9.5: Operations That Add Elements to a Sequential Container

These operations change the size of the container; they are not supported by array.
forward_list has special versions of insert and emplace; see § 9.3.4 (p. 350).

push_back and emplace_back not valid for forward_list.
push_front and emplace_front not valid for vector or string.

c.push_back(t)
c.emplace_back(args)

Creates an element with value t or constructed from args at the
end of c. Returns void.

c.push_front(t)
c.emplace_front(args)

Creates an element with value t or constructed from args on the
front of c. Returns void.

c.insert(p,t)
c.emplace(p, args)

Creates an element with value t or constructed from args before
the element denoted by iterator p. Returns an iterator referring
to the element that was added.

c.insert(p,n,t) Inserts n elements with value t before the element denoted by
iterator p. Returns an iterator to the first element inserted; if n is
zero, returns p.

c.insert(p,b,e) Inserts the elements from the range denoted by iterators b and e
before the element denoted by iterator p. b and e may not refer
to elements in c. Returns an iterator to the first element inserted;
if the range is empty, returns p.

c.insert(p,il) il is a braced list of element values. Inserts the given values
before the element denoted by the iterator p. Returns an iterator
to the first inserted element; if the list is empty returns p.

Adding elements to a vector, string, or deque potentially invalidates all existing
iterators, references, and pointers into the container.

Adding Elements at a Specified Point in the Container

The push_back and push_front operations provide convenient ways to insert
a single element at the end or beginning of a sequential container. More gener-
ally, the insert members let us insert zero or more elements at any point in the
container. The insert members are supported for vector, deque, list, and
string. forward_list provides specialized versions of these members that
we’ll cover in § 9.3.4 (p. 350).

Each of the insert functions takes an iterator as its first argument. The iterator
indicates where in the container to put the element(s). It can refer to any position
in the container, including one past the end of the container. Because the iterator
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might refer to a nonexistent element off the end of the container, and because it is
useful to have a way to insert elements at the beginning of a container, element(s)
are inserted before the position denoted by the iterator. For example, this statement

slist.insert(iter, "Hello!"); // insert "Hello!" just before iter

inserts a string with value "Hello" just before the element denoted by iter.
Even though some containers do not have a push_front operation, there is

no similar constraint on insert. We can insert elements at the beginning of a
container without worrying about whether the container has push_front:

vector<string> svec;
list<string> slist;

// equivalent to calling slist.push_front("Hello!");
slist.insert(slist.begin(), "Hello!");

// no push_front on vector but we can insert before begin()
// warning: inserting anywhere but at the end of a vector might be slow
svec.insert(svec.begin(), "Hello!");

It is legal to insert anywhere in a vector, deque, or string. However,
doing so can be an expensive operation.

Inserting a Range of Elements

The arguments to insert that appear after the initial iterator argument are anal-
ogous to the container constructors that take the same parameters. The version
that takes an element count and a value adds the specified number of identical
elements before the given position:

svec.insert(svec.end(), 10, "Anna");

This code inserts ten elements at the end of svec and initializes each of those
elements to the string "Anna".

The versions of insert that take a pair of iterators or an initializer list insert
the elements from the given range before the given position:

vector<string> v = {"quasi", "simba", "frollo", "scar"};

// insert the last two elements of v at the beginning of slist
slist.insert(slist.begin(), v.end() - 2, v.end());

slist.insert(slist.end(), {"these", "words", "will",
"go", "at", "the", "end"});

// run-time error: iterators denoting the range to copy from
// must not refer to the same container as the one we are changing
slist.insert(slist.begin(), slist.begin(), slist.end());

When we pass a pair of iterators, those iterators may not refer to the same container
as the one to which we are adding elements.

Under the new standard, the versions of insert that take a count or a range
return an iterator to the first element that was inserted. (In prior versions of the
library, these operations returned void.) If the range is empty, no elements are
inserted, and the operation returns its first parameter.
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Using the Return from insert

We can use the value returned by insert to repeatedly insert elements at a speci-
fied position in the container:

list<string> lst;
auto iter = lst.begin();
while (cin >> word)

iter = lst.insert(iter, word); // same as calling push_front

It is important to understand how this loop operates—in particular, to
understand why the loop is equivalent to calling push_front.

Before the loop, we initialize iter to lst.begin(). The first call to insert takes
the string we just read and puts it in front of the element denoted by iter.
The value returned by insert is an iterator referring to this new element. We
assign that iterator to iter and repeat the while, reading another word. As long
as there are words to insert, each trip through the while inserts a new element
ahead of iter and reassigns to iter the location of the newly inserted element.
That element is the (new) first element. Thus, each iteration inserts an element
ahead of the first element in the list.

Using the Emplace Operations

The new standard introduced three new members—emplace_front, emplace,
and emplace_back—that construct rather than copy elements. These operations
correspond to the push_front, insert, and push_back operations in that they
let us put an element at the front of the container, in front of a given position, or at
the back of the container, respectively.

When we call a push or insert member, we pass objects of the element type
and those objects are copied into the container. When we call an emplace member,
we pass arguments to a constructor for the element type. The emplace members
use those arguments to construct an element directly in space managed by the
container. For example, assuming c holds Sales_data (§ 7.1.4, p. 264) elements:

// construct a Sales_data object at the end of c
// uses the three-argument Sales_data constructor
c.emplace_back("978-0590353403", 25, 15.99);

// error: there is no version of push_back that takes three arguments
c.push_back("978-0590353403", 25, 15.99);

// ok: we create a temporary Sales_data object to pass to push_back
c.push_back(Sales_data("978-0590353403", 25, 15.99));

The call to emplace_back and the second call to push_back both create new
Sales_data objects. In the call to emplace_back, that object is created directly
in space managed by the container. The call to push_back creates a local tempo-
rary object that is pushed onto the container.

The arguments to an emplace function vary depending on the element type.
The arguments must match a constructor for the element type:
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// iter refers to an element in c, which holds Sales_data elements
c.emplace_back(); // uses the Sales_data default constructor
c.emplace(iter, "999-999999999"); // uses Sales_data(string)
// uses the Sales_data constructor that takes an ISBN, a count, and a price
c.emplace_front("978-0590353403", 25, 15.99);

The emplace functions construct elements in the container. The argu-
ments to these functions must match a constructor for the element type.

EXE R C I S E S SE C TI ON 9.3.1

Exercise 9.18: Write a program to read a sequence of strings from the standard input
into a deque. Use iterators to write a loop to print the elements in the deque.

Exercise 9.19: Rewrite the program from the previous exercise to use a list. List the
changes you needed to make.

Exercise 9.20: Write a program to copy elements from a list<int> into two deques.
The even-valued elements should go into one deque and the odd ones into the other.

Exercise 9.21: Explain how the loop from page 345 that used the return from insert
to add elements to a list would work if we inserted into a vector instead.

Exercise 9.22: Assuming iv is a vector of ints, what is wrong with the following
program? How might you correct the problem(s)?

vector<int>::iterator iter = iv.begin(),
mid = iv.begin() + iv.size()/2;

while (iter != mid)
if (*iter == some_val)

iv.insert(iter, 2 * some_val);

9.3.2 Accessing Elements
Table 9.6 lists the operations we can use to access elements in a sequential con-
tainer. The access operations are undefined if the container has no elements.

Each sequential container, including array, has a front member, and all ex-
cept forward_list also have a back member. These operations return a refer-
ence to the first and last element, respectively:

// check that there are elements before dereferencing an iterator or calling front or back
if (!c.empty()) {

// val and val2 are copies of the value of the first element in c
auto val = *c.begin(), val2 = c.front();
// val3 and val4 are copies of the of the last element in c
auto last = c.end();
auto val3 = *(--last); // can’t decrement forward_list iterators
auto val4 = c.back(); // not supported by forward_list

}
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This program obtains references to the first and last elements in c in two different
ways. The direct approach is to call front or back. Indirectly, we can obtain a
reference to the same element by dereferencing the iterator returned by begin or
decrementing and then dereferencing the iterator returned by end.

Two things are noteworthy in this program: The end iterator refers to the
(nonexistent) element one past the end of the container. To fetch the last element
we must first decrement that iterator. The other important point is that before call-
ing front or back (or dereferencing the iterators from begin or end), we check
that c isn’t empty. If the container were empty, the operations inside the if would
be undefined.

Table 9.6: Operations to Access Elements in a Sequential Container

at and subscript operator valid only for string, vector, deque, and array.
back not valid for forward_list.

c.back() Returns a reference to the last element in c. Undefined if c is empty.
c.front() Returns a reference to the first element in c. Undefined if c is empty.
c[n] Returns a reference to the element indexed by the unsigned integral value n.

Undefined if n >= c.size().

c.at(n) Returns a reference to the element indexed by n. If the index is out of range,
throws an out_of_range exception.

Calling front or back on an empty container, like using a subscript that is out of
range, is a serious programming error.

The Access Members Return References

The members that access elements in a container (i.e., front, back, subscript, and
at) return references. If the container is a const object, the return is a reference to
const. If the container is not const, the return is an ordinary reference that we
can use to change the value of the fetched element:

if (!c.empty()) {
c.front() = 42; // assigns 42 to the first element in c
auto &v = c.back(); // get a reference to the last element
v = 1024; // changes the element in c
auto v2 = c.back(); // v2 is not a reference; it’s a copy of c.back()
v2 = 0; // no change to the element in c

}

As usual, if we use auto to store the return from one of these functions and we
want to use that variable to change the element, we must remember to define our
variable as a reference type.

Subscripting and Safe Random Access

The containers that provide fast random access (string, vector, deque, and
array) also provide the subscript operator (§ 3.3.3, p. 102). As we’ve seen, the
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subscript operator takes an index and returns a reference to the element at that
position in the container. The index must be “in range,” (i.e., greater than or equal
to 0 and less than the size of the container). It is up to the program to ensure that
the index is valid; the subscript operator does not check whether the index is in
range. Using an out-of-range value for an index is a serious programming error,
but one that the compiler will not detect.

If we want to ensure that our index is valid, we can use the at member instead.
The at member acts like the subscript operator, but if the index is invalid, at
throws an out_of_range exception (§ 5.6, p. 193):

vector<string> svec; // empty vector
cout << svec[0]; // run-time error: there are no elements in svec!
cout << svec.at(0); // throws an out_of_range exception

EXE R C I S E S SE C TI ON 9.3.2

Exercise 9.23: In the first program in this section on page 346, what would the values
of val, val2, val3, and val4 be if c.size() is 1?

Exercise 9.24: Write a program that fetches the first element in a vector using at,
the subscript operator, front, and begin. Test your program on an empty vector.

9.3.3 Erasing Elements
Just as there are several ways to add elements to a (nonarray) container there are
also several ways to remove elements. These members are listed in Table 9.7.

The members that remove elements do not check their argument(s). The
programmer must ensure that element(s) exist before removing them.

The pop_front and pop_back Members

The pop_front and pop_back functions remove the first and last elements, re-
spectively. Just as there is no push_front for vector and string, there is
also no pop_front for those types. Similarly, forward_list does not have
pop_back. Like the element access members, we may not use a pop operation
on an empty container.

These operations return void. If you need the value you are about to pop, you
must store that value before doing the pop:

while (!ilist.empty()) {
process(ilist.front()); // do something with the current top of ilist
ilist.pop_front(); // done; remove the first element

}
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Table 9.7: erase Operations on Sequential Containers

These operations change the size of the container and so are not supported by array.
forward_list has a special version of erase; see § 9.3.4 (p. 350).

pop_back not valid for forward_list; pop_front not valid for vector and string.

c.pop_back() Removes last element in c. Undefined if c is empty. Returns void.
c.pop_front() Removes first element in c. Undefined if c is empty. Returns void.
c.erase(p) Removes the element denoted by the iterator p and returns an iterator to

the element after the one deleted or the off-the-end iterator if p denotes
the last element. Undefined if p is the off-the-end iterator.

c.erase(b,e) Removes the range of elements denoted by the iterators b and e. Returns
an iterator to the element after the last one that was deleted, or an
off-the-end iterator if e is itself an off-the-end iterator.

c.clear() Removes all the elements in c. Returns void.

Removing elements anywhere but the beginning or end of a deque invalidates all
iterators, references, and pointers. Iterators, references, and pointers to elements after
the erasure point in a vector or string are invalidated.

Removing an Element from within the Container

The erase members remove element(s) at a specified point in the container. We
can delete a single element denoted by an iterator or a range of elements marked by
a pair of iterators. Both forms of erase return an iterator referring to the location
after the (last) element that was removed. That is, if j is the element following i,
then erase(i) will return an iterator referring to j.

As an example, the following loop erases the odd elements in a list:

list<int> lst = {0,1,2,3,4,5,6,7,8,9};
auto it = lst.begin();
while (it != lst.end())

if (*it % 2) // if the element is odd
it = lst.erase(it); // erase this element

else
++it;

On each iteration, we check whether the current element is odd. If so, we erase
that element, setting it to denote the element after the one we erased. If *it is
even, we increment it so we’ll look at the next element on the next iteration.

Removing Multiple Elements

The iterator-pair version of erase lets us delete a range of elements:

// delete the range of elements between two iterators
// returns an iterator to the element just after the last removed element
elem1 = slist.erase(elem1, elem2); // after the call elem1 == elem2

The iterator elem1 refers to the first element we want to erase, and elem2 refers
to one past the last element we want to remove.
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To delete all the elements in a container, we can either call clear or pass the
iterators from begin and end to erase:

slist.clear(); // delete all the elements within the container
slist.erase(slist.begin(), slist.end()); // equivalent

EXE R C I S E S SE C TI ON 9.3.3

Exercise 9.25: In the program on page 349 that erased a range of elements, what hap-
pens if elem1 and elem2 are equal? What if elem2 or both elem1 and elem2 are the
off-the-end iterator?

Exercise 9.26: Using the following definition of ia, copy ia into a vector and into a
list. Use the single-iterator form of erase to remove the elements with odd values
from your list and the even values from your vector.

int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21, 55, 89 };

9.3.4 Specialized forward_list Operations
To understand why forward_list has special versions of the operations to add
and remove elements, consider what must happen when we remove an element
from a singly linked list. As illustrated in Figure 9.1, removing an element changes
the links in the sequence. In this case, removing elem3 changes elem2; elem2 had
pointed to elem3, but after we remove elem3, elem2 points to elem4.

Figure 9.1: forward_list Specialized Operations

elem1
� elem2

� elem3
� elem4

Removing elem3 changes the value of elem2

elem1
� elem2

� elem4

When we add or remove an element, the element before the one we added or
removed has a different successor. To add or remove an element, we need access to
its predecessor in order to update that element’s links. However, forward_list
is a singly linked list. In a singly linked list there is no easy way to get to an
element’s predecessor. For this reason, the operations to add or remove elements
in a forward_list operate by changing the element after the given element. That
way, we always have access to the elements that are affected by the change.

Because these operations behave differently from the operations on the other
containers, forward_list does not define insert, emplace, or erase. Instead
it defines members (listed in Table 9.8) named insert_after, emplace_after,
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and erase_after. For example, in our illustration, to remove elem3, we’d call
erase_after on an iterator that denoted elem2. To support these operations,
forward_list also defines before_begin, which returns an off-the-beginning
iterator. This iterator lets us add or remove elements “after” the nonexistent ele-
ment before the first one in the list.

Table 9.8: Operations to Insert or Remove Elements in a forward_list

lst.before_begin()
lst.cbefore_begin()

Iterator denoting the nonexistent element just before the be-
ginning of the list. This iterator may not be dereferenced.
cbefore_begin() returns a const_iterator.

lst.insert_after(p,t)
lst.insert_after(p,n,t)
lst.insert_after(p,b,e)
lst.insert_after(p,il)

Inserts element(s) after the one denoted by iterator p. t is an
object, n is a count, b and e are iterators denoting a range (b
and e must not refer to lst), and il is a braced list. Returns
an iterator to the last inserted element. If the range is empty,
returns p. Undefined if p is the off-the-end iterator.

emplace_after(p, args) Uses args to construct an element after the one denoted by
iterator p. Returns an iterator to the new element.
Undefined if p is the off-the-end iterator.

lst.erase_after(p)
lst.erase_after(b,e)

Removes the element after the one denoted by iterator p or
the range of elements from the one after the iterator b up to
but not including the one denoted by e. Returns an iterator to
the element after the one deleted, or the off-the-end iterator
if there is no such element. Undefined if p denotes the last
element in lst or is the off-the-end iterator.

When we add or remove elements in a forward_list, we have to keep track
of two iterators—one to the element we’re checking and one to that element’s pre-
decessor. As an example, we’ll rewrite the loop from page 349 that removed the
odd-valued elements from a list to use a forward_list:

forward_list<int> flst = {0,1,2,3,4,5,6,7,8,9};
auto prev = flst.before_begin(); // denotes element "off the start" of flst
auto curr = flst.begin(); // denotes the first element in flst
while (curr != flst.end()) { // while there are still elements to process

if (*curr % 2) // if the element is odd
curr = flst.erase_after(prev); // erase it and move curr

else {
prev = curr; // move the iterators to denote the next
++curr; // element and one before the next element

}
}

Here, curr denotes the element we’re checking, and prev denotes the element
before curr. We call begin to initialize curr, so that the first iteration checks
whether the first element is even or odd. We initialize prev from before_begin,
which returns an iterator to the nonexistent element just before curr.

When we find an odd element, we pass prev to erase_after. This call erases
the element after the one denoted by prev; that is, it erases the element denoted
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by curr. We reset curr to the return from erase_after, which makes curr
denote the next element in the sequence and we leave prev unchanged; prev still
denotes the element before the (new) value of curr. If the element denoted by
curr is not odd, then we have to move both iterators, which we do in the else.

EXE R C I S E S SE C TI ON 9.3.4

Exercise 9.27: Write a program to find and remove the odd-valued elements in a
forward_list<int>.

Exercise 9.28: Write a function that takes a forward_list<string> and two addi-
tional string arguments. The function should find the first string and insert the
second immediately following the first. If the first string is not found, then insert the
second string at the end of the list.

9.3.5 Resizing a Container
With the usual exception of arrays, we can use resize, described in Table 9.9, to
make a container larger or smaller. If the current size is greater than the requested
size, elements are deleted from the back of the container; if the current size is less
than the new size, elements are added to the back of the container:

list<int> ilist(10, 42); // ten ints: each has value 42

ilist.resize(15); // adds five elements of value 0 to the back of ilist

ilist.resize(25, -1); // adds ten elements of value -1 to the back of ilist

ilist.resize(5); // erases 20 elements from the back of ilist

The resize operation takes an optional element-value argument that it uses to
initialize any elements that are added to the container. If this argument is absent,
added elements are value initialized (§ 3.3.1, p. 98). If the container holds elements
of a class type and resize adds elements, we must supply an initializer or the
element type must have a default constructor.

Table 9.9: Sequential Container Size Operations

resize not valid for array.

c.resize(n) Resize c so that it has n elements. If n < c.size(), the excess elements
are discarded. If new elements must be added, they are value initialized.

c.resize(n,t) Resize c to have n elements. Any elements added have value t.

If resize shrinks the container, then iterators, references, and pointers to the deleted
elements are invalidated; resize on a vector, string, or deque potentially inval-
idates all iterators, pointers, and references.
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EXE R C I S E S SE C TI ON 9.3.5

Exercise 9.29: Given that vec holds 25 elements, what does vec.resize(100) do?
What if we next wrote vec.resize(10)?

Exercise 9.30: What, if any, restrictions does using the version of resize that takes a
single argument place on the element type?

9.3.6 Container Operations May Invalidate Iterators
Operations that add or remove elements from a container can invalidate pointers,
references, or iterators to container elements. An invalidated pointer, reference, or
iterator is one that no longer denotes an element. Using an invalidated pointer,
reference, or iterator is a serious programming error that is likely to lead to the
same kinds of problems as using an uninitialized pointer (§ 2.3.2, p. 54).

After an operation that adds elements to a container

• Iterators, pointers, and references to a vector or string are invalid if the
container was reallocated. If no reallocation happens, indirect references to
elements before the insertion remain valid; those to elements after the inser-
tion are invalid.

• Iterators, pointers, and references to a deque are invalid if we add elements
anywhere but at the front or back. If we add at the front or back, iterators are
invalidated, but references and pointers to existing elements are not.

• Iterators, pointers, and references (including the off-the-end and the before-
the-beginning iterators) to a list or forward_list remain valid,

It should not be surprising that when we remove elements from a container,
iterators, pointers, and references to the removed elements are invalidated. After
all, those elements have been destroyed. After we remove an element,

• All other iterators, references, or pointers (including the off-the-end and the
before-the-beginning iterators) to a list or forward_list remain valid.

• All other iterators, references, or pointers to a deque are invalidated if the
removed elements are anywhere but the front or back. If we remove elements
at the back of the deque, the off-the-end iterator is invalidated but other
iterators, references, and pointers are unaffected; they are also unaffected if
we remove from the front.

• All other iterators, references, or pointers to a vector or string remain
valid for elements before the removal point. Note: The off-the-end iterator is
always invalidated when we remove elements.

It is a serious run-time error to use an iterator, pointer, or reference that
has been invalidated.
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ADVICE: MANAGING ITERATORS

When you use an iterator (or a reference or pointer to a container element), it is a good
idea to minimize the part of the program during which an iterator must stay valid.

Because code that adds or removes elements to a container can invalidate itera-
tors, you need to ensure that the iterator is repositioned, as appropriate, after each
operation that changes the container. This advice is especially important for vector,
string, and deque.

Writing Loops That Change a Container

Loops that add or remove elements of a vector, string, or deque must cater to
the fact that iterators, references, or pointers might be invalidated. The program
must ensure that the iterator, reference, or pointer is refreshed on each trip through
the loop. Refreshing an iterator is easy if the loop calls insert or erase. Those
operations return iterators, which we can use to reset the iterator:

// silly loop to remove even-valued elements and insert a duplicate of odd-valued elements
vector<int> vi = {0,1,2,3,4,5,6,7,8,9};
auto iter = vi.begin(); // call begin, not cbegin because we’re changing vi

while (iter != vi.end()) {
if (*iter % 2) {

iter = vi.insert(iter, *iter); // duplicate the current element
iter += 2; // advance past this element and the one inserted before it

} else
iter = vi.erase(iter); // remove even elements
// don’t advance the iterator; iter denotes the element after the one we erased

}

This program removes the even-valued elements and duplicates each odd-valued
one. We refresh the iterator after both the insert and the erase because either
operation can invalidate the iterator.

After the call to erase, there is no need to increment the iterator, because the
iterator returned from erase denotes the next element in the sequence. After the
call to insert, we increment the iterator twice. Remember, insert inserts before
the position it is given and returns an iterator to the inserted element. Thus, after
calling insert, iter denotes the (newly added) element in front of the one we
are processing. We add two to skip over the element we added and the one we just
processed. Doing so positions the iterator on the next, unprocessed element.

Avoid Storing the Iterator Returned from end

When we add or remove elements in a vector or string, or add elements or
remove any but the first element in a deque, the iterator returned by end is always
invalidated. Thus, loops that add or remove elements should always call end
rather than use a stored copy. Partly for this reason, C++ standard libraries are
usually implemented so that calling end() is a very fast operation.

As an example, consider a loop that processes each element and adds a new
element following the original. We want the loop to ignore the added elements,
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and to process only the original elements. After each insertion, we’ll position the
iterator to denote the next original element. If we attempt to “optimize” the loop,
by storing the iterator returned by end(), we’ll have a disaster:

// disaster: the behavior of this loop is undefined
auto begin = v.begin(),

end = v.end(); // bad idea, saving the value of the end iterator
while (begin != end) {

// do some processing
// insert the new value and reassign begin, which otherwise would be invalid
++begin; // advance begin because we want to insert after this element
begin = v.insert(begin, 42); // insert the new value
++begin; // advance begin past the element we just added

}

The behavior of this code is undefined. On many implementations, we’ll get an
infinite loop. The problem is that we stored the value returned by the end opera-
tion in a local variable named end. In the body of the loop, we added an element.
Adding an element invalidates the iterator stored in end. That iterator neither
refers to an element in v nor any longer refers to one past the last element in v.

Don’t cache the iterator returned from end() in loops that insert or
delete elements in a deque, string, or vector.

Rather than storing the end() iterator, we must recompute it after each insertion:

// safer: recalculate end on each trip whenever the loop adds/erases elements
while (begin != v.end()) {

// do some processing
++begin; // advance begin because we want to insert after this element
begin = v.insert(begin, 42); // insert the new value
++begin; // advance begin past the element we just added

}

9.4 How a vector Grows
To support fast random access, vector elements are stored contiguously—each
element is adjacent to the previous element. Ordinarily, we should not care about
how a library type is implemented; all we should care about is how to use it. How-
ever, in the case of vectors and strings, part of the implementation leaks into
its interface.

Given that elements are contiguous, and that the size of the container is flexible,
consider what must happen when we add an element to a vector or a string: If
there is no room for the new element, the container can’t just add an element some-
where else in memory—the elements must be contiguous. Instead, the container
must allocate new memory to hold the existing elements plus the new one, move
the elements from the old location into the new space, add the new element, and
deallocate the old memory. If vector did this memory allocation and deallocation
each time we added an element, performance would be unacceptably slow.
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EXE R C I S E S SE C TI ON 9.3.6

Exercise 9.31: The program on page 354 to remove even-valued elements and dupli-
cate odd ones will not work on a list or forward_list. Why? Revise the program
so that it works on these types as well.

Exercise 9.32: In the program onpage 354 would it be legal to write the call to insert
as follows? If not, why not?

iter = vi.insert(iter, *iter++);

Exercise 9.33: In the final example in this section what would happen if we did not
assign the result of insert to begin? Write a program that omits this assignment to
see if your expectation was correct.

Exercise 9.34: Assuming vi is a container of ints that includes even and odd values,
predict the behavior of the following loop. After you’ve analyzed this loop, write a
program to test whether your expectations were correct.

iter = vi.begin();
while (iter != vi.end())

if (*iter % 2)
iter = vi.insert(iter, *iter);

++iter;

To avoid these costs, library implementors use allocation strategies that reduce
the number of times the container is reallocated. When they have to get new
memory, vector and string implementations typically allocate capacity beyond
what is immediately needed. The container holds this storage in reserve and uses
it to allocate new elements as they are added. Thus, there is no need to reallocate
the container for each new element.

This allocation strategy is dramatically more efficient than reallocating the con-
tainer each time an element is added. In fact, its performance is good enough that
in practice a vector usually grows more efficiently than a list or a deque, even
though the vector has to move all of its elements each time it reallocates memory.

Members to Manage Capacity

The vector and string types provide members, described in Table 9.10, that let
us interact with the memory-allocation part of the implementation. The capacity
operation tells us how many elements the container can hold before it must allocate
more space. The reserve operation lets us tell the container how many elements
it should be prepared to hold.

reserve does not change the number of elements in the container; it
affects only how much memory the vector preallocates.

A call to reserve changes the capacity of the vector only if the requested
space exceeds the current capacity. If the requested size is greater than the current
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capacity, reserve allocates at least as much as (and may allocate more than) the
requested amount.

If the requested size is less than or equal to the existing capacity, reserve does
nothing. In particular, calling reserve with a size smaller than capacity does
not cause the container to give back memory. Thus, after calling reserve, the
capacity will be greater than or equal to the argument passed to reserve.

As a result, a call to reserve will never reduce the amount of space that the
container uses. Similarly, the resize members (§ 9.3.5, p. 352) change only the
number of elements in the container, not its capacity. We cannot use resize to
reduce the memory a container holds in reserve.

Under the new library, we can call shrink_to_fit to ask a deque, vector,
or string to return unneeded memory. This function indicates that we no longer
need any excess capacity. However, the implementation is free to ignore this re-
quest. There is no guarantee that a call to shrink_to_fit will return memory.

Table 9.10: Container Size Management

shrink_to_fit valid only for vector, string, and deque.
capacity and reserve valid only for vector and string.

c.shrink_to_fit() Request to reduce capacity() to equal size().
c.capacity() Number of elements c can have before reallocation is necessary.

c.reserve(n) Allocate space for at least n elements.

capacity and size

It is important to understand the difference between capacity and size. The
size of a container is the number of elements it already holds; its capacity is
how many elements it can hold before more space must be allocated.

The following code illustrates the interaction between size and capacity:

vector<int> ivec;

// size should be zero; capacity is implementation defined
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

// give ivec 24 elements
for (vector<int>::size_type ix = 0; ix != 24; ++ix)

ivec.push_back(ix);

// size should be 24; capacity will be >= 24 and is implementation defined
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

When run on our system, this code produces the following output:

ivec: size: 0 capacity: 0
ivec: size: 24 capacity: 32
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We know that the size of an empty vector is zero, and evidently our library
also sets the capacity of an empty vector to zero. When we add elements to
the vector, we know that the size is the same as the number of elements we’ve
added. The capacity must be at least as large as size but can be larger. The
details of how much excess capacity is allocated vary by implementations of the
library. Under this implementation, adding 24 elements one at a time results in a
capacity of 32.

Visually we can think of the current state of ivec as

0 1 2 . . . 23 reserved capacity

ivec.size()

�

ivec.capacity()

�

We can now reserve some additional space:

ivec.reserve(50); // sets capacity to at least 50; might be more
// size should be 24; capacity will be >= 50 and is implementation defined
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

Here, the output indicates that the call to reserve allocated exactly as much space
as we requested:

ivec: size: 24 capacity: 50

We might next use up that reserved capacity as follows:

// add elements to use up the excess capacity
while (ivec.size() != ivec.capacity())

ivec.push_back(0);

// capacity should be unchanged and size and capacity are now equal
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

The output indicates that at this point we’ve used up the reserved capacity, and
size and capacity are equal:

ivec: size: 50 capacity: 50

Because we used only reserved capacity, there is no need for the vector to do
any allocation. In fact, as long as no operation exceeds the vector’s capacity, the
vector must not reallocate its elements.

If we now add another element, the vector will have to reallocate itself:

ivec.push_back(42); // add one more element

// size should be 51; capacity will be >= 51 and is implementation defined
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

The output from this portion of the program

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 9.4 How a vector Grows 359

ivec: size: 51 capacity: 100

indicates that this vector implementation appears to follow a strategy of dou-
bling the current capacity each time it has to allocate new storage.

We can call shrink_to_fit to ask that memory beyond what is needed for
the current size be returned to the system:

ivec.shrink_to_fit(); // ask for the memory to be returned

// size should be unchanged; capacity is implementation defined
cout << "ivec: size: " << ivec.size()

<< " capacity: " << ivec.capacity() << endl;

Calling shrink_to_fit is only a request; there is no guarantee that the library
will return the memory.

Each vector implementation can choose its own allocation strategy.
However, it must not allocate new memory until it is forced to do so.

A vector may be reallocated only when the user performs an insert operation
when the size equals capacity or by a call to resize or reserve with a value
that exceeds the current capacity. How much memory is allocated beyond the
specified amount is up to the implementation.

Every implementation is required to follow a strategy that ensures that it is
efficient to use push_back to add elements to a vector. Technically speaking,
the execution time of creating an n-element vector by calling push_back n times
on an initially empty vector must never be more than a constant multiple of n.

EXE R C I S E S SE C TI ON 9.4

Exercise 9.35: Explain the difference between a vector’s capacity and its size.

Exercise 9.36: Can a container have a capacity less than its size?

Exercise 9.37: Why don’t list or array have a capacity member?

Exercise 9.38: Write a program to explore how vectors grow in the library you use.

Exercise 9.39: Explain what the following program fragment does:

vector<string> svec;
svec.reserve(1024);
string word;
while (cin >> word)

svec.push_back(word);

svec.resize(svec.size()+svec.size()/2);

Exercise 9.40: If the program in the previous exercise reads 256 words, what is its
likely capacity after it is resized? What if it reads 512? 1,000? 1,048?
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9.5 Additional string Operations
The string type provides a number of additional operations beyond those com-
mon to the sequential containers. For the most part, these additional operations
either support the close interaction between the string class and C-style charac-
ter arrays, or they add versions that let us use indices in place of iterators.

The string library defines a great number of functions. Fortunately, these
functions use repeated patterns. Given the number of functions supported, this
section can be mind-numbing on first reading; so readers might want to skim it.
Once you know what kinds of operations are available, you can return for the
details when you need to use a particular operation.

9.5.1 Other Ways to Construct strings
In addition to the constructors we covered in § 3.2.1 (p. 84) and to the constructors
that string shares with the other sequential containers (Tables 9.3 (p. 335)) the
string type supports three more constructors that are described in Table 9.11.

Table 9.11: Additional Ways to Construct strings

n, len2 and pos2 are all unsigned values

string s(cp, n); s is a copy of the first n characters in the array to which
cp points. That array must have at least n characters.

string s(s2, pos2); s is a copy of the characters in the string s2 starting at
the index pos2. Undefined if pos2 > s2.size().

string s(s2, pos2, len2); s is a copy of len2 characters from s2 starting at the
index pos2. Undefined if pos2 > s2.size().
Regardless of the value of len2, copies at most
s2.size() - pos2 characters.

The constructors that take a string or a const char* take additional (op-
tional) arguments that let us specify how many characters to copy. When we pass
a string, we can also specify the index of where to start the copy:

const char *cp = "Hello World!!!"; // null-terminated array
char noNull[] = {’H’, ’i’}; // not null terminated
string s1(cp); // copy up to the null in cp; s1 == "Hello World!!!"
string s2(noNull,2); // copy two characters from no_null; s2 == "Hi"
string s3(noNull); // undefined: noNull not null terminated
string s4(cp + 6, 5);// copy 5 characters starting at cp[6]; s4 == "World"
string s5(s1, 6, 5); // copy 5 characters starting at s1[6]; s5 == "World"
string s6(s1, 6); // copy from s1[6] to end of s1; s6 == "World!!!"
string s7(s1,6,20); // ok, copies only to end of s1; s7 == "World!!!"
string s8(s1, 16); // throws an out_of_range exception

Ordinarily when we create a string from a const char*, the array to which
the pointer points must be null terminated; characters are copied up to the null. If
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we also pass a count, the array does not have to be null terminated. If we do not
pass a count and there is no null, or if the given count is greater than the size of the
array, the operation is undefined.

When we copy from a string, we can supply an optional starting position
and a count. The starting position must be less than or equal to the size of the
given string. If the position is greater than the size, then the constructor throws
an out_of_range exception (§ 5.6, p. 193). When we pass a count, that many
characters are copied, starting from the given position. Regardless of how many
characters we ask for, the library copies up to the size of the string, but not more.

The substr Operation

The substr operation (described in Table 9.12) returns a string that is a copy
of part or all of the original string. We can pass substr an optional starting
position and count:

string s("hello world");
string s2 = s.substr(0, 5); // s2 = hello
string s3 = s.substr(6); // s3 = world
string s4 = s.substr(6, 11); // s3 = world
string s5 = s.substr(12); // throws an out_of_range exception

The substr function throws an out_of_range exception (§ 5.6, p. 193) if the
position exceeds the size of the string. If the position plus the count is greater
than the size, the count is adjusted to copy only up to the end of the string.

Table 9.12: Substring Operation

s.substr(pos, n) Return a string containing n characters from s starting at pos.
pos defaults to 0. n defaults to a value that causes the library to copy
all the characters in s starting from pos.

EXE R C I S E S SE C TI ON 9.5.1

Exercise 9.41: Write a program that initializes a string from a vector<char>.

Exercise 9.42: Given that you want to read a character at a time into a string, and
you know that you need to read at least 100 characters, how might you improve the
performance of your program?

9.5.2 Other Ways to Change a string
The string type supports the sequential container assignment operators and the
assign, insert, and erase operations (§ 9.2.5, p. 337, § 9.3.1, p. 342, and § 9.3.3,
p. 348). It also defines additional versions of insert and erase.
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In addition to the versions of insert and erase that take iterators, string
provides versions that take an index. The index indicates the starting element to
erase or the position before which to insert the given values:

s.insert(s.size(), 5, ’!’); // insert five exclamation points at the end of s
s.erase(s.size() - 5, 5); // erase the last five characters from s

The string library also provides versions of insert and assign that take C-
style character arrays. For example, we can use a null-terminated character array
as the value to insert or assign into a string:

const char *cp = "Stately, plump Buck";
s.assign(cp, 7); // s == "Stately"
s.insert(s.size(), cp + 7); // s == "Stately, plump Buck"

Here we first replace the contents of s by calling assign. The characters we assign
into s are the seven characters starting with the one pointed to by cp. The number
of characters we request must be less than or equal to the number of characters
(excluding the null terminator) in the array to which cp points.

When we call insert on s, we say that we want to insert the characters before
the (nonexistent) element at s[size()]. In this case, we copy characters starting
seven characters past cp up to the terminating null.

We can also specify the characters to insert or assign as coming from an-
other string or substring thereof:

string s = "some string", s2 = "some other string";
s.insert(0, s2); // insert a copy of s2 before position 0 in s
// insert s2.size() characters from s2 starting at s2[0] before s[0]
s.insert(0, s2, 0, s2.size());

The append and replace Functions

The string class defines two additional members, append and replace, that
can change the contents of a string. Table 9.13 summarizes these functions. The
append operation is a shorthand way of inserting at the end:

string s("C++ Primer"), s2 = s; // initialize s and s2 to "C++ Primer"
s.insert(s.size(), " 4th Ed."); // s == "C++ Primer 4th Ed."
s2.append(" 4th Ed."); // equivalent: appends " 4th Ed." to s2; s == s2

The replace operations are a shorthand way of calling erase and insert:

// equivalent way to replace "4th" by "5th"
s.erase(11, 3); // s == "C++ Primer Ed."
s.insert(11, "5th"); // s == "C++ Primer 5th Ed."

// starting at position 11, erase three characters and then insert "5th"
s2.replace(11, 3, "5th"); // equivalent: s == s2

In the call to replace, the text we inserted happens to be the same size as the text
we removed. We can insert a larger or smaller string:

s.replace(11, 3, "Fifth"); // s == "C++ Primer Fifth Ed."

In this call we remove three characters but insert five in their place.
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Table 9.13: Operations to Modify strings

s.insert(pos, args) Insert characters specified by args before pos. pos can be an index
or an iterator. Versions taking an index return a reference to s;
those taking an iterator return an iterator denoting the first
inserted character.

s.erase(pos, len) Remove len characters starting at position pos. If len is
omitted, removes characters from pos to the end of the s.
Returns a reference to s.

s.assign(args) Replace characters in s according to args. Returns a reference to s.
s.append(args) Append args to s. Returns a reference to s.

s.replace(range, args) Remove range of characters from s and replace them with the
characters formed by args. range is either an index and a length or
a pair of iterators into s. Returns a reference to s.

args can be one of the following; append and assign can use all forms
str must be distinct from s and the iterators b and e may not refer to s

str The string str.
str, pos, len Up to len characters from str starting at pos.
cp, len Up to len characters from the character array pointed to by cp.
cp Null-terminated array pointed to by pointer cp.
n, c n copies of character c.
b, e Characters in the range formed by iterators b and e.

initializer list Comma-separated list of characters enclosed in braces.
args for replace and insert depend on how range or pos is specified.
replace replace insert insert args can be

(pos,len,args) (b,e,args) (pos,args) (iter,args)
yes yes yes no str
yes no yes no str, pos, len
yes yes yes no cp, len
yes yes no no cp
yes yes yes yes n, c
no yes no yes b2, e2
no yes no yes initializer list

The Many Overloaded Ways to Change a string

The append, assign, insert, and replace functions listed Table 9.13 have sev-
eral overloaded versions. The arguments to these functions vary as to how we
specify what characters to add and what part of the string to change. Fortu-
nately, these functions share a common interface.

The assign and append functions have no need to specify what part of the
string is changed: assign always replaces the entire contents of the string
and append always adds to the end of the string.

The replace functions provide two ways to specify the range of characters to
remove. We can specify that range by a position and a length, or with an iterator
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range. The insert functions give us two ways to specify the insertion point: with
either an index or an iterator. In each case, the new element(s) are inserted in front
of the given index or iterator.

There are several ways to specify the characters to add to the string. The
new characters can be taken from another string, from a character pointer, from a
brace-enclosed list of characters, or as a character and a count. When the characters
come from a string or a character pointer, we can pass additional arguments to
control whether we copy some or all of the characters from the argument.

Not every function supports every version of these arguments. For example,
there is no version of insert that takes an index and an initializer list. Similarly,
if we want to specify the insertion point using an iterator, then we cannot pass a
character pointer as the source for the new characters.

EXE R C I S E S SE C TI ON 9.5.2

Exercise 9.43: Write a function that takes three strings, s, oldVal, and newVal.
Using iterators, and the insert and erase functions replace all instances of oldVal
that appear in s by newVal. Test your function by using it to replace common abbre-
viations, such as “tho” by ”though” and ”thru” by “through”.

Exercise 9.44: Rewrite the previous function using an index and replace.

Exercise 9.45: Write a funtion that takes a string representing a name and two other
strings representing a prefix, such as “Mr.” or “Ms.” and a suffix, such as “Jr.” or
“III”. Using iterators and the insert and append functions, generate and return a
new string with the suffix and prefix added to the given name.

Exercise 9.46: Rewrite the previous exercise using a position and length to manage
the strings. This time use only the insert function.

9.5.3 string Search Operations
The string class provides six different search functions, each of which has four
overloaded versions. Table 9.14 describes the search members and their argu-
ments. Each of these search operations returns a string::size_type value that
is the index of where the match occurred. If there is no match, the function returns
a staticmember (§ 7.6, p. 300) named string::npos. The library defines npos
as a const string::size_type initialized with the value -1. Because npos is
an unsigned type, this initializer means npos is equal to the largest possible size
any string could have (§ 2.1.2, p. 35).

The string search functions return string::size_type, which is
an unsigned type. As a result, it is a bad idea to use an int, or other
signed type, to hold the return from these functions (§ 2.1.2, p. 36).

The find function does the simplest search. It looks for its argument and re-
turns the index of the first match that is found, or npos if there is no match:
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string name("AnnaBelle");
auto pos1 = name.find("Anna"); // pos1 == 0

returns 0, the index at which the substring "Anna" is found in "AnnaBelle".
Searching (and other string operations) are case sensitive. When we look for

a value in the string, case matters:

string lowercase("annabelle");
pos1 = lowercase.find("Anna"); // pos1 == npos

This code will set pos1 to npos because Anna does not match anna.
A slightly more complicated problem requires finding a match to any character

in the search string. For example, the following locates the first digit within name:

string numbers("0123456789"), name("r2d2");
// returns 1, i.e., the index of the first digit in name
auto pos = name.find_first_of(numbers);

Instead of looking for a match, we might call find_first_not_of to find the
first position that is not in the search argument. For example, to find the first non-
numeric character of a string, we can write

string dept("03714p3");
// returns 5, which is the index to the character ’p’
auto pos = dept.find_first_not_of(numbers);

Table 9.14: string Search Operations

Search operations return the index of the desired character or npos if not found

s.find(args) Find the first occurrence of args in s.
s.rfind(args) Find the last occurrence of args in s.
s.find_first_of(args) Find the first occurrence of any character from args in s.
s.find_last_of(args) Find the last occurrence of any character from args in s.
s.find_first_not_of(args) Find the first character in s that is not in args.

s.find_last_not_of(args) Find the last character in s that is not in args.

args must be one of

c, pos Look for the character c starting at position pos in s. pos defaults to 0.
s2, pos Look for the string s2 starting at position pos in s. pos defaults to 0.
cp, pos Look for the C-style null-terminated string pointed to by the pointer cp. Start

looking at position pos in s. pos defaults to 0.
cp, pos, n Look for the first n characters in the array pointed to by the pointer cp. Start

looking at position pos in s. No default for pos or n.

Specifying Where to Start the Search

We can pass an optional starting position to the find operations. This optional
argument indicates the position from which to start the search. By default, that
position is set to zero. One common programming pattern uses this optional argu-
ment to loop through a string finding all occurrences:
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string::size_type pos = 0;
// each iteration finds the next number in name
while ((pos = name.find_first_of(numbers, pos))

!= string::npos) {
cout << "found number at index: " << pos

<< " element is " << name[pos] << endl;

++pos; // move to the next character
}

The condition in the while resetspos to the index of the first number encountered,
starting from the current value of pos. So long as find_first_of returns a valid
index, we print the current result and increment pos.

Had we neglected to increment pos, the loop would never terminate. To see
why, consider what would happen if we didn’t do the increment. On the second
trip through the loop we start looking at the character indexed by pos. That char-
acter would be a number, so find_first_of would (repeatedly) returns pos!

Searching Backward

The find operations we’ve used so far execute left to right. The library provides
analogous operations that search from right to left. The rfind member searches
for the last—that is, right-most—occurrence of the indicated substring:

string river("Mississippi");

auto first_pos = river.find("is"); // returns 1
auto last_pos = river.rfind("is"); // returns 4

find returns an index of 1, indicating the start of the first "is", while rfind
returns an index of 4, indicating the start of the last occurrence of "is".

Similarly, the find_last functions behave like the find_first functions,
except that they return the last match rather than the first:

• find_last_of searches for the last character that matches any element of
the search string.

• find_last_not_of searches for the last character that does not match any
element of the search string.

Each of these operations takes an optional second argument indicating the position
within the string to begin searching.

9.5.4 The compare Functions
In addition to the relational operators (§ 3.2.2, p. 88), the string library provides a
set of compare functions that are similar to the C library strcmp function (§ 3.5.4,
p. 122). Like strcmp, s.compare returns zero or a positive or negative value
depending on whether s is equal to, greater than, or less than the string formed
from the given arguments.
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EXE R C I S E S SE C TI ON 9.5.3

Exercise 9.47: Write a program that finds each numeric character and then each alpha-
betic character in the string "ab2c3d7R4E6". Write two versions of the program.
The first should use find_first_of, and the second find_first_not_of.

Exercise 9.48: Given the definitions of name and numbers on page 365, what does
numbers.find(name) return?

Exercise 9.49: A letter has an ascender if, as with d or f, part of the letter extends
above the middle of the line. A letter has a descender if, as with p or g, part of the
letter extends below the line. Write a program that reads a file containing words and
reports the longest word that contains neither ascenders nor descenders.

As shown in Table 9.15, there are six versions of compare. The arguments vary
based on whether we are comparing two strings or a string and a character
array. In both cases, we might compare the entire string or a portion thereof.

Table 9.15: Possible Arguments to s.compare

s2 Compare s to s2.
pos1, n1, s2 Compares n1 characters starting at pos1 from s to s2.
pos1, n1, s2, pos2, n2 Compares n1 characters starting at pos1 from s to the n2

characters starting at pos2 in s2.
cp Compares s to the null-terminated array pointed to by cp.
pos1, n1, cp Compares n1 characters starting at pos1 from s to cp.

pos1, n1, cp, n2 Compares n1 characters starting at pos1 from s to n2 characters
starting from the pointer cp.

9.5.5 Numeric Conversions
Strings often contain characters that represent numbers. For example, we repre-
sent the numeric value 15 as a string with two characters, the character ’1’
followed by the character ’5’. In general, the character representation of a num-
ber differs from its numeric value. The numeric value 15 stored in a 16-bit short
has the bit pattern 0000000000001111, whereas the character string "15" rep-
resented as two Latin-1 chars has the bit pattern 0011000100110101. The first
byte represents the character ’1’ which has the octal value 061, and the second
byte represents ’5’, which in Latin-1 is octal 065.

The new standard introduced several functions that convert between numeric
data and library strings:

int i = 42;
string s = to_string(i); // converts the int i to its character representation
double d = stod(s); // converts the string s to floating-point
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Table 9.16: Conversions between strings and Numbers

to_string(val); Overloaded functions returning the string representation of val.
val can be any arithmetic type (§ 2.1.1, p. 32). There are versions of
to_string for each floating-point type and integral type that is int
or larger. Small integral types are promoted (§ 4.11.1, p. 160) as usual.

stoi(s, p, b)
stol(s, p, b)
stoul(s, p, b)
stoll(s, p, b)
stoull(s, p, b)

Return the initial substring of s that has numeric content as an int,
long, unsigned long, long long, unsigned long long, respec-
tively. b indicates the numeric base to use for the conversion; b defaults
to 10. p is a pointer to a size_t in which to put the index of the first
nonnumeric character in s; p defaults to 0, in which case the function
does not store the index.

stof(s, p)
stod(s, p)
stold(s, p)

Return the initial numeric substring in s as a float, double, or long
double, respectively. p has the same behavior as described for the in-
teger conversions.

Here we call to_string to convert 42 to its corresponding string representa-
tion and then call stod to convert that string to floating-point.

The first non-whitespace character in the string we convert to numeric value
must be a character that can appear in a number:

string s2 = "pi = 3.14";
// convert the first substring in s that starts with a digit, d = 3.14
d = stod(s2.substr(s2.find_first_of("+-.0123456789")));

In this call to stod, we call find_first_of (§ 9.5.3, p. 364) to get the position
of the first character in s that could be part of a number. We pass the substring
of s starting at that position to stod. The stod function reads the string it is
given until it finds a character that cannot be part of a number. It then converts the
character representation of the number it found into the corresponding double-
precision floating-point value.

The first non-whitespace character in the string must be a sign (+ or -) or
a digit. The string can begin with 0x or 0X to indicate hexadecimal. For the
functions that convert to floating-point the string may also start with a decimal
point (.) and may contain an e or E to designate the exponent. For the functions
that convert to integral type, depending on the base, the string can contain al-
phabetic characters corresponding to numbers beyond the digit 9.

If the string can’t be converted to a number, These functions throw an
invalid_argument exception (§ 5.6, p. 193). If the conversion gener-
ates a value that can’t be represented, they throw out_of_range.

9.6 Container Adaptors
In addition to the sequential containers, the library defines three sequential con-
tainer adaptors: stack, queue, and priority_queue. An adaptor is a general
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EXE R C I S E S SE C TI ON 9.5.5

Exercise 9.50: Write a program to process a vector<string>s whose elements rep-
resent integral values. Produce the sum of all the elements in that vector. Change
the program so that it sums of strings that represent floating-point values.

Exercise 9.51: Write a class that has three unsigned members representing year,
month, and day. Write a constructor that takes a string representing a date. Your
constructor should handle a variety of date formats, such as January 1, 1900, 1/1/1900,
Jan 1, 1900, and so on.

concept in the library. There are container, iterator, and function adaptors. Essen-
tially, an adaptor is a mechanism for making one thing act like another. A container
adaptor takes an existing container type and makes it act like a different type. For
example, the stack adaptor takes a sequential container (other than array or
forward_list) and makes it operate as if it were a stack. Table 9.17 lists the
operations and types that are common to all the container adaptors.

Table 9.17: Operations and Types Common to the Container Adaptors

size_type Type large enough to hold the size of the largest object of this type.
value_type Element type.
container_type Type of the underlying container on which the adaptor is implemented.
A a; Create a new empty adaptor named a.
A a(c); Create a new adaptor named a with a copy of the container c.
relational operators Each adaptor supports all the relational operators: ==, !=, <, <=, >, >=.

These operators return the result of comparing the underlying
containers.

a.empty() false if a has any elements, true otherwise.
a.size() Number of elements in a.

swap(a, b)
a.swap(b)

Swaps the contents of a and b; a and b must have the same type, includ-
ing the type of the container on which they are implemented.

Defining an Adaptor

Each adaptor defines two constructors: the default constructor that creates an
empty object, and a constructor that takes a container and initializes the adaptor by
copying the given container. For example, assuming that deq is a deque<int>,
we can use deq to initialize a new stack as follows:

stack<int> stk(deq); // copies elements from deq into stk

By default both stack and queue are implemented in terms of deque, and
a priority_queue is implemented on a vector. We can override the default
container type by naming a sequential container as a second type argument when
we create the adaptor:
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// empty stack implemented on top of vector
stack<string, vector<string>> str_stk;

// str_stk2 is implemented on top of vector and initially holds a copy of svec
stack<string, vector<string>> str_stk2(svec);

There are constraints on which containers can be used for a given adaptor. All of
the adaptors require the ability to add and remove elements. As a result, they can-
not be built on an array. Similarly, we cannot use forward_list, because all
of the adaptors require operations that add, remove, or access the last element in
the container. A stack requires only push_back, pop_back, and back opera-
tions, so we can use any of the remaining container types for a stack. The queue
adaptor requires back, push_back, front, and push_front, so it can be built
on a list or deque but not on a vector. A priority_queue requires random
access in addition to the front, push_back, and pop_back operations; it can be
built on a vector or a deque but not on a list.

Stack Adaptor

The stack type is defined in the stack header. The operations provided by a
stack are listed in Table 9.18. The following program illustrates the use of stack:

stack<int> intStack; // empty stack

// fill up the stack
for (size_t ix = 0; ix != 10; ++ix)

intStack.push(ix); // intStack holds 0 . . . 9 inclusive

while (!intStack.empty()) { // while there are still values in intStack
int value = intStack.top();
// code that uses value
intStack.pop(); // pop the top element, and repeat

}

The declaration

stack<int> intStack; // empty stack

defines intStack to be an empty stack that holds integer elements. The for
loop adds ten elements, initializing each to the next integer in sequence starting
from zero. The while loop iterates through the entire stack, examining the top
value and popping it from the stack until the stack is empty.

Table 9.18: Stack Operations in Addition to Those in Table 9.17

Uses deque by default; can be implemented on a list or vector as well.

s.pop() Removes, but does not return, the top element from the stack.
s.push(item)
s.emplace(args)

Creates a new top element on the stack by copying or moving item, or
by constructing the element from args.

s.top() Returns, but does not remove, the top element on the stack.
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Each container adaptor defines its own operations in terms of operations pro-
vided by the underlying container type. We can use only the adaptor operations
and cannot use the operations of the underlying container type. For example,

intStack.push(ix); // intStack holds 0 . . . 9 inclusive

calls push_back on the deque object on which intStack is based. Although
stack is implemented by using a deque, we have no direct access to the deque
operations. We cannot call push_back on a stack; instead, we must use the
stack operation named push.

The Queue Adaptors

The queue and priority_queue adaptors are defined in the queue header. Ta-
ble 9.19 lists the operations supported by these types.

Table 9.19: queue, priority_queue Operations in Addition to Table 9.17

By default queue uses deque and priority_queue uses vector;
queue can use a list or vector as well, priority_queue can use a deque.

q.pop() Removes, but does not return, the front element or highest-priority
element from the queue or priority_queue, respectively.

q.front()
q.back()

Returns, but does not remove, the front or back element of q.
Valid only for queue

q.top() Returns, but does not remove, the highest-priority element.
Valid only for priority_queue.

q.push(item)
q.emplace(args)

Create an element with value item or constructed from args at the end
of the queue or in its appropriate position in priority_queue.

The library queue uses a first-in, first-out (FIFO) storage and retrieval policy.
Objects entering the queue are placed in the back and objects leaving the queue are
removed from the front. A restaurant that seats people in the order in which they
arrive is an example of a FIFO queue.

A priority_queue lets us establish a priority among the elements held in
the queue. Newly added elements are placed ahead of all the elements with a
lower priority. A restaurant that seats people according to their reservation time,
regardless of when they arrive, is an example of a priority queue. By default, the
library uses the < operator on the element type to determine relative priorities.
We’ll learn how to override this default in § 11.2.2 (p. 425).

EXE R C I S E S SE C TI ON 9.6

Exercise 9.52: Use a stack to process parenthesized expressions. When you see an
open parenthesis, note that it was seen. When you see a close parenthesis after an open
parenthesis, pop elements down to and including the open parenthesis off the stack.
push a value onto the stack to indicate that a parenthesized expression was replaced.
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CH A P T E R SU M M A R Y
The library containers are template types that holds objects of a given type. In a se-
quential container, elements are ordered and accessed by position. The sequential
containers share a common, standardized interface: If two sequential containers
offer a particular operation, then the operation has the same interface and mean-
ing for both containers.

All the containers (except array) provide efficient dynamic memory manage-
ment. We may add elements to the container without worrying about where to
store the elements. The container itself manages its storage. Both vector and
string provide more detailed control over memory management through their
reserve and capacity members.

For the most part, the containers define surprisingly few operations. Contain-
ers define constructors, operations to add or remove elements, operations to de-
termine the size of the container, and operations to return iterators to particular
elements. Other useful operations, such as sorting or searching, are defined not
by the container types but by the standard algorithms, which we shall cover in
Chapter 10.

When we use container operations that add or remove elements, it is essential
to remember that these operations can invalidate iterators, pointers, or references
to elements in the container. Many operations that invalidate an iterator, such as
insert or erase, return a new iterator that allows the programmer to maintain a
position within the container. Loops that use container operations that change the
size of a container should be particularly careful in their use of iterators, pointers,
and references.

DEFINED TERMS

adaptor Library type, function, or itera-
tor that, given a type, function, or itera-
tor, makes it act like another. There are
three sequential container adaptors: stack,
queue, and priority_queue. Each adap-
tor defines a new interface on top of an un-
derlying sequential container type.

array Fixed-size sequential container. To
define an array, we must give the size in
addition to specifying the element type. El-
ements in an array can be accessed by their
positional index. Supports fast random ac-
cess to elements.

begin Container operation that returns an
iterator referring to the first element in the
container, if there is one, or the off-the-end
iterator if the container is empty. Whether
the returned iterator is const depends on
the type of the container.

cbegin Container operation that returns a
const_iterator referring to the first ele-
ment in the container, if there is one, or the
off-the-end iterator if the container is empty.

cend Container operation that returns a
const_iterator referring to the (nonex-
istent) element one past the end of the con-
tainer.

container Type that holds a collection of
objects of a given type. Each library con-
tainer type is a template type. To define a
container, we must specify the type of the
elements stored in the container. With the
exception of array, the library containers
are variable-size.

deque Sequential container. Elements in a
deque can be accessed by their positional
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index. Supports fast random access to ele-
ments. Like a vector in all respects except
that it supports fast insertion and deletion
at the front of the container as well as at the
back and does not relocate elements as a re-
sult of insertions or deletions at either end.

end Container operation that returns an it-
erator referring to the (nonexistent) element
one past the end of the container. Whether
the returned iterator is const depends on
the type of the container.

forward_list Sequential container that rep-
resents a singly linked list. Elements in a
forward_list may be accessed only se-
quentially; starting from a given element,
we can get to another element only by
traversing each element between them. It-
erators on forward_list do not support
decrement (--). Supports fast insertion (or
deletion) anywhere in the forward_list.
Unlike other containers, insertions and
deletions occur after a given iterator posi-
tion. As a consequence, forward_list
has a “before-the-beginning” iterator to go
along with the usual off-the-end iterator. It-
erators remain valid when new elements
are added. When an element is removed,
only the iterators to that element are invali-
dated.

iterator range Range of elements denoted
by a pair of iterators. The first iterator de-
notes the first element in the sequence, and
the second iterator denotes one past the last
element. If the range is empty, then the iter-
ators are equal (and vice versa—if the itera-
tors are unequal, they denote a nonempty
range). If the range is not empty, then it
must be possible to reach the second itera-
tor by repeatedly incrementing the first iter-
ator. By incrementing the iterator, each ele-
ment in the sequence can be processed.

left-inclusive interval A range of values
that includes its first element but not its last.
Typically denoted as [i, j), meaning the
sequence starting at and including i up to
but excluding j.

list Sequential container representing a
doubly linked list. Elements in a list may

be accessed only sequentially; starting from
a given element, we can get to another el-
ement only by traversing each element be-
tween them. Iterators onlist support both
increment (++) and decrement (--). Sup-
ports fast insertion (or deletion) anywhere
in the list. Iterators remain valid when
new elements are added. When an element
is removed, only the iterators to that ele-
ment are invalidated.

off-the-beginning iterator Iterator denot-
ing the (nonexistent) element just before
the beginning of a forward_list. Re-
turned from the forward_list member
before_begin. Like the end() iterator, it
may not be dereferenced.

off-the-end iterator Iterator that denotes
one past the last element in the range. Com-
monly referred to as the “end iterator”.

priority_queue Adaptor for the sequential
containers that yields a queue in which el-
ements are inserted, not at the end but ac-
cording to a specified priority level. By de-
fault, priority is determined by using the
less-than operator for the element type.

queue Adaptor for the sequential contain-
ers that yields a type that lets us add el-
ements to the back and remove elements
from the front.

sequential container Type that holds an
ordered collection of objects of a single type.
Elements in a sequential container are ac-
cessed by position.

stack Adaptor for the sequential contain-
ers that yields a type that lets us add and
remove elements from one end only.

vector Sequential container. Elements in
a vector can be accessed by their posi-
tional index. Supports fast random access
to elements. We can efficiently add or re-
move vector elements only at the back.
Adding elements to a vector might cause
it to be reallocated, invalidating all iterators
into the vector. Adding (or removing) an
element in the middle of a vector invali-
dates all iterators to elements after the in-
sertion (or deletion) point.
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The library containers define a surprisingly small set of operations.
Rather than adding lots of functionality to each container, the library
provides a set of algorithms, most of which are independent of any
particular container type. These algorithms are generic: They operate
on different types of containers and on elements of various types.

The generic algorithms, and a more detailed look at iterators, form
the subject matter of this chapter.
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The sequential containers define few operations: For the most part, we can
add and remove elements, access the first or last element, determine whether a
container is empty, and obtain iterators to the first or one past the last element.

We can imagine many other useful operations one might want to do: We might
want to find a particular element, replace or remove a particular value, reorder the
container elements, and so on.

Rather than define each of these operations as members of each container type,
the standard library defines a set of generic algorithms: “algorithms” because
they implement common classical algorithms such as sorting and searching, and
“generic” because they operate on elements of differing type and across multi-
ple container types—not only library types such as vector or list, but also the
built-in array type—and, as we shall see, over other kinds of sequences as well.

10.1 Overview
Most of the algorithms are defined in the algorithm header. The library also
defines a set of generic numeric algorithms that are defined in the numeric header.

In general, the algorithms do not work directly on a container. Instead, they op-
erate by traversing a range of elements bounded by two iterators (§ 9.2.1, p. 331).
Typically, as the algorithm traverses the range, it does something with each ele-
ment. For example, suppose we have a vector of ints and we want to know if
that vector holds a particular value. The easiest way to answer this question is
to call the library find algorithm:

int val = 42; // value we’ll look for
// result will denote the element we want if it’s in vec, or vec.cend() if not
auto result = find(vec.cbegin(), vec.cend(), val);
// report the result
cout << "The value " << val

<< (result == vec.cend()
? " is not present" : " is present") << endl;

The first two arguments to find are iterators denoting a range of elements, and
the third argument is a value. find compares each element in the given range to
the given value. It returns an iterator to the first element that is equal to that value.
If there is no match, find returns its second iterator to indicate failure. Thus, we
can determine whether the element was found by comparing the return value with
the second iterator argument. We do this test in the output statement, which uses
the conditional operator (§ 4.7, p. 151) to report whether the value was found.

Because find operates in terms of iterators, we can use the same find function
to look for values in any type of container. For example, we can use find to look
for a value in a list of strings:

string val = "a value"; // value we’ll look for
// this call to find looks through string elements in a list
auto result = find(lst.cbegin(), lst.cend(), val);

Similarly, because pointers act like iterators on built-in arrays, we can use find to
look in an array:
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int ia[] = {27, 210, 12, 47, 109, 83};
int val = 83;
int* result = find(begin(ia), end(ia), val);

Here we use the library begin and end functions (§ 3.5.3, p. 118) to pass a pointer
to the first and one past the last elements in ia.

We can also look in a subrange of the sequence by passing iterators (or pointers)
to the first and one past the last element of that subrange. For example, this call
looks for a match in the elements ia[1], ia[2], and ia[3]:

// search the elements starting from ia[1] up to but not including ia[4]
auto result = find(ia + 1, ia + 4, val);

How the Algorithms Work

To see how the algorithms can be used on varying types of containers, let’s look
a bit more closely at find. Its job is to find a particular element in an unsorted
sequence of elements. Conceptually, we can list the steps find must take:

1. It accesses the first element in the sequence.

2. It compares that element to the value we want.

3. If this element matches the one we want, find returns a value that identifies
this element.

4. Otherwise, find advances to the next element and repeats steps 2 and 3.

5. find must stop when it has reached the end of the sequence.

6. If find gets to the end of the sequence, it needs to return a value indicating
that the element was not found. This value and the one returned from step 3
must have compatible types.

None of these operations depends on the type of the container that holds the ele-
ments. So long as there is an iterator that can be used to access the elements, find
doesn’t depend in any way on the container type (or even whether the elements
are stored in a container).

Iterators Make the Algorithms Container Independent, . . .

All but the second step in the find function can be handled by iterator operations:
The iterator dereference operator gives access to an element’s value; if a matching
element is found, find can return an iterator to that element; the iterator incre-
ment operator moves to the next element; the “off-the-end” iterator will indicate
when find has reached the end of its given sequence; and find can return the
off-the-end iterator (§ 9.2.1, p. 331) to indicate that the given value wasn’t found.

. . . But Algorithms Do Depend on Element-Type Operations

Although iterators make the algorithms container independent, most of the algo-
rithms use one (or more) operation(s) on the element type. For example, step 2,
uses the element type’s == operator to compare each element to the given value.
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Other algorithms require that the element type have the < operator. However, as
we’ll see, most algorithms provide a way for us to supply our own operation to
use in place of the default operator.

EXE R C I S E S SE C TI ON 10.1

Exercise 10.1: The algorithm header defines a function named count that, like
find, takes a pair of iterators and a value. count returns a count of how often that
value appears. Read a sequence of ints into a vector and print the count of how
many elements have a given value.

Exercise 10.2: Repeat the previous program, but read values into a list of strings.

KEY CONCEPT: ALGORITHMS NEVER EXECUTE CONTAINER OPERATIONS

The generic algorithms do not themselves execute container operations. They operate
solely in terms of iterators and iterator operations. The fact that the algorithms op-
erate in terms of iterators and not container operations has a perhaps surprising but
essential implication: Algorithms never change the size of the underlying container.
Algorithms may change the values of the elements stored in the container, and they
may move elements around within the container. They do not, however, ever add or
remove elements directly.

As we’ll see in § 10.4.1 (p. 401), there is a special class of iterator, the inserters,
that do more than traverse the sequence to which they are bound. When we assign to
these iterators, they execute insert operations on the underlying container. When an
algorithm operates on one of these iterators, the iterator may have the effect of adding
elements to the container. The algorithm itself, however, never does so.

10.2 A First Look at the Algorithms
The library provides more than 100 algorithms. Fortunately, like the containers, the
algorithms have a consistent architecture. Understanding this architecture makes
learning and using the algorithms easier than memorizing all 100+ of them. In
this chapter, we’ll illustrate how to use the algorithms, and describe the unifying
principles that characterize them. Appendix A lists all the algorithms classified by
how they operate.

With only a few exceptions, the algorithms operate over a range of elements.
We’ll refer to this range as the “input range.” The algorithms that take an input
range always use their first two parameters to denote that range. These parameters
are iterators denoting the first and one past the last elements to process.

Although most algorithms are similar in that they operate over an input range,
they differ in how they use the elements in that range. The most basic way to
understand the algorithms is to know whether they read elements, write elements,
or rearrange the order of the elements.
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10.2.1 Read-Only Algorithms
A number of the algorithms read, but never write to, the elements in their input
range. The find function is one such algorithm, as is the count function we used
in the exercises for § 10.1 (p. 378).

Another read-only algorithm is accumulate, which is defined in the numeric
header. The accumulate function takes three arguments. The first two specify a
range of elements to sum. The third is an initial value for the sum. Assuming vec
is a sequence of integers, the following

// sum the elements in vec starting the summation with the value 0
int sum = accumulate(vec.cbegin(), vec.cend(), 0);

sets sum equal to the sum of the elements in vec, using 0 as the starting point for
the summation.

The type of the third argument to accumulate determines which ad-
dition operator is used and is the type that accumulate returns.

Algorithms and Element Types

The fact that accumulate uses its third argument as the starting point for the
summation has an important implication: It must be possible to add the element
type to the type of the sum. That is, the elements in the sequence must match or
be convertible to the type of the third argument. In this example, the elements in
vec might be ints, or they might be double, or long long, or any other type
that can be added to an int.

As another example, because string has a + operator, we can concatenate the
elements of a vector of strings by calling accumulate:

string sum = accumulate(v.cbegin(), v.cend(), string(""));

This call concatenates each element in v onto a string that starts out as the empty
string. Note that we explicitly create a string as the third parameter. Passing the
empty string as a string literal would be a compile-time error:

// error: no + on const char*
string sum = accumulate(v.cbegin(), v.cend(), "");

Had we passed a string literal, the type of the object used to hold the sum would
be const char*. That type determines which + operator is used. Because there is
no + operator for type const char*, this call will not compile.

Ordinarily it is best to use cbegin() and cend() (§ 9.2.3, p. 334) with
algorithms that read, but do not write, the elements. However, if you
plan to use the iterator returned by the algorithm to change an ele-
ment’s value, then you need to pass begin() and end().
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Algorithms That Operate on Two Sequences

Another read-only algorithm is equal, which lets us determine whether two se-
quences hold the same values. It compares each element from the first sequence
to the corresponding element in the second. It returns true if the corresponding
elements are equal, false otherwise. The algorithm takes three iterators: The first
two (as usual) denote the range of elements in the first sequence; the third denotes
the first element in the second sequence:

// roster2 should have at least as many elements as roster1
equal(roster1.cbegin(), roster1.cend(), roster2.cbegin());

Because equal operates in terms of iterators, we can call equal to compare ele-
ments in containers of different types. Moreover, the element types also need not
be the same so long as we can use == to compare the element types. For example,
roster1 could be a vector<string> and roster2 a list<const char*>.

However, equal makes one critically important assumption: It assumes that
the second sequence is at least as big as the first. This algorithm potentially looks
at every element in the first sequence. It assumes that there is a corresponding
element for each of those elements in the second sequence.

Algorithms that take a single iterator denoting a second sequence assume
that the second sequence is at least as large at the first.

EXE R C I S E S SE C TI O N 10.2.1

Exercise 10.3: Use accumulate to sum the elements in a vector<int>.

Exercise 10.4: Assuming v is a vector<double>, what, if anything, is wrong with
calling accumulate(v.cbegin(), v.cend(), 0)?

Exercise 10.5: In the call to equal on rosters, what would happen if both rosters held
C-style strings, rather than library strings?

10.2.2 Algorithms That Write Container Elements
Some algorithms assign new values to the elements in a sequence. When we use an
algorithm that assigns to elements, we must take care to ensure that the sequence
into which the algorithm writes is at least as large as the number of elements we
ask the algorithm to write. Remember, algorithms do not perform container oper-
ations, so they have no way themselves to change the size of a container.

Some algorithms write to elements in the input range itself. These algorithms
are not inherently dangerous because they write only as many elements as are in
the specified range.

As one example, the fill algorithm takes a pair of iterators that denote a range
and a third argument that is a value. fill assigns the given value to each element
in the input sequence:
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KEY CONCEPT: ITERATOR ARGUMENTS

Some algorithms read elements from two sequences. The elements that constitute
these sequences can be stored in different kinds of containers. For example, the first
sequence might be stored in a vector and the second might be in a list, a deque,
a built-in array, or some other sequence. Moreover, the element types in the two se-
quences are not required to match exactly. What is required is that we be able to
compare elements from the two sequences. For example, in the equal algorithm, the
element types need not be identical, but we do have to be able to use == to compare
elements from the two sequences.

Algorithms that operate on two sequences differ as to how we pass the second se-
quence. Some algorithms, such as equal, take three iterators: The first two denote the
range of the first sequence, and the third iterator denotes the first element in the sec-
ond sequence. Others take four iterators: The first two denote the range of elements
in the first sequence, and the second two denote the range for the second sequence.

Algorithms that use a single iterator to denote the second sequence assume that
the second sequence is at least as large as the first. It is up to us to ensure that the
algorithm will not attempt to access a nonexistent element in the second sequence.
For example, the equal algorithm potentially compares every element from its first
sequence to an element in the second. If the second sequence is a subset of the first,
then our program has a serious error—equal will attempt to access elements beyond
the end of the second sequence.

fill(vec.begin(), vec.end(), 0); // reset each element to 0

// set a subsequence of the container to 10
fill(vec.begin(), vec.begin() + vec.size()/2, 10);

Because fill writes to its given input sequence, so long as we pass a valid input
sequence, the writes will be safe.

Algorithms Do Not Check Write Operations

Some algorithms take an iterator that denotes a separate destination. These algo-
rithms assign new values to the elements of a sequence starting at the element de-
noted by the destination iterator. For example, the fill_n function takes a single
iterator, a count, and a value. It assigns the given value to the specified number of
elements starting at the element denoted to by the iterator. We might use fill_n
to assign a new value to the elements in a vector:

vector<int> vec; // empty vector
// use vec giving it various values
fill_n(vec.begin(), vec.size(), 0); // reset all the elements of vec to 0

The fill_n function assumes that it is safe to write the specified number of
elements. That is, for a call of the form

fill_n(dest, n, val)

fill_n assumes that dest refers to an element and that there are at least n ele-
ments in the sequence starting from dest.
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It is a fairly common beginner mistake to call fill_n (or similar algorithms
that write to elements) on a container that has no elements:

vector<int> vec; // empty vector

// disaster: attempts to write to ten (nonexistent) elements in vec
fill_n(vec.begin(), 10, 0);

This call to fill_n is a disaster. We specified that ten elements should be written,
but there are no such elements—vec is empty. The result is undefined.

Algorithms that write to a destination iterator assume the destination is
large enough to hold the number of elements being written.

Introducing back_inserter

One way to ensure that an algorithm has enough elements to hold the output is
to use an insert iterator. An insert iterator is an iterator that adds elements to a
container. Ordinarily, when we assign to a container element through an iterator,
we assign to the element that iterator denotes. When we assign through an insert
iterator, a new element equal to the right-hand value is added to the container.

We’ll have more to say about insert iterators in § 10.4.1 (p. 401). However, in
order to illustrate how to use algorithms that write to a container, we will use
back_inserter, which is a function defined in the iterator header.

back_inserter takes a reference to a container and returns an insert iterator
bound to that container. When we assign through that iterator, the assignment
calls push_back to add an element with the given value to the container:

vector<int> vec; // empty vector
auto it = back_inserter(vec); // assigning through it adds elements to vec
*it = 42; // vec now has one element with value 42

We frequently use back_inserter to create an iterator to use as the destination
of an algorithm. For example:

vector<int> vec; // empty vector
// ok: back_inserter creates an insert iterator that adds elements to vec
fill_n(back_inserter(vec), 10, 0); // appends ten elements to vec

On each iteration, fill_n assigns to an element in the given sequence. Because
we passed an iterator returned by back_inserter, each assignment will call
push_back on vec. As a result, this call to fill_n adds ten elements to the
end of vec, each of which has the value 0.

Copy Algorithms

The copy algorithm is another example of an algorithm that writes to the elements
of an output sequence denoted by a destination iterator. This algorithm takes three
iterators. The first two denote an input range; the third denotes the beginning of
the destination sequence. This algorithm copies elements from its input range into
elements in the destination. It is essential that the destination passed to copy be at
least as large as the input range.
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As one example, we can use copy to copy one built-in array to another:

int a1[] = {0,1,2,3,4,5,6,7,8,9};
int a2[sizeof(a1)/sizeof(*a1)]; // a2 has the same size as a1
// ret points just past the last element copied into a2
auto ret = copy(begin(a1), end(a1), a2); // copy a1 into a2

Here we define an array named a2 and use sizeof to ensure that a2 has as many
elements as the array a1 (§ 4.9, p. 157). We then call copy to copy a1 into a2. After
the call to copy, the elements in both arrays have the same values.

The value returned by copy is the (incremented) value of its destination itera-
tor. That is, ret will point just past the last element copied into a2.

Several algorithms provide so-called “copying” versions. These algorithms
compute new element values, but instead of putting them back into their input
sequence, the algorithms create a new sequence to contain the results.

For example, the replace algorithm reads a sequence and replaces every in-
stance of a given value with another value. This algorithm takes four parameters:
two iterators denoting the input range, and two values. It replaces each element
that is equal to the first value with the second:

// replace any element with the value 0 with 42
replace(ilst.begin(), ilst.end(), 0, 42);

This call replaces all instances of 0 by 42. If we want to leave the original sequence
unchanged, we can call replace_copy. That algorithm takes a third iterator ar-
gument denoting a destination in which to write the adjusted sequence:

// use back_inserter to grow destination as needed
replace_copy(ilst.cbegin(), ilst.cend(),

back_inserter(ivec), 0, 42);

After this call, ilst is unchanged, and ivec contains a copy of ilst with the
exception that every element in ilst with the value 0 has the value 42 in ivec.

10.2.3 Algorithms That Reorder Container Elements
Some algorithms rearrange the order of elements within a container. An obvious
example of such an algorithm is sort. A call to sort arranges the elements in the
input range into sorted order using the element type’s < operator.

As an example, suppose we want to analyze the words used in a set of chil-
dren’s stories. We’ll assume that we have a vector that holds the text of several
stories. We’d like to reduce this vector so that each word appears only once,
regardless of how many times that word appears in any of the given stories.

For purposes of illustration, we’ll use the following simple story as our input:

the quick red fox jumps over the slow red turtle

Given this input, our program should produce the following vector:

fox jumps over quick red slow the turtle
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EXE R C I S E S SE C TI O N 10.2.2

Exercise 10.6: Using fill_n, write a program to set a sequence of int values to 0.

Exercise 10.7: Determine if there are any errors in the following programs and, if so,
correct the error(s):

(a) vector<int> vec; list<int> lst; int i;
while (cin >> i)

lst.push_back(i);
copy(lst.cbegin(), lst.cend(), vec.begin());

(b) vector<int> vec;
vec.reserve(10); // reserve is covered in § 9.4 (p. 356)
fill_n(vec.begin(), 10, 0);

Exercise 10.8: We said that algorithms do not change the size of the containers over
which they operate. Why doesn’t the use of back_inserter invalidate this claim?

Eliminating Duplicates

To eliminate the duplicated words, we will first sort the vector so that duplicated
words appear adjacent to each other. Once the vector is sorted, we can use an-
other library algorithm, named unique, to reorder the vector so that the unique
elements appear in the first part of the vector. Because algorithms cannot do
container operations, we’ll use the erase member of vector to actually remove
the elements:

void elimDups(vector<string> &words)
{

// sort words alphabetically so we can find the duplicates
sort(words.begin(), words.end());

// unique reorders the input range so that each word appears once in the
// front portion of the range and returns an iterator one past the unique range
auto end_unique = unique(words.begin(), words.end());

// erase uses a vector operation to remove the nonunique elements
words.erase(end_unique, words.end());

}

The sort algorithm takes two iterators denoting the range of elements to sort. In
this call, we sort the entire vector. After the call to sort, words is ordered as

fox jumps over quick red red slow the the turtle

Note that the words red and the appear twice.

Using unique

Once words is sorted, we want to keep only one copy of each word. The unique
algorithm rearranges the input range to “eliminate” adjacent duplicated entries,
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and returns an iterator that denotes the end of the range of the unique values.
After the call to unique, the vector holds

fox jumps over quick red slow the turtle ??? ???

end_unique

�

(one past the last unique element)

The size of words is unchanged; it still has ten elements. The order of those el-
ements is changed—the adjacent duplicates have been “removed.” We put remove
in quotes because unique doesn’t remove any elements. Instead, it overwrites ad-
jacent duplicates so that the unique elements appear at the front of the sequence.
The iterator returned by unique denotes one past the last unique element. The
elements beyond that point still exist, but we don’t know what values they have.

The library algorithms operate on iterators, not containers. Therefore,
an algorithm cannot (directly) add or remove elements.

Using Container Operations to Remove Elements

To actually remove the unused elements, we must use a container operation, which
we do in the call to erase (§ 9.3.3, p. 349). We erase the range of elements from the
one to which end_unique refers through the end of words. After this call, words
contains the eight unique words from the input.

It is worth noting that this call to erase would be safe even if words has no
duplicated words. In that case, unique would return words.end(). Both ar-
guments to erase would have the same value: words.end(). The fact that the
iterators are equal would mean that the range passed to erase would be empty.
Erasing an empty range has no effect, so our program is correct even if the input
has no duplicates.

EXE R C I S E S SE C TI O N 10.2.3

Exercise 10.9: Implement your own version of elimDups. Test your program by
printing the vector after you read the input, after the call to unique, and after the
call to erase.

Exercise 10.10: Why do you think the algorithms don’t change the size of containers?

10.3 Customizing Operations
Many of the algorithms compare elements in the input sequence. By default, such
algorithms use either the element type’s < or == operator. The library also defines
versions of these algorithms that let us supply our own operation to use in place
of the default operator.
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For example, the sort algorithm uses the element type’s < operator. However,
we might want to sort a sequence into a different order from that defined by <, or
our sequence might have elements of a type (such as Sales_data) that does not
have a < operator. In both cases, we need to override the default behavior of sort.

10.3.1 Passing a Function to an Algorithm
As one example, assume that we want to print the vector after we call elimDups
(§ 10.2.3, p. 384). However, we’ll also assume that we want to see the words
ordered by their size, and then alphabetically within each size. To reorder the
vector by length, we’ll use a second, overloaded version of sort. This version
of sort takes a third argument that is a predicate.

Predicates

A predicate is an expression that can be called and that returns a value that can
be used as a condition. The predicates used by library algorithms are either unary
predicates (meaning they have a single parameter) or binary predicates (mean-
ing they have two parameters). The algorithms that take predicates call the given
predicate on the elements in the input range. As a result, it must be possible to
convert the element type to the parameter type of the predicate.

The version of sort that takes a binary predicate uses the given predicate in
place of < to compare elements. The predicates that we supply to sort must meet
the requirements that we’ll describe in § 11.2.2 (p. 425). For now, what we need to
know is that the operation must define a consistent order for all possible elements
in the input sequence. Our isShorter function from § 6.2.2 (p. 211) is an example
of a function that meets these requirements, so we can pass isShorter to sort.
Doing so will reorder the elements by size:

// comparison function to be used to sort by word length
bool isShorter(const string &s1, const string &s2)
{

return s1.size() < s2.size();
}
// sort on word length, shortest to longest
sort(words.begin(), words.end(), isShorter);

If words contains the same data as in § 10.2.3 (p. 384), this call would reorder
words so that all the words of length 3 appear before words of length 4, which in
turn are followed by words of length 5, and so on.

Sorting Algorithms

When we sort words by size, we also want to maintain alphabetic order among the
elements that have the same length. To keep the words of the same length in al-
phabetical order we can use the stable_sort algorithm. A stable sort maintains
the original order among equal elements.

Ordinarily, we don’t care about the relative order of equal elements in a sorted
sequence. After all, they’re equal. However, in this case, we have defined “equal”
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to mean “have the same length.” Elements that have the same length still differ
from one another when we view their contents. By calling stable_sort, we can
maintain alphabetical order among those elements that have the same length:

elimDups(words); // put words in alphabetical order and remove duplicates
// resort by length, maintaining alphabetical order among words of the same length
stable_sort(words.begin(), words.end(), isShorter);
for (const auto &s : words) // no need to copy the strings

cout << s << " "; // print each element separated by a space
cout << endl;

Assuming words was in alphabetical order before this call, after the call, words
will be sorted by element size, and the words of each length remain in alphabetical
order. If we run this code on our original vector, the output will be

fox red the over slow jumps quick turtle

EXE R C I S E S SE C TI O N 10.3.1

Exercise 10.11: Write a program that uses stable_sort and isShorter to sort a
vector passed to your version of elimDups. Print the vector to verify that your
program is correct.

Exercise 10.12: Write a function named compareIsbn that compares the isbn()
members of two Sales_data objects. Use that function to sort a vector that holds
Sales_data objects.

Exercise 10.13: The library defines an algorithm named partition that takes a pred-
icate and partitions the container so that values for which the predicate is true appear
in the first part and those for which the predicate is false appear in the second part.
The algorithm returns an iterator just past the last element for which the predicate
returned true. Write a function that takes a string and returns a bool indicating
whether the string has five characters or more. Use that function to partition words.
Print the elements that have five or more characters.

10.3.2 Lambda Expressions
The predicates we pass to an algorithm must have exactly one or two parameters,
depending on whether the algorithm takes a unary or binary predicate, respec-
tively. However, sometimes we want to do processing that requires more argu-
ments than the algorithm’s predicate allows. For example, the solution you wrote
for the last exercise in the previous section had to hard-wire the size 5 into the pred-
icate used to partition the sequence. It would be move useful to be able to partition
a sequence without having to write a separate predicate for every possible size.

As a related example, we’ll revise our program from § 10.3.1 (p. 387) to report
how many words are of a given size or greater. We’ll also change the output so
that it prints only the words of the given length or greater.

A sketch of this function, which we’ll name biggies, is as follows:
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void biggies(vector<string> &words,
vector<string>::size_type sz)

{
elimDups(words); // put words in alphabetical order and remove duplicates
// resort by length, maintaining alphabetical order among words of the same length
stable_sort(words.begin(), words.end(), isShorter);
// get an iterator to the first element whose size() is >= sz
// compute the number of elements with size >= sz
// print words of the given size or longer, each one followed by a space

}

Our new problem is to find the first element in the vector that has the given
size. Once we know that element, we can use its position to compute how many
elements have that size or greater.

We can use the library find_if algorithm to find an element that has a partic-
ular size. Like find (§ 10.1, p. 376), the find_if algorithm takes a pair of iterators
denoting a range. Unlike find, the third argument to find_if is a predicate. The
find_if algorithm calls the given predicate on each element in the input range.
It returns the first element for which the predicate returns a nonzero value, or its
end iterator if no such element is found.

It would be easy to write a function that takes a string and a size and returns a
bool indicating whether the size of a given string is greater than the given size.
However, find_if takes a unary predicate—any function we pass to find_if
must have exactly one parameter that can be called with an element from the input
sequence. There is no way to pass a second argument representing the size. To
solve this part of our problem we’ll need to use some additional language facilities.

Introducing Lambdas

We can pass any kind of callable object to an algorithm. An object or expression
is callable if we can apply the call operator (§ 1.5.2, p. 23) to it. That is, if e is a
callable expression, we can write e(args) where args is a comma-separated list
of zero or more arguments.

The only callables we’ve used so far are functions and function pointers (§ 6.7,
p. 247). There are two other kinds of callables: classes that overload the function-
call operator, which we’ll cover in § 14.8 (p. 571), and lambda expressions.

A lambda expression represents a callable unit of code. It can be thought of
as an unnamed, inline function. Like any function, a lambda has a return type, a
parameter list, and a function body. Unlike a function, lambdas may be defined
inside a function. A lamba expression has the form

[capture list](parameter list) -> return type { function body }

where capture list is an (often empty) list of local variables defined in the enclosing
function; return type, parameter list, and function body are the same as in any ordi-
nary function. However, unlike ordinary functions, a lambda must use a trailing
return (§ 6.3.3, p. 229) to specify its return type.

We can omit either or both of the parameter list and return type but must al-
ways include the capture list and function body:
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auto f = [] { return 42; };

Here, we’ve defined f as a callable object that takes no arguments and returns 42.
We call a lambda the same way we call a function by using the call operator:

cout << f() << endl; // prints 42

Omitting the parentheses and the parameter list in a lambda is equivalent to
specifying an empty parameter list. Hence, when we call f, the argument list is
empty. If we omit the return type, the lambda has an inferred return type that
depends on the code in the function body. If the function body is just a return
statement, the return type is inferred from the type of the expression that is re-
turned. Otherwise, the return type is void.

Lambdas with function bodies that contain anything other than a single
return statement that do not specify a return type return void.

Passing Arguments to a Lambda

As with an ordinary function call, the arguments in a call to a lambda are used to
initialize the lambda’s parameters. As usual, the argument and parameter types
must match. Unlike ordinary functions, a lambda may not have default arguments
(§ 6.5.1, p. 236). Therefore, a call to a lambda always has as many arguments as the
lambda has parameters. Once the parameters are initialized, the function body
executes.

As an example of a lambda that takes arguments, we can write a lambda that
behaves like our isShorter function:

[](const string &a, const string &b)
{ return a.size() < b.size();}

The empty capture list indicates that this lambda will not use any local variables
from the surrounding function. The lambda’s parameters, like the parameters
to isShorter, are references to const string. Again like isShorter, the
lambda’s function body compares its parameters’ size()s and returns a bool
that depends on the relative sizes of the given arguments.

We can rewrite our call to stable_sort to use this lambda as follows:

// sort words by size, but maintain alphabetical order for words of the same size
stable_sort(words.begin(), words.end(),

[](const string &a, const string &b)
{ return a.size() < b.size();});

When stable_sort needs to compare two elements, it will call the given lambda
expression.

Using the Capture List

We’re now ready to solve our original problem, which is to write a callable expres-
sion that we can pass to find_if. We want an expression that will compare the
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length of each string in the input sequence with the value of the sz parameter
in the biggies function.

Although a lambda may appear inside a function, it can use variables local
to that function only if it specifies which variables it intends to use. A lambda
specifies the variables it will use by including those local variables in its capture
list. The capture list directs the lambda to include information needed to access
those variables within the lambda itself.

In this case, our lambda will capture sz and will have a single string pa-
rameter. The body of our lambda will compare the given string’s size with the
captured value of sz:

[sz](const string &a)
{ return a.size() >= sz; };

Inside the [] that begins a lambda we can provide a comma-separated list of
names defined in the surrounding function.

Because this lambda captures sz, the body of the lambda may use sz. The
lambda does not capture words, and so has no access to that variable. Had we
given our lambda an empty capture list, our code would not compile:

// error: sz not captured
[](const string &a)

{ return a.size() >= sz; };

A lambda may use a variable local to its surrounding function only if the
lambda captures that variable in its capture list.

Calling find_if

Using this lambda, we can find the first element whose size is at least as big as sz:

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(),

[sz](const string &a)
{ return a.size() >= sz; });

The call to find_if returns an iterator to the first element that is at least as long
as the given sz, or a copy of words.end() if no such element exists.

We can use the iterator returned from find_if to compute how many ele-
ments appear between that iterator and the end of words (§ 3.4.2, p. 111):

// compute the number of elements with size >= sz
auto count = words.end() - wc;
cout << count << " " << make_plural(count, "word", "s")

<< " of length " << sz << " or longer" << endl;

Our output statement calls make_plural (§ 6.3.2, p. 224) to print word or words,
depending on whether that size is equal to 1.
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The for_each Algorithm

The last part of our problem is to print the elements in words that have length sz
or greater. To do so, we’ll use the for_each algorithm. This algorithm takes a
callable object and calls that object on each element in the input range:

// print words of the given size or longer, each one followed by a space
for_each(wc, words.end(),

[](const string &s){cout << s << " ";});
cout << endl;

The capture list in this lambda is empty, yet the body uses two names: its own
parameter, named s, and cout.

The capture list is empty, because we use the capture list only for (nonstatic)
variables defined in the surrounding function. A lambda can use names that are
defined outside the function in which the lambda appears. In this case, cout is not
a name defined locally in biggies; that name is defined in the iostream header.
So long as the iostream header is included in the scope in which biggies ap-
pears, our lambda can use cout.

The capture list is used for local nonstatic variables only; lambdas can
use local statics and variables declared outside the function directly.

Putting It All Together

Now that we’ve looked at the program in detail, here is the program as a whole:

void biggies(vector<string> &words,
vector<string>::size_type sz)

{
elimDups(words); // put words in alphabetical order and remove duplicates
// sort words by size, but maintain alphabetical order for words of the same size
stable_sort(words.begin(), words.end(),

[](const string &a, const string &b)
{ return a.size() < b.size();});

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(),

[sz](const string &a)
{ return a.size() >= sz; });

// compute the number of elements with size >= sz
auto count = words.end() - wc;
cout << count << " " << make_plural(count, "word", "s")

<< " of length " << sz << " or longer" << endl;
// print words of the given size or longer, each one followed by a space
for_each(wc, words.end(),

[](const string &s){cout << s << " ";});
cout << endl;

}
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EXE R C I S E S SE C TI O N 10.3.2

Exercise 10.14: Write a lambda that takes two ints and returns their sum.

Exercise 10.15: Write a lambda that captures an int from its enclosing function and
takes an int parameter. The lambda should return the sum of the captured int and
the int parameter.

Exercise 10.16: Write your own version of the biggies function using lambdas.

Exercise 10.17: Rewrite exercise 10.12 from § 10.3.1 (p. 387) to use a lambda in the call
to sort instead of the compareIsbn function.

Exercise 10.18: Rewrite biggies to use partition instead of find_if. We de-
scribed the partition algorithm in exercise 10.13 in § 10.3.1 (p. 387).

Exercise 10.19: Rewrite the previous exercise to use stable_partition, which like
stable_sort maintains the original element order in the paritioned sequence.

10.3.3 Lambda Captures and Returns
When we define a lambda, the compiler generates a new (unnamed) class type that
corresponds to that lambda. We’ll see how these classes are generated in § 14.8.1
(p. 572). For now, what’s useful to understand is that when we pass a lambda to a
function, we are defining both a new type and an object of that type: The argument
is an unnamed object of this compiler-generated class type. Similarly, when we use
auto to define a variable initialized by a lambda, we are defining an object of the
type generated from that lambda.

By default, the class generated from a lambda contains a data member corre-
sponding to the variables captured by the lambda. Like the data members of any
class, the data members of a lambda are initialized when a lambda object is created.

Capture by Value

Similar to parameter passing, we can capture variables by value or by reference.
Table 10.1 (p. 395) covers the various ways we can form a capture list. So far,
our lambdas have captured variables by value. As with a parameter passed by
value, it must be possible to copy such variables. Unlike parameters, the value of
a captured variable is copied when the lambda is created, not when it is called:

void fcn1()
{

size_t v1 = 42; // local variable
// copies v1 into the callable object named f
auto f = [v1] { return v1; };
v1 = 0;
auto j = f(); // j is 42; f stored a copy of v1 when we created it

}

Because the value is copied when the lambda is created, subsequent changes to a
captured variable have no effect on the corresponding value inside the lambda.
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Capture by Reference

We can also define lambdas that capture variables by reference. For example:

void fcn2()
{

size_t v1 = 42; // local variable
// the object f2 contains a reference to v1
auto f2 = [&v1] { return v1; };
v1 = 0;
auto j = f2(); // j is 0; f2 refers to v1; it doesn’t store it

}

The & before v1 indicates that v1 should be captured as a reference. A variable
captured by reference acts like any other reference. When we use the variable
inside the lambda body, we are using the object to which that reference is bound.
In this case, when the lambda returns v1, it returns the value of the object to which
v1 refers.

Reference captures have the same problems and restrictions as reference re-
turns (§ 6.3.2, p. 225). If we capture a variable by reference, we must be certain
that the referenced object exists at the time the lambda is executed. The variables
captured by a lambda are local variables. These variables cease to exist once the
function completes. If it is possible for a lambda to be executed after the function
finishes, the local variables to which the capture refers no longer exist.

Reference captures are sometimes necessary. For example, we might want our
biggies function to take a reference to an ostream on which to write and a
character to use as the separator:

void biggies(vector<string> &words,
vector<string>::size_type sz,
ostream &os = cout, char c = ’ ’)

{
// code to reorder words as before
// statement to print count revised to print to os
for_each(words.begin(), words.end(),

[&os, c](const string &s) { os << s << c; });
}

We cannot copy ostream objects (§ 8.1.1, p. 311); the only way to capture os is by
reference (or through a pointer to os).

When we pass a lambda to a function, as in this call to for_each, the lambda
executes immediately. Capturing os by reference is fine, because the variables in
biggies exist while for_each is running.

We can also return a lambda from a function. The function might directly return
a callable object or the function might return an object of a class that has a callable
object as a data member. If the function returns a lambda, then—for the same
reasons that a function must not return a reference to a local variable—that lambda
must not contain reference captures.

When we capture a variable by reference, we must ensure that the vari-
able exists at the time that the lambda executes.
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ADVICE: KEEP YOUR LAMBDA CAPTURES SIMPLE

A lambda capture stores information between the time the lambda is created (i.e.,
when the code that defines the lambda is executed) and the time (or times) the lambda
itself is executed. It is the programmer’s responsibility to ensure that whatever infor-
mation is captured has the intended meaning each time the lambda is executed.

Capturing an ordinary variable—an int, a string, or other nonpointer type—
by value is usually straightforward. In this case, we only need to care whether the
variable has the value we need when we capture it.

If we capture a pointer or iterator, or capture a variable by reference, we must en-
sure that the object bound to that iterator, pointer, or reference still exists, whenever
the lambda executes. Moreover, we need to ensure that the object has the intended
value. Code that executes between when the lambda is created and when it executes
might change the value of the object to which the lambda capture points (or refers).
The value of the object at the time the pointer (or reference) was captured might have
been what we wanted. The value of that object when the lambda executes might be
quite different.

As a rule, we can avoid potential problems with captures by minimizing the data
we capture. Moreover, if possible, avoid capturing pointers or references.

Implicit Captures

Rather than explicitly listing the variables we want to use from the enclosing func-
tion, we can let the compiler infer which variables we use from the code in the
lambda’s body. To direct the compiler to infer the capture list, we use an & or =
in the capture list. The & tells the compiler to capture by reference, and the = says
the values are captured by value. For example, we can rewrite the lambda that we
passed to find_if as

// sz implicitly captured by value
wc = find_if(words.begin(), words.end(),

[=](const string &s)
{ return s.size() >= sz; });

If we want to capture some variables by value and others by reference, we can
mix implicit and explicit captures:

void biggies(vector<string> &words,
vector<string>::size_type sz,
ostream &os = cout, char c = ’ ’)

{
// other processing as before
// os implicitly captured by reference; c explicitly captured by value
for_each(words.begin(), words.end(),

[&, c](const string &s) { os << s << c; });
// os explicitly captured by reference; c implicitly captured by value
for_each(words.begin(), words.end(),

[=, &os](const string &s) { os << s << c; });
}
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When we mix implicit and explicit captures, the first item in the capture list must
be an & or =. That symbol sets the default capture mode as by reference or by
value, respectively.

When we mix implicit and explicit captures, the explicitly captured variables
must use the alternate form. That is, if the implicit capture is by reference (using &),
then the explicitly named variables must be captured by value; hence their names
may not be preceded by an &. Alternatively, if the implicit capture is by value
(using =), then the explicitly named variables must be preceded by an & to indicate
that they are to be captured by reference.

Table 10.1: Lambda Capture List

[] Empty capture list. The lambda may not use variables from the enclosing
function. A lamba may use local variables only if it captures them.

[names] names is a comma-separated list of names local to the enclosing function.
By default, variables in the capture list are copied. A name preceded by &
is captured by reference.

[&] Implicit by reference capture list. Entities from the enclosing function
used in the lambda body are used by reference.

[=] Implicit by value capture list. Entities from the enclosing function used in
the lambda body are copied into the lambda body.

[&, identifier_list] identifier_list is a comma-separated list of zero or more variables from the
enclosing function. These variables are captured by value; any implicitly
captured variables are captured by reference. The names in identifier_list
must not be preceded by an &.

[=, reference_list] Variables included in the reference_list are captured by reference; any
implicitly captured variables are captured by value. The names in
reference_list may not include this and must be preceded by an &.

Mutable Lambdas

By default, a lambda may not change the value of a variable that it copies by value.
If we want to be able to change the value of a captured variable, we must follow
the parameter list with the keyword mutable. Lambdas that are mutable may not
omit the parameter list:

void fcn3()
{

size_t v1 = 42; // local variable
// f can change the value of the variables it captures
auto f = [v1] () mutable { return ++v1; };
v1 = 0;
auto j = f(); // j is 43

}

Whether a variable captured by reference can be changed (as usual) depends
only on whether that reference refers to a const or nonconst type:
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void fcn4()
{

size_t v1 = 42; // local variable
// v1 is a reference to a nonconst variable
// we can change that variable through the reference inside f2
auto f2 = [&v1] { return ++v1; };
v1 = 0;
auto j = f2(); // j is 1

}

Specifying the Lambda Return Type

The lambdas we’ve written so far contain only a single return statement. As a
result, we haven’t had to specify the return type. By default, if a lambda body
contains any statements other than a return, that lambda is assumed to return
void. Like other functions that return void, lambdas inferred to return void
may not return a value.

As a simple example, we might use the library transform algorithm and a
lambda to replace each negative value in a sequence with its absolute value:

transform(vi.begin(), vi.end(), vi.begin(),
[](int i) { return i < 0 ? -i : i; });

The transform function takes three iterators and a callable. The first two iterators
denote an input sequence and the third is a destination. The algorithm calls the
given callable on each element in the input sequence and writes the result to the
destination. As in this call, the destination iterator can be the same as the iterator
denoting the start of the input. When the input iterator and the destination iterator
are the same, transform replaces each element in the input range with the result
of calling the callable on that element.

In this call, we passed a lambda that returns the absolute value of its parameter.
The lambda body is a single return statement that returns the result of a condi-
tional expression. We need not specify the return type, because that type can be
inferred from the type of the conditional operator.

However, if we write the seemingly equivalent program using an if statement,
our code won’t compile:

// error: cannot deduce the return type for the lambda
transform(vi.begin(), vi.end(), vi.begin(),

[](int i) { if (i < 0) return -i; else return i; });

This version of our lambda infers the return type as void but we returned a value.
When we need to define a return type for a lambda, we must use a trailing

return type (§ 6.3.3, p. 229):

transform(vi.begin(), vi.end(), vi.begin(),
[](int i) -> int
{ if (i < 0) return -i; else return i; });

In this case, the fourth argument to transform is a lambda with an empty capture
list, which takes a single parameter of type int and returns a value of type int. Its
function body is an if statement that returns the absolute value of its parameter.
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EXE R C I S E S SE C TI O N 10.3.3

Exercise 10.20: The library defines an algorithm named count_if. Like find_if,
this function takes a pair of iterators denoting an input range and a predicate that it
applies to each element in the given range. count_if returns a count of how often the
predicate is true. Use count_if to rewrite the portion of our program that counted
how many words are greater than length 6.

Exercise 10.21: Write a lambda that captures a local int variable and decrements that
variable until it reaches 0. Once the variable is 0 additional calls should no longer
decrement the variable. The lambda should return a bool that indicates whether the
captured variable is 0.

10.3.4 Binding Arguments
Lambda expressions are most useful for simple operations that we do not need to
use in more than one or two places. If we need to do the same operation in many
places, we should usually define a function rather than writing the same lambda
expression multiple times. Similarly, if an operation requires many statements, it
is ordinarily better to use a function.

It is usually straightforward to use a function in place of a lambda that has an
empty capture list. As we’ve seen, we can use either a lambda or our isShorter
function to order the vector on word length. Similarly, it would be easy to replace
the lambda that printed the contents of our vector by writing a function that takes
a string and prints the given string to the standard output.

However, it is not so easy to write a function to replace a lambda that captures
local variables. For example, the lambda that we used in the call to find_if
compared a string with a given size. We can easily write a function to do the
same work:

bool check_size(const string &s, string::size_type sz)
{

return s.size() >= sz;
}

However, we can’t use this function as an argument to find_if. As we’ve seen,
find_if takes a unary predicate, so the callable passed to find_if must take a
single argument. The lambda that biggies passed to find_if used its capture
list to store sz. In order to use check_size in place of that lambda, we have to
figure out how to pass an argument to the sz parameter.

The Library bind Function

We can solve the problem of passing a size argument to check_size by using a
new library function named bind, which is defined in the functional header.
The bind function can be thought of as a general-purpose function adaptor (§ 9.6,
p. 368). It takes a callable object and generates a new callable that “adapts” the
parameter list of the original object.
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The general form of a call to bind is:

auto newCallable = bind(callable, arg_list);

where newCallable is itself a callable object and arg_list is a comma-separated list of
arguments that correspond to the parameters of the given callable. That is, when
we call newCallable, newCallable calls callable, passing the arguments in arg_list.

The arguments in arg_list may include names of the form _n, where n is an
integer. These arguments are “placeholders” representing the parameters of new-
Callable. They stand “in place of” the arguments that will be passed to newCallable.
The number n is the position of the parameter in the generated callable: _1 is the
first parameter in newCallable, _2 is the second, and so forth.

Binding the sz Parameter of check_size

As a simple example, we’ll use bind to generate an object that calls check_size
with a fixed value for its size parameter as follows:

// check6 is a callable object that takes one argument of type string
// and calls check_size on its given string and the value 6
auto check6 = bind(check_size, _1, 6);

This call to bind has only one placeholder, which means that check6 takes a
single argument. The placeholder appears first in arg_list, which means that the
parameter in check6 corresponds to the first parameter of check_size. That
parameter is a const string&, which means that the parameter in check6 is
also a const string&. Thus, a call to check6 must pass an argument of type
string, which check6 will pass as the first argument to check_size.

The second argument in arg_list (i.e., the third argument to bind) is the value
6. That value is bound to the second parameter of check_size. Whenever we
call check6, it will pass 6 as the second argument to check_size:

string s = "hello";
bool b1 = check6(s); // check6(s) calls check_size(s, 6)

Using bind, we can replace our original lambda-based call to find_if

auto wc = find_if(words.begin(), words.end(),
[sz](const string &a)

with a version that uses check_size:

auto wc = find_if(words.begin(), words.end(),
bind(check_size, _1, sz));

This call to bind generates a callable object that binds the second argument of
check_size to the value of sz. When find_if calls this object on the strings
in words those calls will in turn call check_size passing the given string and
sz. So, find_if (effectively) will call check_size on each string in the input
range and compare the size of that string to sz.
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Using placeholders Names

The _n names are defined in a namespace named placeholders. That name-
space is itself defined inside the std namespace (§ 3.1, p. 82). To use these names,
we must supply the names of both namespaces. As with our other examples, our
calls to bind assume the existence of appropriate using declarations. For exam-
ple, the using declaration for _1 is

using std::placeholders::_1;

This declaration says we’re using the name _1, which is defined in the namespace
placeholders, which is itself defined in the namespace std.

We must provide a separate using declaration for each placeholder name that
we use. Writing such declarations can be tedious and error-prone. Rather than
separately declaring each placeholder, we can use a different form of using that
we will cover in more detail in § 18.2.2 (p. 793). This form:

using namespace namespace_name;

says that we want to make all the names from namespace_name accessible to our
program. For example:

using namespace std::placeholders;

makes all the names defined by placeholders usable. Like the bind function,
the placeholders namespace is defined in the functional header.

Arguments to bind

As we’ve seen, we can use bind to fix the value of a parameter. More generally,
we can use bind to bind or rearrange the parameters in the given callable. For
example, assuming f is a callable object that has five parameters, the following
call to bind:

// g is a callable object that takes two arguments
auto g = bind(f, a, b, _2, c, _1);

generates a new callable that takes two arguments, represented by the placeholders
_2 and _1. The new callable will pass its own arguments as the third and fifth
arguments to f. The first, second, and fourth arguments to f are bound to the
given values, a, b, and c, respectively.

The arguments to g are bound positionally to the placeholders. That is, the first
argument to g is bound to _1, and the second argument is bound to _2. Thus,
when we call g, the first argument to g will be passed as the last argument to f;
the second argument to g will be passed as f’s third argument. In effect, this call
to bind maps

g(_1, _2)

to
f(a, b, _2, c, _1)

That is, calling g calls f using g’s arguments for the placeholders along with the
bound arguments, a, b, and c. For example, calling g(X, Y) calls

f(a, b, Y, c, X)
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Using to bind to Reorder Parameters

As a more concrete example of using bind to reorder arguments, we can use bind
to invert the meaning of isShorter by writing

// sort on word length, shortest to longest
sort(words.begin(), words.end(), isShorter);
// sort on word length, longest to shortest
sort(words.begin(), words.end(), bind(isShorter, _2, _1));

In the first call, when sort needs to compare two elements, A and B, it will call
isShorter(A, B). In the second call to sort, the arguments to isShorter are
swapped. In this case, when sort compares elements, it will be as if sort called
isShorter(B, A).

Binding Reference Parameters

By default, the arguments to bind that are not placeholders are copied into the
callable object that bind returns. However, as with lambdas, sometimes we have
arguments that we want to bind but that we want to pass by reference or we might
want to bind an argument that has a type that we cannot copy.

For example, to replace the lambda that captured an ostream by reference:

// os is a local variable referring to an output stream
// c is a local variable of type char
for_each(words.begin(), words.end(),

[&os, c](const string &s) { os << s << c; });

We can easily write a function to do the same job:

ostream &print(ostream &os, const string &s, char c)
{

return os << s << c;
}

However, we can’t use bind directly to replace the capture of os:

// error: cannot copy os
for_each(words.begin(), words.end(), bind(print, os, _1, ’ ’));

because bind copies its arguments and we cannot copy an ostream. If we want
to pass an object to bind without copying it, we must use the library ref function:

for_each(words.begin(), words.end(),
bind(print, ref(os), _1, ’ ’));

The ref function returns an object that contains the given reference and that is
itself copyable. There is also a cref function that generates a class that holds a
reference to const. Like bind, the ref and cref functions are defined in the
functional header.
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BACKWARD COMPATIBILITY: BINDING ARGUMENTS

Older versions of C++ provided a much more limited, yet more complicated, set of
facilities to bind arguments to functions. The library defined two functions named
bind1st and bind2nd. Like bind, these functions take a function and generate a
new callable object that calls the given function with one of its parameters bound to
a given value. However, these functions can bind only the first or second parameter,
respectively. Because they are of much more limited utility, they have been deprecated
in the new standard. A deprecated feature is one that may not be supported in future
releases. Modern C++ programs should use bind.

EXE R C I S E S SE C TI O N 10.3.4

Exercise 10.22: Rewrite the program to count words of size 6 or less using functions
in place of the lambdas.

Exercise 10.23: How many arguments does bind take?

Exercise 10.24: Use bind and check_size to find the first element in a vector of
ints that has a value greater than the length of a specified string value.

Exercise 10.25: In the exercises for § 10.3.2 (p. 392) you wrote a version of biggies
that uses partition. Rewrite that function to use check_size and bind.

10.4 Revisiting Iterators
In addition to the iterators that are defined for each of the containers, the library
defines several additional kinds of iterators in the iterator header. These itera-
tors include

• Insert iterators: These iterators are bound to a container and can be used to
insert elements into the container.

• Stream iterators: These iterators are bound to input or output streams and
can be used to iterate through the associated IO stream.

• Reverse iterators: These iterators move backward, rather than forward. The
library containers, other than forward_list, have reverse iterators.

• Move iterators: These special-purpose iterators move rather than copy their
elements. We’ll cover move iterators in § 13.6.2 (p. 543).

10.4.1 Insert Iterators
An inserter is an iterator adaptor (§ 9.6, p. 368) that takes a container and yields
an iterator that adds elements to the specified container. When we assign a value
through an insert iterator, the iterator calls a container operation to add an element
at a specified position in the given container. The operations these iterators support
are listed in Table 10.2 (overleaf).
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There are three kinds of inserters. Each differs from the others as to where
elements are inserted:

• back_inserter (§ 10.2.2, p. 382) creates an iterator that uses push_back.

• front_inserter creates an iterator that uses push_front.

• inserter creates an iterator that uses insert. This function takes a second
argument, which must be an iterator into the given container. Elements are
inserted ahead of the element denoted by the given iterator.

We can use front_inserter only if the container has push_front.
Similarly, we can use back_inserter only if it has push_back.

Table 10.2: Insert Iterator Operations

it = t Inserts the value t at the current position denoted by it. Depending on
the kind of insert iterator, and assuming c is the container to which it is
bound, calls c.push_back(t), c.push_front(t), or
c.insert(t, p), where p is the iterator position given to inserter.

*it, ++it, it++ These operations exist but do nothing to it. Each operator returns it.

It is important to understand that when we call inserter(c, iter), we get
an iterator that, when used successively, inserts elements ahead of the element
originally denoted by iter. That is, if it is an iterator generated by inserter,
then an assignment such as

*it = val;

behaves as

it = c.insert(it, val); // it points to the newly added element
++it; // increment it so that it denotes the same element as before

The iterator generated by front_inserter behaves quite differently from
the one created by inserter. When we use front_inserter, elements are
always inserted ahead of the then first element in the container. Even if the position
we pass to inserter initially denotes the first element, as soon as we insert an
element in front of that element, that element is no longer the one at the beginning
of the container:

list<int> lst = {1,2,3,4};
list<int> lst2, lst3; // empty lists
// after copy completes, lst2 contains 4 3 2 1
copy(lst.cbegin(), lst.cend(), front_inserter(lst2));

// after copy completes, lst3 contains 1 2 3 4
copy(lst.cbegin(), lst.cend(), inserter(lst3, lst3.begin()));

When we call front_inserter(c), we get an insert iterator that successively
calls push_front. As each element is inserted, it becomes the new first element
in c. Therefore, front_inserter yields an iterator that reverses the order of the
sequence that it inserts; inserter and back_inserter don’t.
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EXE R C I S E S SE C TI O N 10.4.1

Exercise 10.26: Explain the differences among the three kinds of insert iterators.

Exercise 10.27: In addition to unique (§ 10.2.3, p. 384), the library defines function
named unique_copy that takes a third iterator denoting a destination into which
to copy the unique elements. Write a program that uses unique_copy to copy the
unique elements from a vector into an initially empty list.

Exercise 10.28: Copy a vector that holds the values from 1 to 9 inclusive, into three
other containers. Use an inserter, a back_inserter, and a front_inserter,
respectivly to add elements to these containers. Predict how the output sequence varies
by the kind of inserter and verify your predictions by running your programs.

10.4.2 iostream Iterators
Even though the iostream types are not containers, there are iterators that can
be used with objects of the IO types (§ 8.1, p. 310). An istream_iterator (Ta-
ble 10.3 (overleaf)) reads an input stream, and an ostream_iterator (Table 10.4
(p. 405)) writes an output stream. These iterators treat their corresponding stream
as a sequence of elements of a specified type. Using a stream iterator, we can use
the generic algorithms to read data from or write data to stream objects.

Operations on istream_iterators

When we create a stream iterator, we must specify the type of objects that the
iterator will read or write. An istream_iterator uses >> to read a stream.
Therefore, the type that an istream_iterator reads must have an input opera-
tor defined. When we create an istream_iterator, we can bind it to a stream.
Alternatively, we can default initialize the iterator, which creates an iterator that
we can use as the off-the-end value.

istream_iterator<int> int_it(cin); // reads ints from cin
istream_iterator<int> int_eof; // end iterator value
ifstream in("afile");
istream_iterator<string> str_it(in); // reads strings from "afile"

As an example, we can use an istream_iterator to read the standard input
into a vector:

istream_iterator<int> in_iter(cin); // read ints from cin
istream_iterator<int> eof; // istream ‘‘end’’ iterator
while (in_iter != eof) // while there’s valid input to read

// postfix increment reads the stream and returns the old value of the iterator
// we dereference that iterator to get the previous value read from the stream
vec.push_back(*in_iter++);

This loop reads ints from cin, storing what was read in vec. On each iteration,
the loop checks whether in_iter is the same as eof. That iterator was defined
as the empty istream_iterator, which is used as the end iterator. An iterator
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bound to a stream is equal to the end iterator once its associated stream hits end-
of-file or encounters an IO error.

The hardest part of this program is the argument to push_back, which uses the
dereference and postfix increment operators. This expression works just like others
we’ve written that combined dereference with postfix increment (§ 4.5, p. 148). The
postfix increment advances the stream by reading the next value but returns the
old value of the iterator. That old value contains the previous value read from the
stream. We dereference that iterator to obtain that value.

What is more useful is that we can rewrite this program as

istream_iterator<int> in_iter(cin), eof; // read ints from cin
vector<int> vec(in_iter, eof); // construct vec from an iterator range

Here we construct vec from a pair of iterators that denote a range of elements.
Those iterators are istream_iterators, which means that the range is obtained
by reading the associated stream. This constructor reads cin until it hits end-of-
file or encounters an input that is not an int. The elements that are read are used
to construct vec.

Table 10.3: istream_iterator Operations

istream_iterator<T> in(is); in reads values of type T from input stream is.

istream_iterator<T> end; Off-the-end iterator for an istream_iterator that
reads values of type T.

in1 == in2
in1 != in2

in1 and in2 must read the same type. They are equal if they are both the
end value or are bound to the same input stream.

*in Returns the value read from the stream.
in->mem Synonym for (*in).mem.

++in, in++ Reads the next value from the input stream using the >> operator for the
element type. As usual, the prefix version returns a reference to the
incremented iterator. The postfix version returns the old value.

Using Stream Iterators with the Algorithms

Because algorithms operate in terms of iterator operations, and the stream iterators
support at least some iterator operations, we can use stream iterators with at least
some of the algorithms. We’ll see in § 10.5.1 (p. 410) how to tell which algorithms
can be used with the stream iterators. As one example, we can call accumulate
with a pair of istream_iterators:

istream_iterator<int> in(cin), eof;
cout << accumulate(in, eof, 0) << endl;

This call will generate the sum of values read from the standard input. If the input
to this program is

23 109 45 89 6 34 12 90 34 23 56 23 8 89 23

then the output will be 664.
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istream_iterators Are Permitted to Use Lazy Evaluation

When we bind an istream_iterator to a stream, we are not guaranteed that
it will read the stream immediately. The implementation is permitted to delay
reading the stream until we use the iterator. We are guaranteed that before we
dereference the iterator for the first time, the stream will have been read. For most
programs, whether the read is immediate or delayed makes no difference. How-
ever, if we create an istream_iterator that we destroy without using or if we
are synchronizing reads to the same stream from two different objects, then we
might care a great deal when the read happens.

Operations on ostream_iterators

An ostream_iterator can be defined for any type that has an output operator
(the << operator). When we create an ostream_iterator, we may (optionally)
provide a second argument that specifies a character string to print following each
element. That string must be a C-style character string (i.e., a string literal or a
pointer to a null-terminated array). We must bind an ostream_iterator to a
specific stream. There is no empty or off-the-end ostream_iterator.

Table 10.4: ostream_iterator Operations

ostream_iterator<T> out(os); out writes values of type T to output stream os.

ostream_iterator<T> out(os, d); out writes values of type T followed by d to
output stream os. d points to a null-terminated
character array.

out = val Writes val to the ostream to which out is bound using the << operator.
val must have a type that is compatible with the type that out can write.

*out, ++out,
out++

These operations exist but do nothing to out. Each operator returns out.

We can use an ostream_iterator to write a sequence of values:

ostream_iterator<int> out_iter(cout, " ");
for (auto e : vec)

*out_iter++ = e; // the assignment writes this element to cout
cout << endl;

This program writes each element from vec onto cout following each element
with a space. Each time we assign a value to out_iter, the write is committed.

It is worth noting that we can omit the dereference and the increment when we
assign to out_iter. That is, we can write this loop equivalently as

for (auto e : vec)
out_iter = e; // the assignment writes this element to cout

cout << endl;

The * and ++ operators do nothing on an ostream_iterator, so omitting them
has no effect on our program. However, we prefer to write the loop as first pre-
sented. That loop uses the iterator consistently with how we use other iterator

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

406 Generic Algorithms

types. We can easily change this loop to execute on another iterator type. More-
over, the behavior of this loop will be clearer to readers of our code.

Rather than writing the loop ourselves, we can more easily print the elements
in vec by calling copy:

copy(vec.begin(), vec.end(), out_iter);
cout << endl;

Using Stream Iterators with Class Types

We can create an istream_iterator for any type that has an input operator
(>>). Similarly, we can define an ostream_iterator so long as the type has an
output operator (<<). Because Sales_item has both input and output operators,
we can use IO iterators to rewrite the bookstore program from § 1.6 (p. 24):

istream_iterator<Sales_item> item_iter(cin), eof;
ostream_iterator<Sales_item> out_iter(cout, "\n");
// store the first transaction in sum and read the next record
Sales_item sum = *item_iter++;
while (item_iter != eof) {

// if the current transaction (which is stored in item_iter) has the same ISBN
if (item_iter->isbn() == sum.isbn())

sum += *item_iter++; // add it to sum and read the next transaction
else {

out_iter = sum; // write the current sum
sum = *item_iter++; // read the next transaction

}
}
out_iter = sum; // remember to print the last set of records

This program uses item_iter to read Sales_item transactions from cin. It
uses out_iter to write the resulting sums to cout, following each output with a
newline. Having defined our iterators, we use item_iter to initialize sum with
the value of the first transaction:

// store the first transaction in sum and read the next record
Sales_item sum = *item_iter++;

Here, we dereference the result of the postfix increment on item_iter. This ex-
pression reads the next transaction, and initializes sum from the value previously
stored in item_iter.

The while loop executes until we hit end-of-file on cin. Inside the while,
we check whether sum and the record we just read refer to the same book. If
so, we add the most recently read Sales_item into sum. If the ISBNs differ, we
assign sum to out_iter, which prints the current value of sum followed by a
newline. Having printed the sum for the previous book, we assign sum a copy of
the most recently read transaction and increment the iterator, which reads the next
transaction. The loop continues until an error or end-of-file is encountered. Before
exiting, we remember to print the values associated with the last book in the input.
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EXE R C I S E S SE C TI O N 10.4.2

Exercise 10.29: Write a program using stream iterators to read a text file into a vector
of strings.

Exercise 10.30: Use stream iterators, sort, and copy to read a sequence of integers
from the standard input, sort them, and then write them back to the standard output.

Exercise 10.31: Update the program from the previous exercise so that it prints only
the unique elements. Your program should use unqiue_copy (§ 10.4.1, p. 403).

Exercise 10.32: Rewrite the bookstore problem from § 1.6 (p. 24) using a vector to
hold the transactions and various algorithms to do the processing. Use sort with
your compareIsbn function from § 10.3.1 (p. 387) to arrange the transactions in order,
and then use find and accumulate to do the sum.

Exercise 10.33: Write a program that takes the names of an input file and two output
files. The input file should hold integers. Using an istream_iterator read the
input file. Using ostream_iterators, write the odd numbers into the first output
file. Each value should be followed by a space. Write the even numbers into the second
file. Each of these values should be placed on a separate line.

10.4.3 Reverse Iterators
A reverse iterator is an iterator that traverses a container backward, from the last
element toward the first. A reverse iterator inverts the meaning of increment (and
decrement). Incrementing (++it) a reverse iterator moves the iterator to the pre-
vious element; derementing (--it) moves the iterator to the next element.

The containers, aside from forward_list, all have reverse iterators. We ob-
tain a reverse iterator by calling the rbegin, rend, crbegin, and crend mem-
bers. These members return reverse iterators to the last element in the container
and one “past” (i.e., one before) the beginning of the container. As with ordinary
iterators, there are both const and nonconst reverse iterators.

Figure 10.1 illustrates the relationship between these four iterators on a hypo-
thetical vector named vec.

Figure 10.1: Comparing begin/cend and rbegin/crend Iterators
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As an example, the following loop prints the elements of vec in reverse order:
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vector<int> vec = {0,1,2,3,4,5,6,7,8,9};
// reverse iterator of vector from back to front
for (auto r_iter = vec.crbegin(); // binds r_iter to the last element

r_iter != vec.crend(); // crend refers 1 before 1st element
++r_iter) // decrements the iterator one element

cout << *r_iter << endl; // prints 9, 8, 7, . . . 0

Although it may seem confusing to have the meaning of the increment and
decrement operators reversed, doing so lets us use the algorithms transparently to
process a container forward or backward. For example, we can sort our vector
in descending order by passing sort a pair of reverse iterators:

sort(vec.begin(), vec.end()); // sorts vec in ‘‘normal’’ order
// sorts in reverse: puts the smallest element at the end of vec
sort(vec.rbegin(), vec.rend());

Reverse Iterators Require Decrement Operators

Not surprisingly, we can define a reverse iterator only from an iterator that sup-
ports -- as well as ++. After all, the purpose of a reverse iterator is to move
the iterator backward through the sequence. Aside from forward_list, the it-
erators on the standard containers all support decrement as well as increment.
However, the stream iterators do not, because it is not possible to move backward
through a stream. Therefore, it is not possible to create a reverse iterator from a
forward_list or a stream iterator.

Relationship between Reverse Iterators and Other Iterators

Suppose we have a string named line that contains a comma-separated list of
words, and we want to print the first word in line. Using find, this task is easy:

// find the first element in a comma-separated list
auto comma = find(line.cbegin(), line.cend(), ’,’);
cout << string(line.cbegin(), comma) << endl;

If there is a comma in line, then comma refers to that comma; otherwise it is
line.cend(). When we print the string from line.cbegin() to comma, we
print characters up to the comma, or the entire string if there is no comma.

If we wanted the last word, we can use reverse iterators instead:

// find the last element in a comma-separated list
auto rcomma = find(line.crbegin(), line.crend(), ’,’);

Because we pass crbegin() and crend(), this call starts with the last character
in line and searches backward. When find completes, if there is a comma, then
rcomma refers to the last comma in line—that is, it refers to the first comma found
in the backward search. If there is no comma, then rcomma is line.crend().

The interesting part comes when we try to print the word we found. The seem-
ingly obvious way

// WRONG: will generate the word in reverse order
cout << string(line.crbegin(), rcomma) << endl;
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generates bogus output. For example, had our input been

FIRST,MIDDLE,LAST

then this statement would print TSAL!
Figure 10.2 illustrates the problem: We are using reverse iterators, which pro-

cess the string backward. Therefore, our output statement prints from crbegin
backward through line. Instead, we want to print from rcomma forward to the
end of line. However, we can’t use rcomma directly. That iterator is a reverse
iterator, which means that it goes backward toward the beginning of the string.
What we need to do is transform rcomma back into an ordinary iterator that will
go forward through line. We can do so by calling the reverse_iterator’s
base member, which gives us its corresponding ordinary iterator:

// ok: get a forward iterator and read to the end of line
cout << string(rcomma.base(), line.cend()) << endl;

Given the same preceding input, this statement prints LAST as expected.

Figure 10.2: Relationship between Reverse and Ordinary Iterators
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The objects shown in Figure 10.2 illustrate the relationship between ordinary
and reverse iterators. For example, rcomma and rcomma.base() refer to differ-
ent elements, as do line.crbegin() and line.cend(). These differences are
needed to ensure that the range of elements, whether processed forward or back-
ward, is the same.

Technically speaking, the relationship between normal and reverse iterators
accommodates the properties of a left-inclusive range (§ 9.2.1, p. 331). The point
is that [line.crbegin(), rcomma) and [rcomma.base(), line.cend())
refer to the same elements in line. In order for that to happen, rcomma and
rcomma.base() must yield adjacent positions, rather than the same position, as
must crbegin() and cend().

The fact that reverse iterators are intended to represent ranges and that
these ranges are asymmetric has an important consequence: When we
initialize or assign a reverse iterator from a plain iterator, the resulting
iterator does not refer to the same element as the original.
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EXE R C I S E S SE C TI O N 10.4.3

Exercise 10.34: Use reverse_iterators to print a vector in reverse order.

Exercise 10.35: Now print the elements in reverse order using ordinary iterators.

Exercise 10.36: Use find to find the last element in a list of ints with value 0.

Exercise 10.37: Given a vector that has ten elements, copy the elements from posi-
tions 3 through 7 in reverse order to a list.

10.5 Structure of Generic Algorithms
The most fundamental property of any algorithm is the list of operations it requires
from its iterator(s). Some algorithms, such as find, require only the ability to ac-
cess an element through the iterator, to increment the iterator, and to compare two
iterators for equality. Others, such as sort, require the ability to read, write, and
randomly access elements. The iterator operations required by the algorithms are
grouped into five iterator categories listed in Table 10.5. Each algorithm specifies
what kind of iterator must be supplied for each of its iterator parameters.

A second way is to classify the algorithms (as we did in the beginning of this
chapter) is by whether they read, write, or reorder the elements in the sequence.
Appendix A covers all the algorithms according to this classification.

The algorithms also share a set of parameter-passing conventions and a set of
naming conventions, which we shall cover after looking at iterator categories.

Table 10.5: Iterator Categories

Input iterator Read, but not write; single-pass, increment only
Output iterator Write, but not read; single-pass, increment only
Forward iterator Read and write; multi-pass, increment only
Bidirectional iterator Read and write; multi-pass, increment and decrement
Random-access iterator Read and write; multi-pass, full iterator arithmetic

10.5.1 The Five Iterator Categories
Like the containers, iterators define a common set of operations. Some operations
are provided by all iterators; other operations are supported by only specific kinds
of iterators. For example, ostream_iterators have only increment, derefer-
ence, and assignment. Iterators on vector, strings, and deques support these
operations and the decrement, relational, and arithmetic operators.

Iterators are categorized by the operations they provide and the categories form
a sort of hierarchy. With the exception of output iterators, an iterator of a higher
category provides all the operations of the iterators of a lower categories.

The standard specifies the minimum category for each iterator parameter of the
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generic and numeric algorithms. For example, find—which implements a one-
pass, read-only traversal over a sequence—minimally requires an input iterator.
The replace function requires a pair of iterators that are at least forward iterators.
Similarly, replace_copy requires forward iterators for its first two iterators. Its
third iterator, which represents a destination, must be at least an output iterator,
and so on. For each parameter, the iterator must be at least as powerful as the
stipulated minimum. Passing an iterator of a lesser power is an error.

Many compilers will not complain when we pass the wrong category of
iterator to an algorithm.

The Iterator Categories

Input iterators: can read elements in a sequence. An input iterator must provide

• Equality and inequality operators (==, !=) to compare two iterators

• Prefix and postfix increment (++) to advance the iterator

• Dereference operator (*) to read an element; dereference may appear only on
the right-hand side of an assignment

• The arrow operator (->) as a synonym for (*it).member—that is, derefer-
ence the iterator and fetch a member from the underlying object

Input iterators may be used only sequentially. We are guaranteed that *it++ is
valid, but incrementing an input iterator may invalidate all other iterators into the
stream. As a result, there is no guarantee that we can save the state of an input
iterator and examine an element through that saved iterator. Input iterators, there-
fore, may be used only for single-pass algorithms. The find and accumulate
algorithms require input iterators; istream_iterators are input iterators.

Output iterators: can be thought of as having complementary functionality to in-
put iterators; they write rather than read elements. Output iterators must provide

• Prefix and postfix increment (++) to advance the iterator

• Dereference (*), which may appear only as the left-hand side of an assign-
ment (Assigning to a dereferenced output iterator writes to the underlying
element.)

We may assign to a given value of an output iterator only once. Like input iterators,
output iterators may be used only for single-pass algorithms. Iterators used as
a destination are typically output iterators. For example, the third parameter to
copy is an output iterator. The ostream_iterator type is an output iterator.

Forward iterators: can read and write a given sequence. They move in only one di-
rection through the sequence. Forward iterators support all the operations of both
input iterators and output iterators. Moreover, they can read or write the same el-
ement multiple times. Therefore, we can use the saved state of a forward iterator.
Hence, algorithms that use forward iterators may make multiple passes through
the sequence. The replace algorithm requires a forward iterator; iterators on
forward_list are forward iterators.
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Bidirectional iterators: can read and write a sequence forward or backward. In ad-
dition to supporting all the operations of a forward iterator, a bidirectional iterator
also supports the prefix and postfix decrement (--) operators. The reverse algo-
rithm requires bidirectional iterators, and aside from forward_list, the library
containers supply iterators that meet the requirements for a bidirectional iterator.

Random-access iterators: provide constant-time access to any position in the se-
quence. These iterators support all the functionality of bidirectional iterators. In
addition, random-access iterators support the operations from Table 3.7 (p. 111):

• The relational operators (<, <=, >, and >=) to compare the relative positions
of two iterators.

• Addition and subtraction operators (+, +=, -, and -=) on an iterator and an
integral value. The result is the iterator advanced (or retreated) the integral
number of elements within the sequence.

• The subtraction operator (-) when applied to two iterators, which yields the
distance between two iterators.

• The subscript operator (iter[n]) as a synonym for *(iter + n).

The sort algorithms require random-access iterators. Iterators for array, deque,
string, and vector are random-access iterators, as are pointers when used to
access elements of a built-in array.

EXE R C I S E S SE C TI O N 10.5.1

Exercise 10.38: List the five iterator categories and the operations that each supports.

Exercise 10.39: What kind of iterator does a list have? What about a vector?

Exercise 10.40: What kinds of iterators do you think copy requires? What about
reverse or unique?

10.5.2 Algorithm Parameter Patterns
Superimposed on any other classification of the algorithms is a set of parameter
conventions. Understanding these parameter conventions can aid in learning new
algorithms—by knowing what the parameters mean, you can concentrate on un-
derstanding the operation the algorithm performs. Most of the algorithms have
one of the following four forms:

alg(beg, end, other args);
alg(beg, end, dest, other args);
alg(beg, end, beg2, other args);
alg(beg, end, beg2, end2, other args);

where alg is the name of the algorithm, and beg and end denote the input range
on which the algorithm operates. Although nearly all algorithms take an input
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range, the presence of the other parameters depends on the work being performed.
The common ones listed here—dest, beg2, and end2—are all iterators. When
used, these iterators fill similar roles. In addition to these iterator parameters, some
algorithms take additional, noniterator parameters that are algorithm specific.

Algorithms with a Single Destination Iterator

A dest parameter is an iterator that denotes a destination in which the algorithm
can write its output. Algorithms assume that it is safe to write as many elements as
needed.

Algorithms that write to an output iterator assume the destination is
large enough to hold the output.

If dest is an iterator that refers directly to a container, then the algorithm writes
its output to existing elements within the container. More commonly, dest is
bound to an insert iterator (§ 10.4.1, p. 401) or an ostream_iterator (§ 10.4.2,
p. 403). An insert iterator adds new elements to the container, thereby ensuring
that there is enough space. An ostream_iterator writes to an output stream,
again presenting no problem regardless of how many elements are written.

Algorithms with a Second Input Sequence

Algorithms that take either beg2 alone or beg2 and end2 use those iterators to
denote a second input range. These algorithms typically use the elements from the
second range in combination with the input range to perform a computation.

When an algorithm takes both beg2 and end2, these iterators denote a second
range. Such algorithms take two completely specified ranges: the input range
denoted by [beg, end), and a second input range denoted by [beg2, end2).

Algorithms that take only beg2 (and not end2) treat beg2 as the first element
in a second input range. The end of this range is not specified. Instead, these
algorithms assume that the range starting at beg2 is at least as large as the one
denoted by beg, end.

Algorithms that take beg2 alone assume that the sequence beginning at
beg2 is as large as the range denoted by beg and end.

10.5.3 Algorithm Naming Conventions
Separate from the parameter conventions, the algorithms also conform to a set of
naming and overload conventions. These conventions deal with how we supply
an operation to use in place of the default < or == operator and with whether the
algorithm writes to its input sequence or to a separate destination.

Some Algorithms Use Overloading to Pass a Predicate

Algorithms that take a predicate to use in place of the < or == operator, and that
do not take other arguments, typically are overloaded. One version of the function
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uses the element type’s operator to compare elements; the second takes an extra
parameter that is a predicate to use in place of < or ==:

unique(beg, end); // uses the == operator to compare the elements
unique(beg, end, comp); // uses comp to compare the elements

Both calls reorder the given sequence by removing adjacent duplicated elements.
The first uses the element type’s == operator to check for duplicates; the second
calls comp to decide whether two elements are equal. Because the two versions of
the function differ as to the number of arguments, there is no possible ambiguity
(§ 6.4, p. 233) as to which function is being called.

Algorithms with _if Versions

Algorithms that take an element value typically have a second named (not over-
loaded) version that takes a predicate (§ 10.3.1, p. 386) in place of the value. The
algorithms that take a predicate have the suffix _if appended:

find(beg, end, val); // find the first instance of val in the input range
find_if(beg, end, pred); // find the first instance for which pred is true

These algorithms both find the first instance of a specific element in the input
range. The find algorithm looks for a specific value; the find_if algorithm looks
for a value for which pred returns a nonzero value.

These algorithms provide a named version rather than an overloaded one be-
cause both versions of the algorithm take the same number of arguments. Over-
loading ambiguities would therefore be possible, albeit rare. To avoid any possible
ambiguities, the library provides separate named versions for these algorithms.

Distinguishing Versions That Copy from Those That Do Not

By default, algorithms that rearrange elements write the rearranged elements back
into the given input range. These algorithms provide a second version that writes
to a specified output destination. As we’ve seen, algorithms that write to a desti-
nation append _copy to their names (§ 10.2.2, p. 383):

reverse(beg, end); // reverse the elements in the input range
reverse_copy(beg, end, dest);// copy elements in reverse order into dest

Some algorithms provide both _copy and _if versions. These versions take a
destination iterator and a predicate:

// removes the odd elements from v1
remove_if(v1.begin(), v1.end(),

[](int i) { return i % 2; });
// copies only the even elements from v1 into v2; v1 is unchanged
remove_copy_if(v1.begin(), v1.end(), back_inserter(v2),

[](int i) { return i % 2; });

Both calls use a lambda (§ 10.3.2, p. 388) to determine whether an element is odd.
In the first case, we remove the odd elements from the input sequence itself. In the
second, we copy the non-odd (aka even) elements from the input range into v2.
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EXE R C I S E S SE C TI O N 10.5.3

Exercise 10.41: Based only on the algorithm and argument names, describe the oper-
ation that the each of the following library algorithms performs:

replace(beg, end, old_val, new_val);
replace_if(beg, end, pred, new_val);
replace_copy(beg, end, dest, old_val, new_val);
replace_copy_if(beg, end, dest, pred, new_val);

10.6 Container-Specific Algorithms
Unlike the other containers, list and forward_list define several algorithms
as members. In particular, the list types define their own versions of sort, merge,
remove, reverse, and unique. The generic version of sort requires random-
access iterators. As a result, sort cannot be used with list and forward_list
because these types offer bidirectional and forward iterators, respectively.

The generic versions of the other algorithms that the list types define can be
used with lists, but at a cost in performance. These algorithms swap elements in
the input sequence. A list can “swap” its elements by changing the links among its
elements rather than swapping the values of those elements. As a result, the list-
specific versions of these algorithms can achieve much better performance than
the corresponding generic versions.

These list-specific operations are described in Table 10.6. Generic algorithms
not listed in the table that take appropriate iterators execute equally efficiently on
lists and forward_listss as on other containers.

The list member versions should be used in preference to the generic
algorithms for lists and forward_lists.

Table 10.6: Algorithms That are Members of list and forward_list

These operations return void.

lst.merge(lst2)
lst.merge(lst2, comp)

Merges elements from lst2 onto lst. Both lst and lst2
must be sorted. Elements are removed from lst2. After the
merge, lst2 is empty. The first version uses the < operator;
the second version uses the given comparison operation.

lst.remove(val)
lst.remove_if(pred)

Calls erase to remove each element that is == to the given
value or for which the given unary predicate succeeds.

lst.reverse() Reverses the order of the elements in lst.
lst.sort()
lst.sort(comp)

Sorts the elements of lst using < or the given comparison op-
eration.

lst.unique()
lst.unique(pred)

Calls erase to remove consecutive copies of the same value.
The first version uses ==; the second uses the given binary
predicate.
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The splice Members

The list types also define a splice algorithm, which is described in Table 10.7.
This algorithm is particular to list data structures. Hence a generic version of this
algorithm is not needed.

Table 10.7: Arguments to the list and forward_list splice Members

lst.splice(args) or flst.splice_after(args)

(p, lst2) p is an iterator to an element in lst or an iterator just before an element
in flst. Moves all the element(s) from lst2 into lst just before p or
into flst just after p. Removes the element(s) from lst2. lst2 must
have the same type as lst or flst and may not be the same list.

(p, lst2, p2) p2 is a valid iterator into lst2. Moves the element denoted by p2 into
lst or moves the element just after p2 into flst. lst2 can be the
same list as lst or flst.

(p, lst2, b, e) b and e must denote a valid range in lst2. Moves the elements in the
given range from lst2. lst2 and lst (or flst) can be the same list
but p must not denote an element in the given range.

The List-Specific Operations Do Change the Containers

Most of the list-specific algorithms are similar—but not identical—to their generic
counterparts. However, a crucially important difference between the list-specific
and the generic versions is that the list versions change the underlying container.
For example, the list version of remove removes the indicated elements. The list
version of unique removes the second and subsequent duplicate elements.

Similarly, merge and splice are destructive on their arguments. For example,
the generic version of merge writes the merged sequence to a given destination
iterator; the two input sequences are unchanged. The list merge function destroys
the given list—elements are removed from the argument list as they are merged
into the object on which merge was called. After a merge, the elements from both
lists continue to exist, but they are all elements of the same list.

EXE R C I S E S SE C TI ON 10.6

Exercise 10.42: Reimplement the program that eliminated duplicate words that we
wrote in § 10.2.3 (p. 383) to use a list instead of a vector.
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CH A P T E R SU M M A R Y
The standard library defines about 100 type-independent algorithms that operate
on sequences. Sequences can be elements in a library container type, a built-in
array, or generated (for example) by reading or writing to a stream. Algorithms
achieve their type independence by operating in terms of iterators. Most algo-
rithms take as their first two arguments a pair of iterators denoting a range of ele-
ments. Additional iterator arguments might include an output iterator denoting a
destination, or another iterator or iterator pair denoting a second input sequence.

Iterators are categorized into one of five categories depending on the operations
they support. The iterator categories are input, output, forward, bidirectional, and
random access. An iterator belongs to a particular category if it supports the oper-
ations required for that iterator category.

Just as iterators are categorized by their operations, iterator parameters to the
algorithms are categorized by the iterator operations they require. Algorithms that
only read their sequences require only input iterator operations. Those that write
to a destination iterator require only the actions of an output iterator, and so on.

Algorithms never directly change the size of the sequences on which they oper-
ate. They may copy elements from one position to another but cannot directly add
or remove elements.

Although algorithms cannot add elements to a sequence, an insert iterator may
do so. An insert iterator is bound to a container. When we assign a value of the
container’s element type to an insert iterator, the iterator adds the given element
to the container.

The forward_list and list containers define their own versions of some of
the generic algorithms. Unlike the generic algorithms, these list-specific versions
modify the given lists.

DEFINED TERMS

back_inserter Iterator adaptor that takes a
reference to a container and generates an in-
sert iterator that uses push_back to add el-
ements to the specified container.

bidirectional iterator Same operations as
forward iterators plus the ability to use --
to move backward through the sequence.

binary predicate Predicate that has two
parameters.

bind Library function that binds one or
more arguments to a callable expression.
bind is defined in the functional header.

callable object Object that can appear as
the left-hand operand of the call operator.
Pointers to functions, lambdas, and objects

of a class that defines an overloaded func-
tion call operator are all callable objects.

capture list Portion of a lambda expres-
sion that specifies which variables from the
surrounding context the lambda expression
may access.

cref Library function that returns a copy-
able object that holds a reference to a const
object of a type that cannot be copied.

forward iterator Iterator that can read and
write elements but is not required to sup-
port --.

front_inserter Iterator adaptor that, given
a container, generates an insert iterator that
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uses push_front to add elements to the
beginning of that container.

generic algorithms Type-independent al-
gorithms.

input iterator Iterator that can read, but
not write, elements of a sequence.

insert iterator Iterator adaptor that gener-
ates an iterator that uses a container opera-
tion to add elements to a given container.

inserter Iterator adaptor that takes an iter-
ator and a reference to a container and gen-
erates an insert iterator that uses insert to
add elements just ahead of the element re-
ferred to by the given iterator.

istream_iterator Stream iterator that reads
an input stream.

iterator categories Conceptual organiza-
tion of iterators based on the operations
that an iterator supports. Iterator categories
form a hierarchy, in which the more power-
ful categories offer the same operations as
the lesser categories. The algorithms use it-
erator categories to specify what operations
the iterator arguments must support. As
long as the iterator provides at least that
level of operation, it can be used. For ex-
ample, some algorithms require only input
iterators. Such algorithms can be called
on any iterator other than one that meets
only the output iterator requirements. Al-
gorithms that require random-access itera-
tors can be used only on iterators that sup-
port random-access operations.

lambda expression Callable unit of code.
A lambda is somewhat like an unnamed, in-
line function. A lambda starts with a cap-
ture list, which allows the lambda to access
variables in the enclosing function. Like a

function, it has a (possibly empty) parame-
ter list, a return type, and a function body.
A lambda can omit the return type. If the
function body is a single return statement,
the return type is inferred from the type of
the object that is returned. Otherwise, an
omitted return type defaults to void.

move iterator Iterator adaptor that gener-
ates an iterator that moves elements instead
of copying them. Move iterators are cov-
ered in Chapter 13.

ostream_iterator Iterator that writes to an
output stream.

output iterator Iterator that can write, but
not necessarily read, elements.

predicate Function that returns a type that
can be converted to bool. Often used
by the generic algorithms to test elements.
Predicates used by the library are either
unary (taking one argument) or binary (tak-
ing two).

random-access iterator Same operations
as bidirectional iterators plus the relational
operators to compare iterator values, and
the subscript operator and arithmetic oper-
ations on iterators, thus supporting random
access to elements.

ref Library function that generates a copy-
able object from a reference to an object of a
type that cannot be copied.

reverse iterator Iterator that moves back-
ward through a sequence. These iterators
exchange the meaning of ++ and --.

stream iterator Iterator that can be bound
to a stream.

unary predicate Predicate that has one pa-
rameter.
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Associative and sequential containers differ from one another in a
fundamental way: Elements in an associative container are stored
and retrieved by a key. In contrast, elements in a sequential con-
tainer are stored and accessed sequentially by their position in the
container.

Although the associative containers share much of the behavior of
the sequential containers, they differ from the sequential containers
in ways that reflect the use of keys.

419
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Associative containers support efficient lookup and retrieval by a key. The
two primary associative-container types are map and set. The elements in a map
are key–value pairs: The key serves as an index into the map, and the value rep-
resents the data associated with that index. A set element contains only a key; a
set supports efficient queries as to whether a given key is present. We might use
a set to hold words that we want to ignore during some kind of text processing.
A dictionary would be a good use for a map: The word would be the key, and its
definition would be the value.

The library provides eight associative containers, listed in Table 11.1. These
eight differ along three dimensions: Each container is (1) a set or a map, (2) re-
quires unique keys or allows multiple keys, and (3) stores the elements in order
or not. The containers that allow multiple keys include the word multi; those
that do not keep their keys ordered start with the word unordered. Hence an
unordered_multi_set is a set that allows multiple keys whose elements are
not stored in order, whereas a set has unique keys that are stored in order. The
unordered containers use a hash function to organize their elements. We’ll have
more to say about the hash function in § 11.4 (p. 444).

The map and multimap types are defined in the map header; the set and
multiset types are in the set header; and the unordered containers are in the
unordered_map and unordered_set headers.

Table 11.1: Associative Container Types

Elements Ordered by Key
map Associative array; holds key–value pairs
set Container in which the key is the value
multimap map in which a key can appear multiple times
multiset set in which a key can appear multiple times

Unordered Collections
unordered_map map organized by a hash function
unordered_set set organized by a hash function
unordered_multimap Hashed map; keys can appear multiple times
unordered_multiset Hashed set; keys can appear multiple times

11.1 Using an Associative Container
Although most programmers are familiar with data structures such as vectors
and lists, many have never used an associative data structure. Before we look at
the details of how the library supports these types, it will be helpful to start with
examples of how we can use these containers.

A map is a collection of key–value pairs. For example, each pair might contain
a person’s name as a key and a phone number as its value. We speak of such a data
structure as “mapping names to phone numbers.” The map type is often referred
to as an associative array. An associative array is like a “normal” array except
that its subscripts don’t have to be integers. Values in a map are found by a key
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rather than by their position. Given a map of names to phone numbers, we’d use a
person’s name as a subscript to fetch that person’s phone number.

In contrast, a set is simply a collection of keys. A set is most useful when
we simply want to know whether a value is present. For example, a business
might define a set named bad_checks to hold the names of individuals who
have written bad checks. Before accepting a check, that business would query
bad_checks to see whether the customer’s name was present.

Using a map

A classic example that relies on associative arrays is a word-counting program:

// count the number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
string word;
while (cin >> word)

++word_count[word]; // fetch and increment the counter for word
for (const auto &w : word_count) // for each element in the map

// print the results
cout << w.first << " occurs " << w.second

<< ((w.second > 1) ? " times" : " time") << endl;

This program reads its input and reports how often each word appears.
Like the sequential containers, the associative containers are templates (§ 3.3,

p. 96). To define a map, we must specify both the key and value types. In this
program, the map stores elements in which the keys are strings and the values
are size_ts (§ 3.5.2, p. 116). When we subscript word_count, we use a string
as the subscript, and we get back the size_t counter associated with that string.

The while loop reads the standard input one word at a time. It uses each word
to subscript word_count. If word is not already in the map, the subscript operator
creates a new element whose key is word and whose value is 0. Regardless of
whether the element had to be created, we increment the value.

Once we’ve read all the input, the range for (§ 3.2.3, p. 91) iterates through
the map, printing each word and the corresponding counter. When we fetch an
element from a map, we get an object of type pair, which we’ll describe in § 11.2.3
(p. 426). Briefly, a pair is a template type that holds two (public) data elements
named first and second. The pairs used by map have a first member that
is the key and a second member that is the corresponding value. Thus, the effect
of the output statement is to print each word and its associated counter.

If we ran this program on the text of the first paragraph in this section, our
output would be

Although occurs 1 time
Before occurs 1 time
an occurs 1 time
and occurs 1 time
...
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Using a set

A logical extension to our program is to ignore common words like “the,” “and,”
“or,” and so on. We’ll use a set to hold the words we want to ignore and count
only those words that are not in this set:

// count the number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
set<string> exclude = {"The", "But", "And", "Or", "An", "A",

"the", "but", "and", "or", "an", "a"};
string word;
while (cin >> word)

// count only words that are not in exclude
if (exclude.find(word) == exclude.end())

++word_count[word]; // fetch and increment the counter for word

Like the other containers, set is a template. To define a set, we specify the type
of its elements, which in this case are strings. As with the sequential containers,
we can list initialize (§ 9.2.4, p. 336) the elements of an associative container. Our
exclude set holds the 12 words we want to ignore.

The important difference between this program and the previous program is
that before counting each word, we check whether the word is in the exclusion set.
We do this check in the if:

// count only words that are not in exclude
if (exclude.find(word) == exclude.end())

The call to find returns an iterator. If the given key is in the set, the iterator refers
to that key. If the element is not found, find returns the off-the-end iterator. In
this version, we update the counter for word only if word is not in exclude.

If we run this version on the same input as before, our output would be

Although occurs 1 time
Before occurs 1 time
are occurs 1 time
as occurs 1 time
...

EXE R C I S E S SE C TI ON 11.1

Exercise 11.1: Describe the differences between a map and a vector.

Exercise 11.2: Give an example of when each of list, vector, deque, map, and set
might be most useful.

Exercise 11.3: Write your own version of the word-counting program.

Exercise 11.4: Extend your program to ignore case and punctuation. For example,
“example.” “example,” and “Example” should all increment the same counter.
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11.2 Overview of the Associative Containers
Associative containers (both ordered and unordered) support the general con-
tainer operations covered in § 9.2 (p. 328) and listed in Table 9.2 (p. 330). The
associative containers do not support the sequential-container position-specific op-
erations, such as push_front or back. Because the elements are stored based on
their keys, these operations would be meaningless for the associative containers.
Moreover, the associative containers do not support the constructors or insert op-
erations that take an element value and a count.

In addition to the operations they share with the sequential containers, the as-
sociative containers provide some operations (Table 11.7 (p. 438)) and type aliases
(Table 11.3 (p. 429)) that the sequential containers do not. In addition, the un-
ordered containers provide operations for tuning their hash performance, which
we’ll cover in § 11.4 (p. 444).

The associative container iterators are bidirectional (§ 10.5.1, p. 410).

11.2.1 Defining an Associative Container
As we’ve just seen, when we define a map, we must indicate both the key and
value type; when we define a set, we specify only a key type, because there is no
value type. Each of the associative containers defines a default constructor, which
creates an empty container of the specified type. We can also initialize an associa-
tive container as a copy of another container of the same type or from a range of
values, so long as those values can be converted to the type of the container. Under
the new standard, we can also list initialize the elements:

map<string, size_t> word_count; // empty

// list initialization
set<string> exclude = {"the", "but", "and", "or", "an", "a",

"The", "But", "And", "Or", "An", "A"};
// three elements; authors maps last name to first
map<string, string> authors = { {"Joyce", "James"},

{"Austen", "Jane"},
{"Dickens", "Charles"} };

As usual, the initializers must be convertible to the type in the container. For set,
the element type is the key type.

When we initialize a map, we have to supply both the key and the value. We
wrap each key–value pair inside curly braces:

{key, value}

to indicate that the items together form one element in the map. The key is the first
element in each pair, and the value is the second. Thus, authorsmaps last names
to first names, and is initialized with three elements.

Initializing a multimap or multiset

The keys in a map or a set must be unique; there can be only one element with
a given key. The multimap and multiset containers have no such restriction;
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there can be several elements with the same key. For example, the map we used to
count words must have only one element per given word. On the other hand, a
dictionary could have several definitions associated with a particular word.

The following example illustrates the differences between the containers with
unique keys and those that have multiple keys. First, we’ll create a vector of
ints named ivec that has 20 elements: two copies of each of the integers from 0
through 9 inclusive. We’ll use that vector to initialize a set and a multiset:

// define a vector with 20 elements, holding two copies of each number from 0 to 9
vector<int> ivec;
for (vector<int>::size_type i = 0; i != 10; ++i) {

ivec.push_back(i);
ivec.push_back(i); // duplicate copies of each number

}

// iset holds unique elements from ivec; miset holds all 20 elements
set<int> iset(ivec.cbegin(), ivec.cend());
multiset<int> miset(ivec.cbegin(), ivec.cend());

cout << ivec.size() << endl; // prints 20
cout << iset.size() << endl; // prints 10
cout << miset.size() << endl; // prints 20

Even though we initialized iset from the entire ivec container, iset has only
ten elements: one for each distinct element in ivec. On the other hand, miset has
20 elements, the same as the number of elements in ivec.

EXE R C I S E S SE C TI O N 11.2.1

Exercise 11.5: Explain the difference between a map and a set. When might you use
one or the other?

Exercise 11.6: Explain the difference between a set and a list. When might you use
one or the other?

Exercise 11.7: Define a map for which the key is the family’s last name and the value
is a vector of the children’s names. Write code to add new families and to add new
children to an existing family.

Exercise 11.8: Write a program that stores the excluded words in a vector instead of
in a set. What are the advantages to using a set?

11.2.2 Requirements on Key Type
The associative containers place constraints on the type that is used as a key. We’ll
cover the requirements for keys in the unordered containers in § 11.4 (p. 445). For
the ordered containers—map, multimap, set, and multiset—the key type must
define a way to compare the elements. By default, the library uses the < operator
for the key type to compare the keys. In the set types, the key is the element type;
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in the map types, the key is the first type. Thus, the key type for word_count in
§ 11.1 (p. 421) is string. Similarly, the key type for exclude is string.

Callable objects passed to a sort algorithm (§ 10.3.1, p. 386) must meet
the same requirements as do the keys in an associative container.

Key Types for Ordered Containers

Just as we can provide our own comparison operation to an algorithm (§ 10.3,
p. 385), we can also supply our own operation to use in place of the < operator
on keys. The specified operation must define a strict weak ordering over the key
type. We can think of a strict weak ordering as “less than,” although our function
might use a more complicated procedure. However we define it, the comparison
function must have the following properties:

• Two keys cannot both be “less than” each other; if k1 is “less than” k2, then
k2 must never be “less than” k1.

• If k1 is “less than” k2 and k2 is “less than” k3, then k1 must be “less than”
k3.

• If there are two keys, and neither key is “less than” the other, then we’ll
say that those keys are “equivalent.” If k1 is “equivalent” to k2 and k2 is
“equivalent” to k3, then k1 must be “equivalent” to k3.

If two keys are equivalent (i.e., if neither is “less than” the other), the container
treats them as equal. When used as a key to a map, there will be only one element
associated with those keys, and either key can be used to access the corresponding
value.

In practice, what’s important is that a type that defines a < operator that
“behaves normally” can be used as a key.

Using a Comparison Function for the Key Type

The type of the operation that a container uses to organize its elements is part of the
type of that container. To specify our own operation, we must supply the type of
that operation when we define the type of an associative container. The operation
type is specified following the element type inside the angle brackets that we use
to say which type of container we are defining.

Each type inside the angle brackets is just that, a type. We supply a particular
comparison operation (that must have the same type as we specified inside the
angle brackets) as a constructor argument when we create a container.

For example, we can’t directly define a multiset of Sales_data because
Sales_data doesn’t have a < operator. However, we can use the compareIsbn
function from the exercises in § 10.3.1 (p. 387) to define a multiset. That function
defines a strict weak ordering based on their ISBNs of two given Sales_data
objects. The compareIsbn function should look something like
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bool compareIsbn(const Sales_data &lhs, const Sales_data &rhs)
{

return lhs.isbn() < rhs.isbn();
}

To use our own operation, we must define the multiset with two types: the
key type, Sales_data, and the comparison type, which is a function pointer type
(§ 6.7, p. 247) that can point to compareIsbn. When we define objects of this type,
we supply a pointer to the operation we intend to use. In this case, we supply a
pointer to compareIsbn:

// bookstore can have several transactions with the same ISBN
// elements in bookstore will be in ISBN order
multiset<Sales_data, decltype(compareIsbn)*>

bookstore(compareIsbn);

Here, we use decltype to specify the type of our operation, remembering that
when we use decltype to form a function pointer, we must add a * to indicate
that we’re using a pointer to the given function type (§ 6.7, p. 250). We initial-
ize bookstore from compareIsbn, which means that when we add elements
to bookstore, those elements will be ordered by calling compareIsbn. That is,
the elements in bookstore will be ordered by their ISBN members. We can write
compareIsbn instead of &compareIsbn as the constructor argument because
when we use the name of a function, it is automatically converted into a pointer if
needed (§ 6.7, p. 248). We could have written &compareIsbnwith the same effect.

EXE R C I S E S SE C TI O N 11.2.2

Exercise 11.9: Define a map that associates words with a list of line numbers on
which the word might occur.

Exercise 11.10: Could we define a map from vector<int>::iterator to int?
What about from list<int>::iterator to int? In each case, if not, why not?

Exercise 11.11: Redefine bookstore without using decltype.

11.2.3 The pair Type
Before we look at the operations on associative containers, we need to know about
the library type named pair, which is defined in the utility header.

A pair holds two data members. Like the containers, pair is a template from
which we generate specific types. We must supply two type names when we create
a pair. The data members of the pair have the corresponding types. There is no
requirement that the two types be the same:

pair<string, string> anon; // holds two strings
pair<string, size_t> word_count; // holds a string and an size_t
pair<string, vector<int>> line; // holds string and vector<int>
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The default pair constructor value initializes (§ 3.3.1, p. 98) the data members.
Thus, anon is a pair of two empty strings, and line holds an empty string
and an empty vector. The size_t value in word_count gets the value 0, and
the string member is initialized to the empty string.

We can also provide initializers for each member:

pair<string, string> author{"James", "Joyce"};

creates a pair named author, initialized with the values "James" and "Joyce".

Table 11.2: Operations on pairs

pair<T1, T2> p; p is a pair with value initialized (§ 3.3.1, p. 98)
members of types T1 and T2, respectively.

pair<T1, T2> p(v1, v2); p is a pair with types T1 and T2; the first and
second members are initialized from v1 and v2,
respectively.

pair<T1, T2> p = {v1, v2}; Equivalent to p(v1, v2).

make_pair(v1, v2) Returns a pair initialized from v1 and v2. The type of the pair is
inferred from the types of v1 and v2.

p.first Returns the (public) data member of p named first.
p.second Returns the (public) data member of p named second.
p1 relop p2 Relational operators (<, >, <=, >=). Relational operators are defined

as dictionary ordering: For example, p1 < p2 is true if p1.first <
p2.first or if !(p2.first < p1.first) && p1.second <
p2.second. Uses the element’s < operator.

p1 == p2
p1 != p2

Two pairs are equal if their first and second members are re-
spectively equal. Uses the element’s == operator.

Unlike other library types, the data members of pair are public (§ 7.2, p. 268).
These members are named first and second, respectively. We access these
members using the normal member access notation (§ 1.5.2, p. 23), as, for example,
we did in the output statement of our word-counting program on page 421:

// print the results
cout << w.first << " occurs " << w.second

<< ((w.second > 1) ? " times" : " time") << endl;

Here, w is a reference to an element in a map. Elements in a map are pairs. In this
statement we print the first member of the element, which is the key, followed
by the second member, which is the counter. The library defines only a limited
number of operations on pairs, which are listed in Table 11.2.

A Function to Create pair Objects

Imagine we have a function that needs to return a pair. Under the new standard
we can list initialize the return value (§ 6.3.2, p. 226):
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pair<string, int>
process(vector<string> &v)
{

// process v
if (!v.empty())

return {v.back(), v.back().size()}; // list initialize
else

return pair<string, int>(); // explicitly constructed return value
}

If v isn’t empty, we return a pair composed of the last string in v and the size
of that string. Otherwise, we explicitly construct and return an empty pair.

Under earlier versions of C++, we couldn’t use braced initializers to return a
type like pair. Instead, we might have written both returns to explicitly construct
the return value:

if (!v.empty())
return pair<string, int>(v.back(), v.back().size());

Alternatively, we could have used make_pair to generate a new pair of the ap-
propriate type from its two arguments:

if (!v.empty())
return make_pair(v.back(), v.back().size());

EXE R C I S E S SE C TI O N 11.2.3

Exercise 11.12: Write a program to read a sequence of strings and ints, storing each
into a pair. Store the pairs in a vector.

Exercise 11.13: There are at least three ways to create the pairs in the program for
the previous exercise. Write three versions of that program, creating the pairs in each
way. Explain which form you think is easiest to write and understand, and why.

Exercise 11.14: Extend the map of children to their family name that you wrote for the
exercises in § 11.2.1 (p. 424) by having the vector store a pair that holds a child’s
name and birthday.

11.3 Operations on Associative Containers
In addition to the types listed in Table 9.2 (p. 330), the associative containers define
the types listed in Table 11.3. These types represent the container’s key and value
types.

For the set types, the key_type and the value_type are the same; the values
held in a set are the keys. In a map, the elements are key–value pairs. That is,
each element is a pair object containing a key and a associated value. Because we
cannot change an element’s key, the key part of these pairs is const:
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Table 11.3: Associative Container Additional Type Aliases

key_type Type of the key for this container type
mapped_type Type associated with each key; map types only
value_type For sets, same as the key_type

For maps, pair<const key_type, mapped_type>

set<string>::value_type v1; // v1 is a string
set<string>::key_type v2; // v2 is a string
map<string, int>::value_type v3; // v3 is a pair<const string, int>
map<string, int>::key_type v4; // v4 is a string
map<string, int>::mapped_type v5; // v5 is an int

As with the sequential containers (§ 9.2.2, p. 332), we use the scope operator to
fetch a type member—for example, map<string, int>::key_type.

Only the map types (unordered_map, unordered_multimap, multimap,
and map) define mapped_type.

11.3.1 Associative Container Iterators
When we dereference an iterator, we get a reference to a value of the container’s
value_type. In the case of map, the value_type is a pair in which first
holds the const key and second holds the value:

// get an iterator to an element in word_count
auto map_it = word_count.begin();

// *map_it is a reference to a pair<const string, size_t> object
cout << map_it->first; // prints the key for this element
cout << " " << map_it->second; // prints the value of the element
map_it->first = "new key"; // error: key is const
++map_it->second; // ok: we can change the value through an iterator

It is essential to remember that the value_type of a map is a pair and
that we can change the value but not the key member of that pair.

Iterators for sets Are const

Although the set types define both the iterator and const_iterator types,
both types of iterators give us read-only access to the elements in the set. Just as
we cannot change the key part of a map element, the keys in a set are also const.
We can use a set iterator to read, but not write, an element’s value:

set<int> iset = {0,1,2,3,4,5,6,7,8,9};
set<int>::iterator set_it = iset.begin();
if (set_it != iset.end()) {

*set_it = 42; // error: keys in a set are read-only
cout << *set_it << endl; // ok: can read the key

}
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Iterating across an Associative Container

The map and set types provide all the begin and end operations from Table 9.2
(p. 330). As usual, we can use these functions to obtain iterators that we can use
to traverse the container. For example, we can rewrite the loop that printed the
results in our word-counting program on page 421 as follows:

// get an iterator positioned on the first element
auto map_it = word_count.cbegin();
// compare the current iterator to the off-the-end iterator
while (map_it != word_count.cend()) {

// dereference the iterator to print the element key--value pairs
cout << map_it->first << " occurs "

<< map_it->second << " times" << endl;
++map_it; // increment the iterator to denote the next element

}

The while condition and increment for the iterator in this loop look a lot like
the programs we wrote that printed the contents of a vector or a string. We
initialize an iterator, map_it, to refer to the first element in word_count. As long
as the iterator is not equal to the end value, we print the current element and
then increment the iterator. The output statement dereferences map_it to get the
members of pair but is otherwise the same as the one in our original program.

The output of this program is in alphabetical order. When we use an
iterator to traverse a map, multimap, set, or multiset, the iterators
yield elements in ascending key order.

Associative Containers and Algorithms

In general, we do not use the generic algorithms (Chapter 10) with the associative
containers. The fact that the keys are const means that we cannot pass associative
container iterators to algorithms that write to or reorder container elements. Such
algorithms need to write to the elements. The elements in the set types are const,
and those in maps are pairs whose first element is const.

Associative containers can be used with the algorithms that read elements.
However, many of these algorithms search the sequence. Because elements in an
associative container can be found (quickly) by their key, it is almost always a bad
idea to use a generic search algorithm. For example, as we’ll see in § 11.3.5 (p. 436),
the associative containers define a member named find, which directly fetches
the element with a given key. We could use the generic find algorithm to look for
an element, but that algorithm does a sequential search. It is much faster to use the
find member defined by the container than to call the generic version.

In practice, if we do so at all, we use an associative container with the algo-
rithms either as the source sequence or as a destination. For example, we might
use the generic copy algorithm to copy the elements from an associative container
into another sequence. Similarly, we can call inserter to bind an insert itera-
tor (§ 10.4.1, p. 401) to an associative container. Using inserter, we can use the
associative container as a destination for another algorithm.
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EXE R C I S E S SE C TI O N 11.3.1

Exercise 11.15: What are the mapped_type, key_type, and value_type of a map
from int to vector<int>?

Exercise 11.16: Using a map iterator write an expression that assigns a value to an
element.

Exercise 11.17: Assuming c is a multiset of strings and v is a vector of
strings, explain the following calls. Indicate whether each call is legal:

copy(v.begin(), v.end(), inserter(c, c.end()));
copy(v.begin(), v.end(), back_inserter(c));
copy(c.begin(), c.end(), inserter(v, v.end()));
copy(c.begin(), c.end(), back_inserter(v));

Exercise 11.18: Write the type of map_it from the loop on page 430 without using
auto or decltype.

Exercise 11.19: Define a variable that you initialize by calling begin() on the
multiset named bookstore from § 11.2.2 (p. 425). Write the variable’s type without
using auto or decltype.

11.3.2 Adding Elements
The insert members (Table 11.4 (overleaf)) add one element or a range of ele-
ments. Because map and set (and the corresponding unordered types) contain
unique keys, inserting an element that is already present has no effect:

vector<int> ivec = {2,4,6,8,2,4,6,8}; // ivec has eight elements
set<int> set2; // empty set
set2.insert(ivec.cbegin(), ivec.cend()); // set2 has four elements

set2.insert({1,3,5,7,1,3,5,7}); // set2 now has eight elements

The versions of insert that take a pair of iterators or an initializer list work sim-
ilarly to the corresponding constructors (§ 11.2.1, p. 423)—only the first element
with a given key is inserted.

Adding Elements to a map

When we insert into a map, we must remember that the element type is a pair.
Often, we don’t have a pair object that we want to insert. Instead, we create a
pair in the argument list to insert:

// four ways to add word to word_count
word_count.insert({word, 1});
word_count.insert(make_pair(word, 1));
word_count.insert(pair<string, size_t>(word, 1));
word_count.insert(map<string, size_t>::value_type(word, 1));

As we’ve seen, under the new standard the easiest way to create a pair is to use
brace initialization inside the argument list. Alternatively, we can call make_pair
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or explicitly construct the pair. The argument in the last call to insert:

map<string, size_t>::value_type(s, 1)

constructs a new object of the appropriate pair type to insert into the map.

Table 11.4: Associative Container insert Operations

c.insert(v)
c.emplace(args)

v value_type object; args are used to construct an element.
For map and set, the element is inserted (or constructed) only if an
element with the given key is not already in c. Returns a pair con-
taining an iterator referring to the element with the given key and a
bool indicating whether the element was inserted.
For multimap and multiset, inserts (or constructs) the given ele-
ment and returns an iterator to the new element.

c.insert(b, e)
c.insert(il)

b and e are iterators that denote a range of c::value_type values;
il is a braced list of such values. Returns void.
For map and set, inserts the elements with keys that are not already
in c. For multimap and multiset inserts, each element in the range.

c.insert(p, v)
c.emplace(p, args)

Like insert(v) (or emplace(args)), but uses iterator p as a hint
for where to begin the search for where the new element should be
stored. Returns an iterator to the element with the given key.

Testing the Return from insert

The value returned by insert (or emplace) depends on the container type and
the parameters. For the containers that have unique keys, the versions of insert
and emplace that add a single element return a pair that lets us know whether
the insertion happened. The first member of the pair is an iterator to the ele-
ment with the given key; the second is a bool indicating whether that element
was inserted, or was already there. If the key is already in the container, then
insert does nothing, and the bool portion of the return value is false. If the
key isn’t present, then the element is inserted and the bool is true.

As an example, we’ll rewrite our word-counting program to use insert:

// more verbose way to count number of times each word occurs in the input
map<string, size_t> word_count; // empty map from string to size_t
string word;

while (cin >> word) {
// inserts an element with key equal to word and value 1;
// if word is already in word_count, insert does nothing
auto ret = word_count.insert({word, 1});
if (!ret.second) // word was already in word_count

++ret.first->second; // increment the counter
}

For each word, we attempt to insert it with a value 1. If word is already in
the map, then nothing happens. In particular, the counter associated with word is
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unchanged. If word is not already in the map, then that string is added to the
map and its counter value is set to 1.

The if test examines the bool part of the return value. If that value is false,
then the insertion didn’t happen. In this case, word was already in word_count,
so we must increment the value associated with that element.

Unwinding the Syntax

The statement that increments the counter in this version of the word-counting
program can be hard to understand. It will be easier to understand that expression
by first parenthesizing it to reflect the precedence (§ 4.1.2, p. 136) of the operators:

++((ret.first)->second); // equivalent expression

Explaining this expression step by step:

ret holds the value returned by insert, which is a pair.

ret.first is the first member of that pair, which is a map iterator re-
ferring to the element with the given key.

ret.first-> dereferences that iterator to fetch that element. Elements in
the map are also pairs.

ret.first->second is the value part of the map element pair.

++ret.first->second increments that value.

Putting it back together, the increment statement fetches the iterator for the ele-
ment with the key word and increments the counter associated with the key we
tried to insert.

For readers using an older compiler or reading code that predates the new stan-
dard, declaring and initializing ret is also somewhat tricky:

pair<map<string, size_t>::iterator, bool> ret =
word_count.insert(make_pair(word, 1));

It should be easy to see that we’re defining a pair and that the second type of the
pair is bool. The first type of that pair is a bit harder to understand. It is the
iterator type defined by the map<string, size_t> type.

Adding Elements to multiset or multimap

Our word-counting program depends on the fact that a given key can occur only
once. That way, there is only one counter associated with any given word. Some-
times, we want to be able to add additional elements with the same key. For ex-
ample, we might want to map authors to titles of the books they have written. In
this case, there might be multiple entries for each author, so we’d use a multimap
rather than a map. Because keys in a multi container need not be unique, insert
on these types always inserts an element:
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multimap<string, string> authors;
// adds the first element with the key Barth, John
authors.insert({"Barth, John", "Sot-Weed Factor"});

// ok: adds the second element with the key Barth, John
authors.insert({"Barth, John", "Lost in the Funhouse"});

For the containers that allow multiple keys, the insert operation that takes a
single element returns an iterator to the new element. There is no need to return a
bool, because insert always adds a new element in these types.

EXE R C I S E S SE C TI O N 11.3.2

Exercise 11.20: Rewrite the word-counting program from § 11.1 (p. 421) to use
insert instead of subscripting. Which program do you think is easier to write and
read? Explain your reasoning.

Exercise 11.21: Assuming word_count is a map from string to size_t and word
is a string, explain the following loop:

while (cin >> word)
++word_count.insert({word, 0}).first->second;

Exercise 11.22: Given a map<string, vector<int>>, write the types used as an
argument and as the return value for the version of insert that inserts one element.

Exercise 11.23: Rewrite the map that stored vectors of children’s names with a key
that is the family last name for the exercises in § 11.2.1 (p. 424) to use a multimap.

11.3.3 Erasing Elements
The associative containers define three versions of erase, which are described
in Table 11.5. As with the sequential containers, we can erase one element or a
range of elements by passing erase an iterator or an iterator pair. These versions
of erase are similar to the corresponding operations on sequential containers: The
indicated element(s) are removed and the function returns void.

The associative containers supply an additional erase operation that takes a
key_type argument. This version removes all the elements, if any, with the given
key and returns a count of how many elements were removed. We can use this
version to remove a specific word from word_count before printing the results:

// erase on a key returns the number of elements removed
if (word_count.erase(removal_word))

cout << "ok: " << removal_word << " removed\n";
else cout << "oops: " << removal_word << " not found!\n";

For the containers with unique keys, the return from erase is always either zero
or one. If the return value is zero, then the element we wanted to erase was not in
the container.
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For types that allow multiple keys, the number of elements removed could be
greater than one:

auto cnt = authors.erase("Barth, John");

If authors is the multimap we created in § 11.3.2 (p. 434), then cnt will be 2.

Table 11.5: Removing Elements from an Associative Container

c.erase(k) Removes every element with key k from c. Returns size_type
indicating the number of elements removed.

c.erase(p) Removes the element denoted by the iterator p from c. p must refer to an
actual element in c; it must not be equal to c.end(). Returns an iterator
to the element after p or c.end() if p denotes the last element in c.

c.erase(b, e) Removes the elements in the range denoted by the iterator pair b, e.
Returns e.

11.3.4 Subscripting a map
The map and unordered_map containers provide the subscript operator and a
corresponding at function (§ 9.3.2, p. 348), which are described in Table 11.6 (over-
leaf). The set types do not support subscripting because there is no “value” as-
sociated with a key in a set. The elements are themselves keys, so the operation
of “fetching the value associated with a key” is meaningless. We cannot subscript
a multimap or an unordered_multimap because there may be more than one
value associated with a given key.

Like the other subscript operators we’ve used, the map subscript takes an index
(that is, a key) and fetches the value associated with that key. However, unlike
other subscript operators, if the key is not already present, a new element is created
and inserted into the map for that key. The associated value is value initialized
(§ 3.3.1, p. 98).

For example, when we write

map <string, size_t> word_count; // empty map

// insert a value-initialized element with key Anna; then assign 1 to its value
word_count["Anna"] = 1;

the following steps take place:

• word_count is searched for the element whose key is Anna. The element is
not found.

• A new key–value pair is inserted into word_count. The key is a const
string holding Anna. The value is value initialized, meaning in this case
that the value is 0.

• The newly inserted element is fetched and is given the value 1.
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Because the subscript operator might insert an element, we may use subscript only
on a map that is not const.

Subscripting a map behaves quite differently from subscripting an array
or vector: Using a key that is not already present adds an element with
that key to the map.

Table 11.6: Subscript Operation for map and unordered_map

c[k] Returns the element with key k; if k is not in c, adds a new, value-initialized
element with key k.

c.at(k) Checked access to the element with key k; throws an out_of_range

exception (§ 5.6, p. 193) if k is not in c.

Using the Value Returned from a Subscript Operation

Another way in which the map subscript differs from other subscript operators
we’ve used is its return type. Ordinarily, the type returned by dereferencing an
iterator and the type returned by the subscript operator are the same. Not so for
maps: when we subscript a map, we get a mapped_type object; when we derefer-
ence a map iterator, we get a value_type object (§ 11.3, p. 428).

In common with other subscripts, the map subscript operator returns an lvalue
(§ 4.1.1, p. 135). Because the return is an lvalue, we can read or write the element:

cout << word_count["Anna"]; // fetch the element indexed by Anna; prints 1
++word_count["Anna"]; // fetch the element and add 1 to it
cout << word_count["Anna"]; // fetch the element and print it; prints 2

Unlike vector or string, the type returned by the map subscript op-
erator differs from the type obtained by dereferencing a map iterator.

The fact that the subscript operator adds an element if it is not already in the
map allows us to write surprisingly succinct programs such as the loop inside our
word-counting program (§ 11.1, p. 421). On the other hand, sometimes we only
want to know whether an element is present and do not want to add the element if
it is not. In such cases, we must not use the subscript operator.

11.3.5 Accessing Elements
The associative containers provide various ways to find a given element, which are
described in Table 11.7 (p. 438). Which operation to use depends on what problem
we are trying to solve. If all we care about is whether a particular element is in
the container, it is probably best to use find. For the containers that can hold only
unique keys, it probably doesn’t matter whether we use find or count. However,
for the containers with multiple keys, count has to do more work: If the element
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EXE R C I S E S SE C TI O N 11.3.4

Exercise 11.24: What does the following program do?

map<int, int> m;
m[0] = 1;

Exercise 11.25: Contrast the following program with the one in the previous exercise

vector<int> v;
v[0] = 1;

Exercise 11.26: What type can be used to subscript a map? What type does the sub-
script operator return? Give a concrete example—that is, define a map and then write
the types that can be used to subscript the map and the type that would be returned
from the subscript operator.

is present, it still has to count how many elements have the same key. If we don’t
need the count, it’s best to use find:

set<int> iset = {0,1,2,3,4,5,6,7,8,9};
iset.find(1); // returns an iterator that refers to the element with key == 1
iset.find(11); // returns the iterator == iset.end()
iset.count(1); // returns 1
iset.count(11); // returns 0

Using find Instead of Subscript for maps

For the map and unordered_map types, the subscript operator provides the sim-
plest method of retrieving a value. However, as we’ve just seen, using a subscript
has an important side effect: If that key is not already in the map, then subscript
inserts an element with that key. Whether this behavior is correct depends on our
expectations. Our word-counting programs relied on the fact that using a nonex-
istent key as a subscript inserts an element with that key and value 0.

Sometimes, we want to know if an element with a given key is present without
changing the map. We cannot use the subscript operator to determine whether an
element is present, because the subscript operator inserts a new element if the key
is not already there. In such cases, we should use find:

if (word_count.find("foobar") == word_count.end())
cout << "foobar is not in the map" << endl;

Finding Elements in a multimap or multiset

Finding an element in an associative container that requires unique keys is a simple
matter—the element is or is not in the container. For the containers that allow
multiple keys, the process is more complicated: There may be many elements with
the given key. When a multimap or multiset has multiple elements of a given
key, those elements will be adjacent within the container.
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Table 11.7: Operations to Find Elements in an Associative Container

lower_bound and upper_bound not valid for the unordered containers.
Subscript and at operations only for map and unordered_map that are not const.

c.find(k) Returns an iterator to the (first) element with key k, or the off-the-end
iterator if k is not in the container.

c.count(k) Returns the number of elements with key k. For the containers with
unique keys, the result is always zero or one.

c.lower_bound(k) Returns an iterator to the first element with key not less than k.
c.upper_bound(k) Returns an iterator to the first element with key greater than k.

c.equal_range(k) Returns a pair of iterators denoting the elements with key k. If k is
not present, both members are c.end().

For example, given our map from author to titles, we might want to print all
the books by a particular author. We can solve this problem in three different ways.
The most obvious way uses find and count:

string search_item("Alain de Botton"); // author we’ll look for
auto entries = authors.count(search_item); // number of elements
auto iter = authors.find(search_item); // first entry for this author

// loop through the number of entries there are for this author
while(entries) {

cout << iter->second << endl; // print each title
++iter; // advance to the next title
--entries; // keep track of how many we’ve printed

}

We start by determining how many entries there are for the author by calling
count and getting an iterator to the first element with this key by calling find.
The number of iterations of the for loop depends on the number returned from
count. In particular, if the count was zero, then the loop is never executed.

We are guaranteed that iterating across a multimap or multiset re-
turns all the elements with a given key in sequence.

A Different, Iterator-Oriented Solution

Alternatively, we can solve our problem using lower_bound and upper_bound.
Each of these operations take a key and returns an iterator. If the key is in the
container, the iterator returned from lower_bound will refer to the first instance
of that key and the iterator returned by upper_bound will refer just after the last
instance of the key. If the element is not in the multimap, then lower_bound
and upper_bound will return equal iterators; both will refer to the point at which
the key can be inserted without disrupting the order. Thus, calling lower_bound
and upper_bound on the same key yields an iterator range (§ 9.2.1, p. 331) that
denotes all the elements with that key.
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Of course, the iterator returned from these operations might be the off-the-end
iterator for the container itself. If the element we’re looking for has the largest key
in the container, then upper_bound on that key returns the off-the-end iterator. If
the key is not present and is larger than any key in the container, then the return
from lower_bound will also be the off-the-end iterator.

The iterator returned from lower_bound may or may not refer to an
element with the given key. If the key is not in the container, then
lower_bound refers to the first point at which this key can be inserted
while preserving the element order within the container.

Using these operations, we can rewrite our program as follows:

// definitions of authors and search_item as above
// beg and end denote the range of elements for this author
for (auto beg = authors.lower_bound(search_item),

end = authors.upper_bound(search_item);
beg != end; ++beg)

cout << beg->second << endl; // print each title

This program does the same work as the previous one that used count and find
but accomplishes its task more directly. The call to lower_bound positions beg
so that it refers to the first element matching search_item if there is one. If there
is no such element, then beg refers to the first element with a key larger than
search_item, which could be the off-the-end iterator. The call to upper_bound
sets end to refer to the element just beyond the last element with the given key.
These operations say nothing about whether the key is present. The important
point is that the return values act like an iterator range (§ 9.2.1, p. 331).

If there is no element for this key, then lower_bound and upper_bound will
be equal. Both will refer to the point at which this key can be inserted while main-
taining the container order.

Assuming there are elements with this key, beg will refer to the first such ele-
ment. We can increment beg to traverse the elements with this key. The iterator in
end will signal when we’ve seen all the elements. When beg equals end, we have
seen every element with this key.

Because these iterators form a range, we can use a for loop to traverse that
range. The loop is executed zero or more times and prints the entries, if any, for
the given author. If there are no elements, then beg and end are equal and the loop
is never executed. Otherwise, we know that the increment to beg will eventually
reach end and that in the process we will print each record associated with this
author.

If lower_bound and upper_bound return the same iterator, then the
given key is not in the container.

The equal_range Function

The remaining way to solve this problem is the most direct of the three approaches:
Instead of calling upper_bound and lower_bound, we can call equal_range.
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This function takes a key and returns a pair of iterators. If the key is present, then
the first iterator refers to the first instance of the key and the second iterator refers
one past the last instance of the key. If no matching element is found, then both the
first and second iterators refer to the position where this key can be inserted.

We can use equal_range to modify our program once again:

// definitions of authors and search_item as above
// pos holds iterators that denote the range of elements for this key
for (auto pos = authors.equal_range(search_item);

pos.first != pos.second; ++pos.first)
cout << pos.first->second << endl; // print each title

This program is essentially identical to the previous one that used upper_bound
and lower_bound. Instead of using local variables, beg and end, to hold the it-
erator range, we use the pair returned by equal_range. The first member
of that pair holds the same iterator as lower_bound would have returned and
second holds the iterator upper_bound would have returned. Thus, in this pro-
gram pos.first is equivalent to beg, and pos.second is equivalent to end.

EXE R C I S E S SE C TI O N 11.3.5

Exercise 11.27: What kinds of problems would you use count to solve? When might
you use find instead?

Exercise 11.28: Define and initialize a variable to hold the result of calling find on a
map from string to vector of int.

Exercise 11.29: What do upper_bound, lower_bound, and equal_range return
when you pass them a key that is not in the container?

Exercise 11.30: Explain the meaning of the operand pos.first->second used in
the output expression of the final program in this section.

Exercise 11.31: Write a program that defines a multimap of authors and their works.
Use find to find an element in the multimap and erase that element. Be sure your
program works correctly if the element you look for is not in the map.

Exercise 11.32: Using the multimap from the previous exercise, write a program to
print the list of authors and their works alphabetically.

11.3.6 A Word Transformation Map
We’ll close this section with a program to illustrate creating, searching, and iterat-
ing across a map. We’ll write a program that, given one string, transforms it into
another. The input to our program is two files. The first file contains rules that we
will use to transform the text in the second file. Each rule consists of a word that
might be in the input file and a phrase to use in its place. The idea is that when-
ever the first word appears in the input, we will replace it with the corresponding
phrase. The second file contains the text to transform.
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If the contents of the word-transformation file are

brb be right back
k okay?
y why
r are
u you
pic picture
thk thanks!
l8r later

and the text we are given to transform is

where r u
y dont u send me a pic
k thk l8r

then the program should generate the following output:

where are you
why dont you send me a picture
okay? thanks! later

The Word Transformation Program

Our solution will use three functions. The word_transform function will man-
age the overall processing. It will take two ifstream arguments: The first will
be bound to the word-transformation file and the second to the file of text we’re to
transform. The buildMap function will read the file of transformation rules and
create a map from each word to its transformation. The transform function will
take a string and return the transformation if there is one.

We’ll start by defining the word_transform function. The important parts
are the calls to buildMap and transform:

void word_transform(ifstream &map_file, ifstream &input)
{

auto trans_map = buildMap(map_file); // store the transformations
string text; // hold each line from the input
while (getline(input, text)) { // read a line of input

istringstream stream(text); // read each word
string word;
bool firstword = true; // controls whether a space is printed
while (stream >> word) {

if (firstword)
firstword = false;

else
cout << " "; // print a space between words

// transform returns its first argument or its transformation
cout << transform(word, trans_map); // print the output

}
cout << endl; // done with this line of input

}
}
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The function starts by calling buildMap to generate the word-transformation map.
We store the result in trans_map. The rest of the function processes the input
file. The while loop uses getline to read the input file a line at a time. We read
by line so that our output will have line breaks at the same position as in the input
file. To get the words from each line, we use a nested while loop that uses an
istringstream (§ 8.3, p. 321) to process each word in the current line.

The inner while prints the output using the bool firstword to determine
whether to print a space. The call to transform obtains the word to print. The
value returned from transform is either the original string in word or its cor-
responding transformation from trans_map.

Building the Transformation Map

The buildMap function reads its given file and builds the transformation map.

map<string, string> buildMap(ifstream &map_file)
{

map<string, string> trans_map; // holds the transformations
string key; // a word to transform
string value; // phrase to use instead
// read the first word into key and the rest of the line into value
while (map_file >> key && getline(map_file, value))

if (value.size() > 1) // check that there is a transformation
trans_map[key] = value.substr(1); // skip leading space

else
throw runtime_error("no rule for " + key);

return trans_map;
}

Each line in map_file corresponds to a rule. Each rule is a word followed by a
phrase, which might contain multiple words. We use >> to read the word that we
will transform into key and call getline to read the rest of the line into value.
Because getline does not skip leading spaces (§ 3.2.2, p. 87), we need to skip
the space between the word and its corresponding rule. Before we store the trans-
formation, we check that we got more than one character. If so, we call substr
(§ 9.5.1, p. 361) to skip the space that separated the transformation phrase from its
corresponding word and store that substring in trans_map,

Note that we use the subscript operator to add the key–value pairs. Implic-
itly, we are ignoring what should happen if a word appears more than once in
our transformation file. If a word does appear multiple times, our loops will
put the last corresponding phrase into trans_map. When the while concludes,
trans_map contains the data that we need to transform the input.

Generating a Transformation

The transform function does the actual transformation. Its parameters are ref-
erences to the string to transform and to the transformation map. If the given
string is in the map, transform returns the corresponding transformation. If
the given string is not in the map, transform returns its argument:
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const string &
transform(const string &s, const map<string, string> &m)
{

// the actual map work; this part is the heart of the program
auto map_it = m.find(s);
// if this word is in the transformation map
if (map_it != m.cend())

return map_it->second; // use the replacement word
else

return s; // otherwise return the original unchanged
}

We start by calling find to determine whether the given string is in the map. If
it is, then find returns an iterator to the corresponding element. Otherwise, find
returns the off-the-end iterator. If the element is found, we dereference the iterator,
obtaining a pair that holds the key and value for that element (§ 11.3, p. 428). We
return the second member, which is the transformation to use in place of s.

EXE R C I S E S SE C TI O N 11.3.6

Exercise 11.33: Implement your own version of the word-transformation program.

Exercise 11.34: What would happen if we used the subscript operator instead of find
in the transform function?

Exercise 11.35: In buildMap, what effect, if any, would there be from rewriting

trans_map[key] = value.substr(1);

as trans_map.insert({key, value.substr(1)})?

Exercise 11.36: Our program does no checking on the validity of either input file. In
particular, it assumes that the rules in the transformation file are all sensible. What
would happen if a line in that file has a key, one space, and then the end of the line?
Predict the behavior and then check it against your version of the program.

11.4 The Unordered Containers
The new standard defines four unordered associative containers. Rather than
using a comparison operation to organize their elements, these containers use a
hash function and the key type’s == operator. An unordered container is most
useful when we have a key type for which there is no obvious ordering relationship
among the elements. These containers are also useful for applications in which the
cost of maintaining the elements in order is prohibitive.

Although hashing gives better average case performance in principle, achiev-
ing good results in practice often requires a fair bit of performance testing and
tweaking. As a result, it is usually easier (and often yields better performance) to
use an ordered container.
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Use an unordered container if the key type is inherently unordered or
if performance testing reveals problems that hashing might solve.

Using an Unordered Container

Aside from operations that manage the hashing, the unordered containers provide
the same operations (find, insert, and so on) as the ordered containers. That
means that the operations we’ve used on map and set apply to unordered_map
and unordered_set as well. Similarly for the unordered versions of the contain-
ers that allow multiple keys.

As a result, we can usually use an unordered container in place of the corre-
sponding ordered container, and vice versa. However, because the elements are
not stored in order, the output of a program that uses an unordered container will
(ordinarily) differ from the same program using an ordered container.

For example, we can rewrite our original word-counting program from § 11.1
(p. 421) to use an unordered_map:

// count occurrences, but the words won’t be in alphabetical order
unordered_map<string, size_t> word_count;
string word;
while (cin >> word)

++word_count[word]; // fetch and increment the counter for word

for (const auto &w : word_count) // for each element in the map
// print the results
cout << w.first << " occurs " << w.second

<< ((w.second > 1) ? " times" : " time") << endl;

The type of word_count is the only difference between this program and our
original. If we run this version on the same input as our original program,

containers. occurs 1 time
use occurs 1 time
can occurs 1 time
examples occurs 1 time
...

we’ll obtain the same count for each word in the input. However, the output is
unlikely to be in alphabetical order.

Managing the Buckets

The unordered containers are organized as a collection of buckets, each of which
holds zero or more elements. These containers use a hash function to map elements
to buckets. To access an element, the container first computes the element’s hash
code, which tells which bucket to search. The container puts all of its elements with
a given hash value into the same bucket. If the container allows multiple elements
with a given key, all the elements with the same key will be in the same bucket. As
a result, the performance of an unordered container depends on the quality of its
hash function and on the number and size of its buckets.
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The hash function must always yield the same result when called with the same
argument. Ideally, the hash function also maps each particular value to a unique
bucket. However, a hash function is allowed to map elements with differing keys
to the same bucket. When a bucket holds several elements, those elements are
searched sequentially to find the one we want. Typically, computing an element’s
hash code and finding its bucket is a fast operation. However, if the bucket has
many elements, many comparisons may be needed to find a particular element.

The unordered containers provide a set of functions, listed in Table 11.8, that
let us manage the buckets. These members let us inquire about the state of the
container and force the container to reorganize itself as needed.

Table 11.8: Unordered Container Management Operations

Bucket Interface
c.bucket_count() Number of buckets in use.
c.max_bucket_count() Largest number of buckets this container can hold.
c.bucket_size(n) Number of elements in the nth bucket.
c.bucket(k) Bucket in which elements with key k would be found.

Bucket Iteration
local_iterator Iterator type that can access elements in a bucket.
const_local_iterator const version of the bucket iterator.
c.begin(n), c.end(n) Iterator to the first, one past the last element in bucket n.
c.cbegin(n), c.cend(n) Returns const_local_iterator.

Hash Policy
c.load_factor() Average number of elements per bucket. Returns float.
c.max_load_factor() Average bucket size that c tries to maintain. c adds buckets

to keep load_factor <= max_load_factor. Returns float.
c.rehash(n) Reorganize storage so that bucket_count >= n and

and bucket_count > size/max_load_factor.
c.reserve(n) Reorganize so that c can hold n elements without a rehash.

Requirements on Key Type for Unordered Containers

By default, the unordered containers use the == operator on the key type to com-
pare elements. They also use an object of type hash<key_type> to generate the
hash code for each element. The library supplies versions of the hash template
for the built-in types, including pointers. It also defines hash for some of the li-
brary types, including strings and the smart pointer types that we will describe
in Chapter 12. Thus, we can directly define unordered containers whose key is one
of the built-in types (including pointer types), or a string, or a smart pointer.

However, we cannot directly define an unordered container that uses a our own
class types for its key type. Unlike the containers, we cannot use the hash template
directly. Instead, we must supply our own version of the hash template. We’ll see
how to do so in § 16.5 (p. 709).

Instead of using the default hash, we can use a strategy similar to the one
we used to override the default comparison operation on keys for the ordered
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containers (§ 11.2.2, p. 425). To use Sales_data as the key, we’ll need to supply
functions to replace both the == operator and to calculate a hash code. We’ll start
by defining these functions:

size_t hasher(const Sales_data &sd)
{

return hash<string>()(sd.isbn());
}
bool eqOp(const Sales_data &lhs, const Sales_data &rhs)
{

return lhs.isbn() == rhs.isbn();
}

Our hasher function uses an object of the library hash of string type to generate
a hash code from the ISBN member. Similarly, the eqOp funciton compares two
Sales_data objects by comparing their ISBNs.

We can use these functions to define an unordered_multiset as follows

using SD_multiset = unordered_multiset<Sales_data,
decltype(hasher)*, decltype(eqOp)*>;

// arguments are the bucket size and pointers to the hash function and equality operator
SD_multiset bookstore(42, hasher, eqOp);

To simplify the declaration of bookstorewe first define a type alias (§ 2.5.1, p. 67)
for an unordered_multisetwhose hash and equality operations have the same
types as our hasher and eqOp functions. Using that type, we define bookstore
passing pointers to the functions we want bookstore to use.

If our class has its own == operator we can override just the hash function:

// use FooHash to generate the hash code; Foo must have an == operator
unordered_set<Foo, decltype(FooHash)*> fooSet(10, FooHash);

EXE R C I S E S SE C TI ON 11.4

Exercise 11.37: What are the advantages of an unordered container as compared to the
ordered version of that container? What are the advantages of the ordered version?

Exercise 11.38: Rewrite the word-counting (§ 11.1, p. 421) and word-transformation
(§ 11.3.6, p. 440) programs to use an unordered_map.
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CH A P T E R SU M M A R Y
The associative containers support efficient lookup and retrieval of elements by
key. The use of a key distinguishes the associative containers from the sequential
containers, in which elements are accessed positionally.

There are eight associative containers, each of which

• Is a map or a set. a map stores key–value pairs; a set stores only keys.

• Requires unique keys or not.

• Keeps keys in order or not.

Ordered containers use a comparison function to order the elements by key. By
default, the comparison is the < operator on the keys. Unordered containers use
the key type’s == operator and an object of type hash<key_type> to organize
their elements.

Containers with nonunique keys include the word multi in their names; those
that use hashing start with the word unordered. A set is an ordered collection in
which each key may appear only once; an unordered_multiset is an unordered
collection of keys in which the keys can appear multiple times.

The associative containers share many operations with the sequential contain-
ers. However, the associative containers define some new operations and redefine
the meaning or return types of some operations common to both the sequential
and associative containers. The differences in the operations reflect the use of keys
in associative containers.

Iterators for the ordered containers access elements in order by key. Elements
with the same key are stored adjacent to one another in both the ordered and un-
ordered containers.

DEFINED TERMS

associative array Array whose elements
are indexed by key rather than positionally.
We say that the array maps a key to its asso-
ciated value.

associative container Type that holds a
collection of objects that supports efficient
lookup by key.

hash Special library template that the un-
ordered containers use to manage the posi-
tion of their elements.

hash function Function that maps values
of a given type to integral (size_t) values.
Equal values must map to equal integers;
unequal values should map to unequal in-
tegers where possible.

key_type Type defined by the associative
containers that is the type for the keys used
to store and retrieve values. For a map,
key_type is the type used to index the
map. For set, key_type and value_type
are the same.

map Associative container type that de-
fines an associative array. Like vector,
map is a class template. A map, however,
is defined with two types: the type of the
key and the type of the associated value.
In a map, a given key may appear only
once. Each key is associated with a par-
ticular value. Dereferencing a map iterator
yields a pair that holds a const key and
its associated value.
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mapped_type Type defined by map types
that is the type of the values associated with
the keys in the map.

multimap Associative container similar to
map except that in a multimap, a given key
may appear more than once. multimap
does not support subscripting.

multiset Associative container type that
holds keys. In a multiset, a given key
may appear more than once.

pair Type that holds two public data
members named first and second. The
pair type is a template type that takes two
type parameters that are used as the types
of these members.

set Associative container that holds keys.
In a set, a given key may appear only once.

strict weak ordering Relationship among
the keys used in an associative container. In
a strict weak ordering, it is possible to com-
pare any two values and determine which
of the two is less than the other. If neither
value is less than the other, then the two val-
ues are considered equal.

unordered container Associative contain-
ers that use hashing rather than a compari-
son operation on keys to store and access el-
ements. The performance of these contain-
ers depends on the quality of the hash func-
tion.

unordered_map Container with elements
that are key–value pairs, permits only one
element per key.

unordered_multimap Container with ele-
ments that are key–value pairs, allows mul-
tiple elements per key.

unordered_multiset Container that stores
keys, allows multiple elements per key.

unordered_set Container that stores keys,
permits only one element per key.

value_type Type of the element stored in
a container. For set and multiset,
value_type and key_type are the same.
For map and multimap, this type is a pair
whose first member has type const
key_type and whose second member has
type mapped_type.

* operator Dereference operator. When
applied to a map, set, multimap, or
multiset iterator * yields a value_type.
Note, that for map and multimap, the
value_type is a pair.

[ ] operator Subscript operator. Defined
only for nonconst obejcts of type map and
unordered_map. For the map types, []
takes an index that must be a key_type (or
type that can be converted to key_type).
Yields a mapped_type value.
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The programs we’ve written so far have used objects that have well-
defined lifetimes. Global objects are allocated at program start-up
and destroyed when the program ends. Local, automatic objects are
created and destroyed when the block in which they are defined is
entered and exited. Local static objects are allocated before their
first use and are destroyed when the program ends.

In addition to supporting automatic and static objects, C++ lets
us allocate objects dynamically. Dynamically allocated objects have
a lifetime that is independent of where they are created; they exist
until they are explicitly freed.

Properly freeing dynamic objects turns out to be a surprisingly
rich source of bugs. To make using dynamic objects safer, the library
defines two smart pointer types that manage dynamically allocated
objects. Smart pointers ensure that the objects to which they point
are automatically freed when it is appropriate to do so.
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Our programs have used only static or stack memory. Static memory is used
for local static objects (§ 6.1.1, p. 205), for class static data members (§ 7.6,
p. 300), and for variables defined outside any function. Stack memory is used for
nonstatic objects defined inside functions. Objects allocated in static or stack
memory are automatically created and destroyed by the compiler. Stack objects
exist only while the block in which they are defined is executing; static objects
are allocated before they are used, and they are destroyed when the program ends.

In addition to static or stack memory, every program also has a pool of memory
that it can use. This memory is referred to as the free store or heap. Programs
use the heap for objects that they dynamically allocate—that is, for objects that
the program allocates at run time. The program controls the lifetime of dynamic
objects; our code must explicitly destroy such objects when they are no longer
needed.

Although necessary at times, dynamic memory is notoriously tricky to
manage correctly.

12.1 Dynamic Memory and Smart Pointers
In C++, dynamic memory is managed through a pair of operators: new, which
allocates, and optionally initializes, an object in dynamic memory and returns a
pointer to that object; and delete, which takes a pointer to a dynamic object,
destroys that object, and frees the associated memory.

Dynamic memory is problematic because it is surprisingly hard to ensure that
we free memory at the right time. Either we forget to free the memory—in which
case we have a memory leak—or we free the memory when there are still pointers
referring to that memory—in which case we have a pointer that refers to memory
that is no longer valid.

To make using dynamic memory easier (and safer), the new library provides
two smart pointer types that manage dynamic objects. A smart pointer acts like
a regular pointer with the important exception that it automatically deletes the
object to which it points. The new library defines two kinds of smart pointers that
differ in how they manage their underlying pointers: shared_ptr, which allows
multiple pointers to refer to the same object, and unique_ptr, which “owns”
the object to which it points. The library also defines a companion class named
weak_ptr that is a weak reference to an object managed by a shared_ptr. All
three are defined in the memory header.

12.1.1 The shared_ptr Class
Like vectors, smart pointers are templates (§ 3.3, p. 96). Therefore, when we
create a smart pointer, we must supply additional information—in this case, the
type to which the pointer can point. As with vector, we supply that type inside
angle brackets that follow the name of the kind of smart pointer we are defining:

shared_ptr<string> p1; // shared_ptr that can point at a string
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shared_ptr<list<int>> p2; // shared_ptr that can point at a list of ints

A default initialized smart pointer holds a null pointer (§ 2.3.2, p. 53). In § 12.1.3
(p. 464), we’ll cover additional ways to initialize a smart pointer.

We use a smart pointer in ways that are similar to using a pointer. Dereferenc-
ing a smart pointer returns the object to which the pointer points. When we use a
smart pointer in a condition, the effect is to test whether the pointer is null:

// if p1 is not null, check whether it’s the empty string
if (p1 && p1->empty())

*p1 = "hi"; // if so, dereference p1 to assign a new value to that string

Table 12.1 (overleaf) lists operations common to shared_ptr and unique_ptr.
Those that are particular to shared_ptr are listed in Table 12.2 (p. 453).

The make_shared Function

The safest way to allocate and use dynamic memory is to call a library function
named make_shared. This function allocates and initializes an object in dynamic
memory and returns a shared_ptr that points to that object. Like the smart
pointers, make_shared is defined in the memory header.

When we call make_shared, we must specify the type of object we want to
create. We do so in the same way as we use a template class, by following the
function name with a type enclosed in angle brackets:

// shared_ptr that points to an int with value 42
shared_ptr<int> p3 = make_shared<int>(42);
// p4 points to a string with value 9999999999
shared_ptr<string> p4 = make_shared<string>(10, ’9’);
// p5 points to an int that is value initialized (§ 3.3.1 (p. 98)) to 0
shared_ptr<int> p5 = make_shared<int>();

Like the sequential-container emplace members (§ 9.3.1, p. 345), make_shared
uses its arguments to construct an object of the given type. For example, a call to
make_shared<string> must pass argument(s) that match one of the string
constructors. Calls to make_shared<int> can pass any value we can use to ini-
tialize an int. And so on. If we do not pass any arguments, then the object is value
initialized (§ 3.3.1, p. 98).

Of course, ordinarily we use auto (§ 2.5.2, p. 68) to make it easier to define an
object to hold the result of make_shared:

// p6 points to a dynamically allocated, empty vector<string>
auto p6 = make_shared<vector<string>>();

Copying and Assigning shared_ptrs

When we copy or assign a shared_ptr, each shared_ptr keeps track of how
many other shared_ptrs point to the same object:

auto p = make_shared<int>(42); // object to which p points has one user
auto q(p); // p and q point to the same object

// object to which p and q point has two users
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Table 12.1: Operations Common to shared_ptr and unique_ptr

shared_ptr<T> sp
unique_ptr<T> up

Null smart pointer that can point to objects of type T.

p Use p as a condition; true if p points to an object.

*p Dereference p to get the object to which p points.
p->mem Synonym for (*p).mem.
p.get() Returns the pointer in p. Use with caution; the object to which the

returned pointer points will disappear when the smart pointer
deletes it.

swap(p, q)
p.swap(q)

Swaps the pointers in p and q.

We can think of a shared_ptr as if it has an associated counter, usually referred to
as a reference count. Whenever we copy a shared_ptr, the count is incremented.
For example, the counter associated with a shared_ptr is incremented when we
use it to initialize another shared_ptr, when we use it as the right-hand operand
of an assignment, or when we pass it to (§ 6.2.1, p. 209) or return it from a function
by value (§ 6.3.2, p. 224). The counter is decremented when we assign a new value
to the shared_ptr and when the shared_ptr itself is destroyed, such as when
a local shared_ptr goes out of scope (§ 6.1.1, p. 204).

Once a shared_ptr’s counter goes to zero, the shared_ptr automatically
frees the object that it manages:

auto r = make_shared<int>(42); // int to which r points has one user
r = q; // assign to r, making it point to a different address

// increase the use count for the object to which q points
// reduce the use count of the object to which r had pointed
// the object r had pointed to has no users; that object is automatically freed

Here we allocate an int and store a pointer to that int in r. Next, we assign a
new value to r. In this case, r is the only shared_ptr pointing to the one we
previously allocated. That int is automatically freed as part of assigning q to r.

It is up to the implementation whether to use a counter or another data
structure to keep track of how many pointers share state. The key point
is that the class keeps track of how many shared_ptrs point to the
same object and automatically frees that object when appropriate.

shared_ptrs Automatically Destroy Their Objects . . .

When the last shared_ptr pointing to an object is destroyed, the shared_ptr
class automatically destroys the object to which that shared_ptr points. It does
so through another special member function known as a destructor. Analogous to
its constructors, each class has a destructor. Just as a constructor controls initial-
ization, the destructor controls what happens when objects of that class type are
destroyed.
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Table 12.2: Operations Specific to shared_ptr

make_shared<T>(args) Returns a shared_ptr pointing to a dynamically allocated
object of type T. Uses args to initialize that object.

shared_ptr<T> p(q) p is a copy of the shared_ptr q; increments the count in q. The
pointer in q must be convertible to T* (§ 4.11.2, p. 161).

p = q p and q are shared_ptrs holding pointers that can be converted
to one another. Decrements p’s reference count and increments
q’s count; deletes p’s existing memory if p’s count goes to 0.

p.unique() Returns true if p.use_count() is one; false otherwise.

p.use_count() Returns the number of objects sharing with p; may be a slow
operation, intended primarily for debugging purposes.

Destructors generally free the resources that an object has allocated. For ex-
ample, the string constructors (and other string members) allocate memory
to hold the characters that compose the string. The string destructor frees
that memory. Similarly, several vector operations allocate memory to hold the
elements in the vector. The destructor for vector destroys those elements and
frees the memory used for the elements.

The destructor for shared_ptr decrements the reference count of the object
to which that shared_ptr points. If the count goes to zero, the shared_ptr de-
structor destroys the object to which the shared_ptrpoints and frees the memory
used by that object.

. . . and Automatically Free the Associated Memory

The fact that the shared_ptr class automatically frees dynamic objects when they
are no longer needed makes it fairly easy to use dynamic memory. For example,
we might have a function that returns a shared_ptr to a dynamically allocated
object of a type named Foo that can be initialized by an argument of type T:

// factory returns a shared_ptr pointing to a dynamically allocated object
shared_ptr<Foo> factory(T arg)
{

// process arg as appropriate
// shared_ptr will take care of deleting this memory
return make_shared<Foo>(arg);

}

Because factory returns a shared_ptr, we can be sure that the object allocated
by factory will be freed when appropriate. For example, the following function
stores the shared_ptr returned by factory in a local variable:

void use_factory(T arg)
{

shared_ptr<Foo> p = factory(arg);
// use p

} // p goes out of scope; the memory to which p points is automatically freed
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Because p is local to use_factory, it is destroyed when use_factory ends
(§ 6.1.1, p. 204). When p is destroyed, its reference count is decremented and
checked. In this case, p is the only object referring to the memory returned by
factory. Because p is about to go away, the object to which p points will be
destroyed and the memory in which that object resides will be freed.

The memory will not be freed if there is any other shared_ptr pointing to it:

shared_ptr<Foo> use_factory(T arg)
{

shared_ptr<Foo> p = factory(arg);
// use p
return p; // reference count is incremented when we return p

} // p goes out of scope; the memory to which p points is not freed

In this version, the return statement in use_factory returns a copy of p to
its caller (§ 6.3.2, p. 224). Copying a shared_ptr adds to the reference count of
that object. Now when p is destroyed, there will be another user for the memory
to which p points. The shared_ptr class ensures that so long as there are any
shared_ptrs attached to that memory, the memory itself will not be freed.

Because memory is not freed until the last shared_ptr goes away, it can be
important to be sure that shared_ptrs don’t stay around after they are no longer
needed. The program will execute correctly but may waste memory if you ne-
glect to destroy shared_ptrs that the program does not need. One way that
shared_ptrs might stay around after you need them is if you put shared_ptrs
in a container and subsequently reorder the container so that you don’t need all
the elements. You should be sure to erase shared_ptr elements once you no
longer need those elements.

If you put shared_ptrs in a container, and you subsequently need to
use some, but not all, of the elements, remember to erase the elements
you no longer need.

Classes with Resources That Have Dynamic Lifetime

Programs tend to use dynamic memory for one of three purposes:

1. They don’t know how many objects they’ll need

2. They don’t know the precise type of the objects they need

3. They want to share data between several objects

The container classes are an example of classes that use dynamic memory for the
first purpose and we’ll see examples of the second in Chapter 15. In this section,
we’ll define a class that uses dynamic memory in order to let several objects share
the same underlying data.

So far, the classes we’ve used allocate resources that exist only as long as the
corresponding objects. For example, each vector “owns” its own elements. When
we copy a vector, the elements in the original vector and in the copy are sepa-
rate from one another:
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vector<string> v1; // empty vector
{ // new scope

vector<string> v2 = {"a", "an", "the"};
v1 = v2; // copies the elements from v2 into v1

} // v2 is destroyed, which destroys the elements in v2
// v1 has three elements, which are copies of the ones originally in v2

The elements allocated by a vector exist only while the vector itself exists.
When a vector is destroyed, the elements in the vector are also destroyed.

Some classes allocate resources with a lifetime that is independent of the origi-
nal object. As an example, assume we want to define a class named Blob that will
hold a collection of elements. Unlike the containers, we want Blob objects that are
copies of one another to share the same elements. That is, when we copy a Blob,
the original and the copy should refer to the same underlying elements.

In general, when two objects share the same underlying data, we can’t unilat-
erally destroy the data when an object of that type goes away:

Blob<string> b1; // empty Blob
{ // new scope

Blob<string> b2 = {"a", "an", "the"};
b1 = b2; // b1 and b2 share the same elements

} // b2 is destroyed, but the elements in b2 must not be destroyed
// b1 points to the elements originally created in b2

In this example, b1 and b2 share the same elements. When b2 goes out of scope,
those elements must stay around, because b1 is still using them.

One common reason to use dynamic memory is to allow multiple ob-
jects to share the same state.

Defining the StrBlob Class

Ultimately, we’ll implement our Blob class as a template, but we won’t learn how
to do so until § 16.1.2 (p. 658). For now, we’ll define a version of our class that can
manage strings. As a result, we’ll name this version of our class StrBlob.

The easiest way to implement a new collection type is to use one of the library
containers to manage the elements. That way, we can let the library type manage
the storage for the elements themselves. In this case, we’ll use a vector to hold
our elements.

However, we can’t store the vector directly in a Blob object. Members of an
object are destroyed when the object itself is destroyed. For example, assume that
b1 and b2 are two Blobs that share the same vector. If that vector were stored
in one of those Blobs—say, b2—then that vector, and therefore its elements,
would no longer exist once b2 goes out of scope. To ensure that the elements
continue to exist, we’ll store the vector in dynamic memory.

To implement the sharing we want, we’ll give each StrBlob a shared_ptr
to a dynamically allocated vector. That shared_ptr member will keep track of
how many StrBlobs share the same vector and will delete the vector when
the last StrBlob using that vector is destroyed.
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We still need to decide what operations our class will provide. For now, we’ll
implement a small subset of the vector operations. We’ll also change the oper-
ations that access elements (e.g., front and back): In our class, these operations
will throw an exception if a user attempts to access an element that doesn’t exist.

Our class will have a default constructor and a constructor that has a parameter
of type initializer_list<string> (§ 6.2.6, p. 220). This constructor will take
a braced list of initializers.

class StrBlob {
public:

typedef std::vector<std::string>::size_type size_type;
StrBlob();
StrBlob(std::initializer_list<std::string> il);
size_type size() const { return data->size(); }
bool empty() const { return data->empty(); }
// add and remove elements
void push_back(const std::string &t) {data->push_back(t);}
void pop_back();

// element access
std::string& front();
std::string& back();

private:
std::shared_ptr<std::vector<std::string>> data;
// throws msg if data[i] isn’t valid
void check(size_type i, const std::string &msg) const;

};

Inside the class we implemented the size, empty, and push_back members.
These members forward their work through the data pointer to the underlying
vector. For example, size() on a StrBlob calls data->size(), and so on.

StrBlob Constructors

Each constructor uses its constructor initializer list (§ 7.1.4, p. 265) to initialize its
datamember to point to a dynamically allocated vector. The default constructor
allocates an empty vector:

StrBlob::StrBlob(): data(make_shared<vector<string>>()) { }

StrBlob::StrBlob(initializer_list<string> il):
data(make_shared<vector<string>>(il)) { }

The constructor that takes an initializer_list passes its parameter to the cor-
responding vector constructor (§ 2.2.1, p. 43). That constructor initializes the
vector’s elements by copying the values in the list.

Element Access Members

The pop_back, front, and back operations access members in the vector.
These operations must check that an element exists before attempting to access
that element. Because several members need to do the same checking, we’ve given
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our class a private utility function named check that verifies that a given index
is in range. In addition to an index, check takes a string argument that it will
pass to the exception handler. The string describes what went wrong:

void StrBlob::check(size_type i, const string &msg) const
{

if (i >= data->size())
throw out_of_range(msg);

}

The pop_back and element access members first call check. If check suc-
ceeds, these members forward their work to the underlying vector operation:

string& StrBlob::front()
{

// if the vector is empty, check will throw
check(0, "front on empty StrBlob");
return data->front();

}

string& StrBlob::back()
{

check(0, "back on empty StrBlob");
return data->back();

}

void StrBlob::pop_back()
{

check(0, "pop_back on empty StrBlob");
data->pop_back();

}

The front and back members should be overloaded on const (§ 7.3.2, p. 276).
Defining those versions is left as an exercise.

Copying, Assigning, and Destroying StrBlobs

Like our Sales_data class, StrBlob uses the default versions of the operations
that copy, assign, and destroy objects of its type (§ 7.1.5, p. 267). By default, these
operations copy, assign, and destroy the data members of the class. Our StrBlob
has only one data member, which is a shared_ptr. Therefore, when we copy,
assign, or destroy a StrBlob, its shared_ptr member will be copied, assigned,
or destroyed.

As we’ve seen, copying a shared_ptr increments its reference count; assign-
ing one shared_ptr to another increments the count of the right-hand operand
and decrements the count in the left-hand operand; and destroying a shared_ptr
decrements the count. If the count in a shared_ptr goes to zero, the object to
which that shared_ptr points is automatically destroyed. Thus, the vector al-
located by the StrBlob constructors will be automatically destroyed when the
last StrBlob pointing to that vector is destroyed.
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EXE R C I S E S SE C TI O N 12.1.1

Exercise 12.1: How many elements do b1 and b2 have at the end of this code?

StrBlob b1;
{

StrBlob b2 = {"a", "an", "the"};
b1 = b2;
b2.push_back("about");

}

Exercise 12.2: Write your own version of the StrBlob class including the const ver-
sions of front and back.

Exercise 12.3: Does this class need const versions of push_back and pop_back? If
so, add them. If not, why aren’t they needed?

Exercise 12.4: In our check function we didn’t check whether i was greater than
zero. Why is it okay to omit that check?

Exercise 12.5: We did not make the constructor that takes an initializer_list
explicit (§ 7.5.4, p. 296). Discuss the pros and cons of this design choice.

12.1.2 Managing Memory Directly
The language itself defines two operators that allocate and free dynamic memory.
The new operator allocates memory, and delete frees memory allocated by new.

For reasons that will become clear as we describe how these operators work,
using these operators to manage memory is considerably more error-prone than
using a smart pointer. Moreover, classes that do manage their own memory—
unlike those that use smart pointers—cannot rely on the default definitions for the
members that copy, assign, and destroy class objects (§ 7.1.4, p. 264). As a result,
programs that use smart pointers are likely to be easier to write and debug.

Until you have read Chapter 13, your classes should allocate dynamic
memory only if they use smart pointers to manage that memory.

Using new to Dynamically Allocate and Initialize Objects

Objects allocated on the free store are unnamed, so new offers no way to name the
objects that it allocates. Instead, new returns a pointer to the object it allocates:

int *pi = new int; // pi points to a dynamically allocated,
// unnamed, uninitialized int

This new expression constructs an object of type int on the free store and returns
a pointer to that object.

By default, dynamically allocated objects are default initialized (§ 2.2.1, p. 43),
which means that objects of built-in or compound type have undefined value; ob-
jects of class type are initialized by their default constructor:
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string *ps = new string; // initialized to empty string
int *pi = new int; // pi points to an uninitialized int

We can initialize a dynamically allocated object using direct initialization (§ 3.2.1,
p. 84). We can use traditional construction (using parentheses), and under the new
standard, we can also use list initialization (with curly braces):

int *pi = new int(1024); // object to which pi points has value 1024
string *ps = new string(10, ’9’); // *ps is "9999999999"
// vector with ten elements with values from 0 to 9
vector<int> *pv = new vector<int>{0,1,2,3,4,5,6,7,8,9};

We can also value initialize (§ 3.3.1, p. 98) a dynamically allocated object by
following the type name with a pair of empty parentheses:

string *ps1 = new string; // default initialized to the empty string
string *ps = new string(); // value initialized to the empty string
int *pi1 = new int; // default initialized; *pi1 is undefined
int *pi2 = new int(); // value initialized to 0; *pi2 is 0

For class types (such as string) that define their own constructors (§ 7.1.4, p. 262),
requesting value initialization is of no consequence; regardless of form, the object
is initialized by the default constructor. In the case of built-in types the difference
is significant; a value-initialized object of built-in type has a well-defined value but
a default-initialized object does not. Similarly, members of built-in type in classes
that rely on the synthesized default constructor will also be uninitialized if those
members are not initialized in the class body (§ 7.1.4, p. 263).

For the same reasons as we usually initialize variables, it is also a good
idea to initialize dynamically allocated objects.

When we provide an initializer inside parentheses, we can use auto (§ 2.5.2,
p. 68) to deduce the type of the object we want to allocate from that initializer.
However, because the compiler uses the initializer’s type to deduce the type to
allocate, we can use auto only with a single initializer inside parentheses:

auto p1 = new auto(obj); // p points to an object of the type of obj
// that object is initialized from obj

auto p2 = new auto{a,b,c}; // error: must use parentheses for the initializer

The type of p1 is a pointer to the auto-deduced type of obj. If obj is an int,
then p1 is int*; if obj is a string, then p1 is a string*; and so on. The newly
allocated object is initialized from the value of obj.

Dynamically Allocated const Objects

It is legal to use new to allocate const objects:

// allocate and initialize a const int
const int *pci = new const int(1024);

// allocate a default-initialized const empty string
const string *pcs = new const string;
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Like any other const, a dynamically allocated const object must be initialized.
A const dynamic object of a class type that defines a default constructor (§ 7.1.4,
p. 263) may be initialized implicitly. Objects of other types must be explicitly ini-
tialized. Because the allocated object is const, the pointer returned by new is a
pointer to const (§ 2.4.2, p. 62).

Memory Exhaustion

Although modern machines tend to have huge memory capacity, it is always pos-
sible that the free store will be exhausted. Once a program has used all of its avail-
able memory, new expressions will fail. By default, if new is unable to allocate the
requested storage, it throws an exception of type bad_alloc (§ 5.6, p. 193). We
can prevent new from throwing an exception by using a different form of new:

// if allocation fails, new returns a null pointer
int *p1 = new int; // if allocation fails, new throws std::bad_alloc
int *p2 = new (nothrow) int; // if allocation fails, new returns a null pointer

For reasons we’ll explain in § 19.1.2 (p. 824) this form of new is referred to as place-
ment new. A placement new expression lets us pass additional arguments to new.
In this case, we pass an object named nothrow that is defined by the library. When
we pass nothrow to new, we tell new that it must not throw an exception. If this
form of new is unable to allocate the requested storage, it will return a null pointer.
Both bad_alloc and nothrow are defined in the new header.

Freeing Dynamic Memory

In order to prevent memory exhaustion, we must return dynamically allocated
memory to the system once we are finished using it. We return memory through
a delete expression. A delete expression takes a pointer to the object we want
to free:

delete p; // p must point to a dynamically allocated object or be null

Like new, a delete expression performs two actions: It destroys the object to
which its given pointer points, and it frees the corresponding memory.

Pointer Values and delete

The pointer we pass to delete must either point to dynamically allocated mem-
ory or be a null pointer (§ 2.3.2, p. 53). Deleting a pointer to memory that was not
allocated by new, or deleting the same pointer value more than once, is undefined:

int i, *pi1 = &i, *pi2 = nullptr;
double *pd = new double(33), *pd2 = pd;

delete i; // error: i is not a pointer
delete pi1; // undefined: pi1 refers to a local
delete pd; // ok
delete pd2; // undefined: the memory pointed to by pd2 was already freed
delete pi2; // ok: it is always ok to delete a null pointer
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The compiler will generate an error for the delete of i because it knows that i
is not a pointer. The errors associated with executing delete on pi1 and pd2 are
more insidious: In general, compilers cannot tell whether a pointer points to a stat-
ically or dynamically allocated object. Similarly, the compiler cannot tell whether
memory addressed by a pointer has already been freed. Most compilers will accept
these delete expressions, even though they are in error.

Although the value of a const object cannot be modified, the object itself can
be destroyed. As with any other dynamic object, a const dynamic object is freed
by executing delete on a pointer that points to that object:

const int *pci = new const int(1024);
delete pci; // ok: deletes a const object

Dynamically Allocated Objects Exist until They Are Freed

As we saw in § 12.1.1 (p. 452), memory that is managed through a shared_ptr
is automatically deleted when the last shared_ptr is destroyed. The same is not
true for memory we manage using built-in pointers. A dynamic object managed
through a built-in pointer exists until it is explicitly deleted.

Functions that return pointers (rather than smart pointers) to dynamic memory
put a burden on their callers—the caller must remember to delete the memory:

// factory returns a pointer to a dynamically allocated object
Foo* factory(T arg)
{

// process arg as appropriate
return new Foo(arg); // caller is responsible for deleting this memory

}

Like our earlier factory function (§ 12.1.1, p. 453), this version of factory al-
locates an object but does not delete it. Callers of factory are responsible for
freeing this memory when they no longer need the allocated object. Unfortunately,
all too often the caller forgets to do so:

void use_factory(T arg)
{

Foo *p = factory(arg);
// use p but do not delete it

} // p goes out of scope, but the memory to which p points is not freed!

Here, our use_factory function calls factory, which allocates a new object of
type Foo. When use_factory returns, the local variable p is destroyed. That
variable is a built-in pointer, not a smart pointer.

Unlike class types, nothing happens when objects of built-in type are destroyed.
In particular, when a pointer goes out of scope, nothing happens to the object to
which the pointer points. If that pointer points to dynamic memory, that memory
is not automatically freed.

Dynamic memory managed through built-in pointers (rather than smart
pointers) exists until it is explicitly freed.
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In this example, p was the only pointer to the memory allocated by factory.
Once use_factory returns, the program has no way to free that memory. De-
pending on the logic of our overall program, we should fix this bug by remember-
ing to free the memory inside use_factory:

void use_factory(T arg)
{

Foo *p = factory(arg);
// use p
delete p; // remember to free the memory now that we no longer need it

}

or, if other code in our system needs to use the object allocated by use_factory,
we should change that function to return a pointer to the memory it allocated:

Foo* use_factory(T arg)
{

Foo *p = factory(arg);
// use p
return p; // caller must delete the memory

}

CAUTION: MANAGING DYNAMIC MEMORY IS ERROR-PRONE

There are three common problems with using new and delete to manage dynamic
memory:

1. Forgetting to delete memory. Neglecting to delete dynamic memory is known
as a “memory leak,” because the memory is never returned to the free store.
Testing for memory leaks is difficult because they usually cannot be detected
until the application is run for a long enough time to actually exhaust memory.

2. Using an object after it has been deleted. This error can sometimes be detected
by making the pointer null after the delete.

3. Deleting the same memory twice. This error can happen when two pointers
address the same dynamically allocated object. If delete is applied to one
of the pointers, then the object’s memory is returned to the free store. If we
subsequently delete the second pointer, then the free store may be corrupted.

These kinds of errors are considerably easier to make than they are to find and fix.

You can avoid all of these problems by using smart pointers exclusively.
The smart pointer will take care of deleting the memory only when there
are no remaining smart pointers pointing to that memory.

Resetting the Value of a Pointer after a delete . . .

When we delete a pointer, that pointer becomes invalid. Although the pointer is
invalid, on many machines the pointer continues to hold the address of the (freed)
dynamic memory. After the delete, the pointer becomes what is referred to as a
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dangling pointer. A dangling pointer is one that refers to memory that once held
an object but no longer does so.

Dangling pointers have all the problems of uninitialized pointers (§ 2.3.2, p. 54).
We can avoid the problems with dangling pointers by deleting the memory associ-
ated with a pointer just before the pointer itself goes out of scope. That way there is
no chance to use the pointer after the memory associated with the pointer is freed.
If we need to keep the pointer around, we can assign nullptr to the pointer after
we use delete. Doing so makes it clear that the pointer points to no object.

. . . Provides Only Limited Protection

A fundamental problem with dynamic memory is that there can be several point-
ers that point to the same memory. Resetting the pointer we use to delete that
memory lets us check that particular pointer but has no effect on any of the other
pointers that still point at the (freed) memory. For example:

int *p(new int(42)); // p points to dynamic memory
auto q = p; // p and q point to the same memory
delete p; // invalidates both p and q
p = nullptr; // indicates that p is no longer bound to an object

Here both p and q point at the same dynamically allocated object. We delete that
memory and set p to nullptr, indicating that the pointer no longer points to an
object. However, resetting p has no effect on q, which became invalid when we
deleted the memory to which p (and q!) pointed. In real systems, finding all the
pointers that point to the same memory is surprisingly difficult.

EXE R C I S E S SE C TI O N 12.1.2

Exercise 12.6: Write a function that returns a dynamically allocated vector of ints.
Pass that vector to another function that reads the standard input to give values to
the elements. Pass the vector to another function to print the values that were read.
Remember to delete the vector at the appropriate time.

Exercise 12.7: Redo the previous exercise, this time using shared_ptr.

Exercise 12.8: Explain what if anything is wrong with the following function.

bool b() {
int* p = new int;
// . . .
return p;

}

Exercise 12.9: Explain what happens in the following code:

int *q = new int(42), *r = new int(100);
r = q;

auto q2 = make_shared<int>(42), r2 = make_shared<int>(100);
r2 = q2;
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12.1.3 Using shared_ptrs with new
As we’ve seen, if we do not initialize a smart pointer, it is initialized as a null
pointer. As described in Table 12.3, we can also initialize a smart pointer from a
pointer returned by new:

shared_ptr<double> p1; // shared_ptr that can point at a double
shared_ptr<int> p2(new int(42)); // p2 points to an int with value 42

The smart pointer constructors that take pointers are explicit (§ 7.5.4, p. 296).
Hence, we cannot implicitly convert a built-in pointer to a smart pointer; we must
use the direct form of initialization (§ 3.2.1, p. 84) to initialize a smart pointer:

shared_ptr<int> p1 = new int(1024); // error: must use direct initialization
shared_ptr<int> p2(new int(1024)); // ok: uses direct initialization

The initialization of p1 implicitly asks the compiler to create a shared_ptr from
the int* returned by new. Because we can’t implicitly convert a pointer to a smart
pointer, this initialization is an error. For the same reason, a function that returns a
shared_ptr cannot implicitly convert a plain pointer in its return statement:

shared_ptr<int> clone(int p) {
return new int(p); // error: implicit conversion to shared_ptr<int>

}

We must explicitly bind a shared_ptr to the pointer we want to return:

shared_ptr<int> clone(int p) {
// ok: explicitly create a shared_ptr<int> from int*
return shared_ptr<int>(new int(p));

}

By default, a pointer used to initialize a smart pointer must point to dynamic
memory because, by default, smart pointers use delete to free the associated ob-
ject. We can bind smart pointers to pointers to other kinds of resources. However,
to do so, we must supply our own operation to use in place of delete. We’ll see
how to supply our own deletion code in § 12.1.4 (p. 468).

Don’t Mix Ordinary Pointers and Smart Pointers . . .

A shared_ptr can coordinate destruction only with other shared_ptrs that
are copies of itself. Indeed, this fact is one of the reasons we recommend using
make_shared rather than new. That way, we bind a shared_ptr to the object at
the same time that we allocate it. There is no way to inadvertently bind the same
memory to more than one independently created shared_ptr.

Consider the following function that operates on a shared_ptr:

// ptr is created and initialized when process is called
void process(shared_ptr<int> ptr)
{

// use ptr
} // ptr goes out of scope and is destroyed
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Table 12.3: Other Ways to Define and Change shared_ptrs

shared_ptr<T> p(q) p manages the object to which the built-in pointer q points;
q must point to memory allocated by new and must be
convertible to T*.

shared_ptr<T> p(u) p assumes ownership from the unique_ptr u; makes u null.
shared_ptr<T> p(q, d) p assumes ownership for the object to which the built-in

pointer q points. q must be convertible to T* (§ 4.11.2, p. 161).
p will use the callable object d (§ 10.3.2, p. 388) in place of
delete to free q.

shared_ptr<T> p(p2, d) p is a copy of the shared_ptr p2 as described in Table 12.2
except that p uses the callable object d in place of delete.

p.reset()
p.reset(q)
p.reset(q, d)

If p is the only shared_ptr pointing at its object, reset frees
p’s existing object. If the optional built-in pointer q is passed,
makes p point to q, otherwise makes p null. If d is supplied,
will call d to free q otherwise uses delete to free q.

The parameter to process is passed by value, so the argument to process is
copied into ptr. Copying a shared_ptr increments its reference count. Thus,
inside process the count is at least 2. When process completes, the reference
count of ptr is decremented but cannot go to zero. Therefore, when the local
variable ptr is destroyed, the memory to which ptr points will not be deleted.

The right way to use this function is to pass it a shared_ptr:

shared_ptr<int> p(new int(42)); // reference count is 1
process(p); // copying p increments its count; in process the reference count is 2
int i = *p; // ok: reference count is 1

Although we cannot pass a built-in pointer to process, we can pass process
a (temporary) shared_ptr that we explicitly construct from a built-in pointer.
However, doing so is likely to be an error:

int *x(new int(1024)); // dangerous: x is a plain pointer, not a smart pointer
process(x); // error: cannot convert int* to shared_ptr<int>
process(shared_ptr<int>(x)); // legal, but the memory will be deleted!
int j = *x; // undefined: x is a dangling pointer!

In this call, we passed a temporary shared_ptr to process. That temporary is
destroyed when the expression in which the call appears finishes. Destroying the
temporary decrements the reference count, which goes to zero. The memory to
which the temporary points is freed when the temporary is destroyed.

But x continues to point to that (freed) memory; x is now a dangling pointer.
Attempting to use the value of x is undefined.

When we bind a shared_ptr to a plain pointer, we give responsibility for
that memory to that shared_ptr. Once we give shared_ptr responsibility for a
pointer, we should no longer use a built-in pointer to access the memory to which
the shared_ptr now points.
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It is dangerous to use a built-in pointer to access an object owned by a
smart pointer, because we may not know when that object is destroyed.

. . . and Don’t Use get to Initialize or Assign Another Smart Pointer

The smart pointer types define a function named get (described in Table 12.1
(p. 452)) that returns a built-in pointer to the object that the smart pointer is man-
aging. This function is intended for cases when we need to pass a built-in pointer
to code that can’t use a smart pointer. The code that uses the return from get must
not delete that pointer.

Although the compiler will not complain, it is an error to bind another smart
pointer to the pointer returned by get:

shared_ptr<int> p(new int(42)); // reference count is 1
int *q = p.get(); // ok: but don’t use q in any way that might delete its pointer
{ // new block
// undefined: two independent shared_ptrs point to the same memory
shared_ptr<int>(q);
} // block ends, q is destroyed, and the memory to which q points is freed
int foo = *p; // undefined; the memory to which p points was freed

In this case, both p and q point to the same memory. Because they were created
independently from each other, each has a reference count of 1. When the block in
which qwas defined ends, q is destroyed. Destroying q frees the memory to which
q points. That makes p into a dangling pointer, meaning that what happens when
we attempt to use p is undefined. Moreover, when p is destroyed, the pointer to
that memory will be deleted a second time.

Use get only to pass access to the pointer to code that you know will not
delete the pointer. In particular, never use get to initialize or assign
to another smart pointer.

Other shared_ptr Operations

The shared_ptr class gives us a few other operations, which are listed in Ta-
ble 12.2 (p. 453) and Table 12.3 (on the previous page). We can use reset to assign
a new pointer to a shared_ptr:

p = new int(1024); // error: cannot assign a pointer to a shared_ptr
p.reset(new int(1024)); // ok: p points to a new object

Like assignment, reset updates the reference counts and, if appropriate, deletes
the object to which p points. The reset member is often used together with
unique to control changes to the object shared among several shared_ptrs. Be-
fore changing the underlying object, we check whether we’re the only user. If not,
we make a new copy before making the change:

if (!p.unique())
p.reset(new string(*p)); // we aren’t alone; allocate a new copy

*p += newVal; // now that we know we’re the only pointer, okay to change this object
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EXE R C I S E S SE C TI O N 12.1.3

Exercise 12.10: Explain whether the following call to the process function defined
on page 464 is correct. If not, how would you correct the call?

shared_ptr<int> p(new int(42));
process(shared_ptr<int>(p));

Exercise 12.11: What would happen if we called process as follows?

process(shared_ptr<int>(p.get()));

Exercise 12.12: Using the declarations of p and sp explain each of the following calls
to process. If the call is legal, explain what it does. If the call is illegal, explain why:

auto p = new int();
auto sp = make_shared<int>();
(a) process(sp);
(b) process(new int());
(c) process(p);
(d) process(shared_ptr<int>(p));

Exercise 12.13: What happens if we execute the following code?

auto sp = make_shared<int>();
auto p = sp.get();
delete p;

12.1.4 Smart Pointers and Exceptions
In § 5.6.2 (p. 196) we noted that programs that use exception handling to continue
processing after an exception occurs need to ensure that resources are properly
freed if an exception occurs. One easy way to make sure resources are freed is to
use smart pointers.

When we use a smart pointer, the smart pointer class ensures that memory is
freed when it is no longer needed even if the block is exited prematurely:

void f()
{

shared_ptr<int> sp(new int(42)); // allocate a new object

// code that throws an exception that is not caught inside f

} // shared_ptr freed automatically when the function ends

When a function is exited, whether through normal processing or due to an ex-
ception, all the local objects are destroyed. In this case, sp is a shared_ptr, so
destroying sp checks its reference count. Here, sp is the only pointer to the mem-
ory it manages; that memory will be freed as part of destroying sp.

In contrast, memory that we manage directly is not automatically freed when
an exception occurs. If we use built-in pointers to manage memory and an excep-
tion occurs after a new but before the corresponding delete, then that memory
won’t be freed:
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void f()
{

int *ip = new int(42); // dynamically allocate a new object

// code that throws an exception that is not caught inside f

delete ip; // free the memory before exiting
}

If an exception happens between the new and the delete, and is not caught inside
f, then this memory can never be freed. There is no pointer to this memory outside
the function f. Thus, there is no way to free this memory.

Smart Pointers and Dumb Classes

Many C++ classes, including all the library classes, define destructors (§ 12.1.1,
p. 452) that take care of cleaning up the resources used by that object. However, not
all classes are so well behaved. In particular, classes that are designed to be used
by both C and C++ generally require the user to specifically free any resources that
are used.

Classes that allocate resources—and that do not define destructors to free those
resources—can be subject to the same kind of errors that arise when we use dy-
namic memory. It is easy to forget to release the resource. Similarly, if an exception
happens between when the resource is allocated and when it is freed, the program
will leak that resource.

We can often use the same kinds of techniques we use to manage dynamic
memory to manage classes that do not have well-behaved destructors. For ex-
ample, imagine we’re using a network library that is used by both C and C++.
Programs that use this library might contain code such as

struct destination; // represents what we are connecting to
struct connection; // information needed to use the connection

connection connect(destination*); // open the connection
void disconnect(connection); // close the given connection
void f(destination &d /* other parameters */)
{

// get a connection; must remember to close it when done
connection c = connect(&d);
// use the connection
// if we forget to call disconnect before exiting f, there will be no way to close c

}

If connection had a destructor, that destructor would automatically close the
connection when f completes. However, connection does not have a destructor.
This problem is nearly identical to our previous program that used a shared_ptr
to avoid memory leaks. It turns out that we can also use a shared_ptr to ensure
that the connection is properly closed.

Using Our Own Deletion Code

By default, shared_ptrs assume that they point to dynamic memory. Hence, by
default, when a shared_ptr is destroyed, it executes delete on the pointer it
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holds. To use a shared_ptr to manage a connection, we must first define a
function to use in place of delete. It must be possible to call this deleter function
with the pointer stored inside the shared_ptr. In this case, our deleter must take
a single argument of type connection*:

void end_connection(connection *p) { disconnect(*p); }

When we create a shared_ptr, we can pass an optional argument that points to
a deleter function (§ 6.7, p. 247):

void f(destination &d /* other parameters */)
{

connection c = connect(&d);
shared_ptr<connection> p(&c, end_connection);
// use the connection
// when f exits, even if by an exception, the connection will be properly closed

}

When p is destroyed, it won’t execute delete on its stored pointer. Instead, p
will call end_connection on that pointer. In turn, end_connection will call
disconnect, thus ensuring that the connection is closed. If f exits normally, then
p will be destroyed as part of the return. Moreover, p will also be destroyed, and
the connection will be closed, if an exception occurs.

CAUTION: SMART POINTER PITFALLS

Smart pointers can provide safety and convenience for handling dynamically allo-
cated memory only when they are used properly. To use smart pointers correctly, we
must adhere to a set of conventions:

• Don’t use the same built-in pointer value to initialize (or reset) more than one
smart pointer.

• Don’t delete the pointer returned from get().

• Don’t use get() to initialize or reset another smart pointer.

• If you use a pointer returned by get(), remember that the pointer will become
invalid when the last corresponding smart pointer goes away.

• If you use a smart pointer to manage a resource other than memory allocated by
new, remember to pass a deleter (§ 12.1.4, p. 468, and § 12.1.5, p. 471).

EXE R C I S E S SE C TI O N 12.1.4

Exercise 12.14: Write your own version of a function that uses a shared_ptr to man-
age a connection.

Exercise 12.15: Rewrite the first exercise to use a lambda (§ 10.3.2, p. 388) in place of
the end_connection function.
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12.1.5 unique_ptr
A unique_ptr “owns” the object to which it points. Unlike shared_ptr, only
one unique_ptr at a time can point to a given object. The object to which a
unique_ptr points is destroyed when the unique_ptr is destroyed. Table 12.4
lists the operations specific to unique_ptrs. The operations common to both
were covered in Table 12.1 (p. 452).

Unlike shared_ptr, there is no library function comparable to make_shared
that returns a unique_ptr. Instead, when we define a unique_ptr, we bind it
to a pointer returned by new. As with shared_ptrs, we must use the direct form
of initialization:

unique_ptr<double> p1; // unique_ptr that can point at a double
unique_ptr<int> p2(new int(42)); // p2 points to int with value 42

Because a unique_ptr owns the object to which it points, unique_ptr does
not support ordinary copy or assignment:

unique_ptr<string> p1(new string("Stegosaurus"));
unique_ptr<string> p2(p1); // error: no copy for unique_ptr
unique_ptr<string> p3;
p3 = p2; // error: no assign for unique_ptr

Table 12.4: unique_ptr Operations (See Also Table 12.1 (p. 452))

unique_ptr<T> u1
unique_ptr<T, D> u2

Null unique_ptrs that can point to objects of type T. u1 will
use delete to free its pointer; u2 will use a callable object of
type D to free its pointer.

unique_ptr<T, D> u(d) Null unique_ptr that point to objects of type T that uses d,
which must be an object of type D in place of delete.

u = nullptr Deletes the object to which u points; makes u null.
u.release() Relinquishes control of the pointer u had held; returns the

pointer u had held and makes u null.

u.reset()
u.reset(q)
u.reset(nullptr)

Deletes the object to which u points;
If the built-in pointer q is supplied, makes u point to that object.
Otherwise makes u null.

Although we can’t copy or assign a unique_ptr, we can transfer ownership from
one (nonconst) unique_ptr to another by calling release or reset:

// transfers ownership from p1 (which points to the string Stegosaurus) to p2
unique_ptr<string> p2(p1.release()); // release makes p1 null

unique_ptr<string> p3(new string("Trex"));
// transfers ownership from p3 to p2
p2.reset(p3.release()); // reset deletes the memory to which p2 had pointed

The release member returns the pointer currently stored in the unique_ptr
and makes that unique_ptr null. Thus, p2 is initialized from the pointer value
that had been stored in p1 and p1 becomes null.
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The resetmember takes an optional pointer and repositions the unique_ptr
to point to the given pointer. If the unique_ptr is not null, then the object to
which the unique_ptr had pointed is deleted. The call to reset on p2, therefore,
frees the memory used by the string initialized from "Stegosaurus", transfers
p3’s pointer to p2, and makes p3 null.

Calling release breaks the connection between a unique_ptr and the object
it had been managing. Often the pointer returned by release is used to initial-
ize or assign another smart pointer. In that case, responsibility for managing the
memory is simply transferred from one smart pointer to another. However, if we
do not use another smart pointer to hold the pointer returned from release, our
program takes over responsibility for freeing that resource:

p2.release(); // WRONG: p2 won’t free the memory and we’ve lost the pointer
auto p = p2.release(); // ok, but we must remember to delete(p)

Passing and Returning unique_ptrs

There is one exception to the rule that we cannot copy a unique_ptr: We can
copy or assign a unique_ptr that is about to be destroyed. The most common
example is when we return a unique_ptr from a function:

unique_ptr<int> clone(int p) {
// ok: explicitly create a unique_ptr<int> from int*
return unique_ptr<int>(new int(p));

}

Alternatively, we can also return a copy of a local object:

unique_ptr<int> clone(int p) {
unique_ptr<int> ret(new int (p));
// . . .
return ret;

}

In both cases, the compiler knows that the object being returned is about to be
destroyed. In such cases, the compiler does a special kind of “copy” which we’ll
discuss in § 13.6.2 (p. 534).

BACKWARD COMPATIBILITY: AUTO_PTR

Earlier versions of the library included a class named auto_ptr that had some, but
not all, of the properties of unique_ptr. In particular, it was not possible to store an
auto_ptr in a container, nor could we return one from a function.

Although auto_ptr is still part of the standard library, programs should use
unique_ptr instead.

Passing a Deleter to unique_ptr

Like shared_ptr, by default, unique_ptr uses delete to free the object to
which a unique_ptr points. As with shared_ptr, we can override the default
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deleter in a unique_ptr (§ 12.1.4, p. 468). However, for reasons we’ll describe in
§ 16.1.6 (p. 676), the way unique_ptr manages its deleter is differs from the way
shared_ptr does.

Overridding the deleter in a unique_ptr affects the unique_ptr type as well
as how we construct (or reset) objects of that type. Similar to overriding the
comparison operation of an associative container (§ 11.2.2, p. 425), we must sup-
ply the deleter type inside the angle brackets along with the type to which the
unique_ptr can point. We supply a callable object of the specified type when we
create or reset an object of this type:

// p points to an object of type objT and uses an object of type delT to free that object
// it will call an object named fcn of type delT
unique_ptr<objT, delT> p (new objT, fcn);

As a somewhat more concrete example, we’ll rewrite our connection program to
use a unique_ptr in place of a shared_ptr as follows:

void f(destination &d /* other needed parameters */)
{

connection c = connect(&d); // open the connection
// when p is destroyed, the connection will be closed
unique_ptr<connection, decltype(end_connection)*>

p(&c, end_connection);
// use the connection
// when f exits, even if by an exception, the connection will be properly closed

}

Here we use decltype (§ 2.5.3, p. 70) to specify the function pointer type. Because
decltype(end_connection) returns a function type, we must remember to
add a * to indicate that we’re using a pointer to that type (§ 6.7, p. 250).

EXE R C I S E S SE C TI O N 12.1.5

Exercise 12.16: Compilers don’t always give easy-to-understand error messages if we
attempt to copy or assign a unique_ptr. Write a program that contains these errors
to see how your compiler diagnoses them.

Exercise 12.17: Which of the following unique_ptr declarations are illegal or likely
to result in subsequent program error? Explain what the problem is with each one.

int ix = 1024, *pi = &ix, *pi2 = new int(2048);
typedef unique_ptr<int> IntP;

(a) IntP p0(ix); (b) IntP p1(pi);
(c) IntP p2(pi2); (d) IntP p3(&ix);
(e) IntP p4(new int(2048)); (f) IntP p5(p2.get());

Exercise 12.18: Why doesn’t shared_ptr have a release member?
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12.1.6 weak_ptr
A weak_ptr (Table 12.5) is a smart pointer that does not control the lifetime of the
object to which it points. Instead, a weak_ptr points to an object that is managed
by a shared_ptr. Binding a weak_ptr to a shared_ptr does not change the
reference count of that shared_ptr. Once the last shared_ptr pointing to the
object goes away, the object itself will be deleted. That object will be deleted even
if there are weak_ptrs pointing to it—hence the name weak_ptr, which captures
the idea that a weak_ptr shares its object “weakly.”

When we create a weak_ptr, we initialize it from a shared_ptr:

auto p = make_shared<int>(42);
weak_ptr<int> wp(p); // wp weakly shares with p; use count in p is unchanged

Here both wp and p point to the same object. Because the sharing is weak, creating
wp doesn’t change the reference count of p; it is possible that the object to which
wp points might be deleted.

Because the object might no longer exist, we cannot use a weak_ptr to access
its object directly. To access that object, we must call lock. The lock function
checks whether the object to which the weak_ptr points still exists. If so, lock re-
turns a shared_ptr to the shared object. As with any other shared_ptr, we are
guaranteed that the underlying object to which that shared_ptr points continues
to exist at least as long as that shared_ptr exists. For example:

if (shared_ptr<int> np = wp.lock()) { // true if np is not null
// inside the if, np shares its object with p

}

Here we enter the body of the if only if the call to lock succeeds. Inside the if,
it is safe to use np to access that object.

Table 12.5: weak_ptrs

weak_ptr<T> w Null weak_ptr that can point at objects of type T.
weak_ptr<T> w(sp) weak_ptr that points to the same object as the shared_ptr sp.

T must be convertible to the type to which sp points.
w = p p can be a shared_ptr or a weak_ptr. After the assignment w

shares ownership with p.
w.reset() Makes w null.
w.use_count() The number of shared_ptrs that share ownership with w.
w.expired() Returns true if w.use_count() is zero, false otherwise.

w.lock() If expired is true, returns a null shared_ptr; otherwise returns
a shared_ptr to the object to which w points.

Checked Pointer Class

As an illustration of when a weak_ptr is useful, we’ll define a companion pointer
class for our StrBlob class. Our pointer class, which we’ll name StrBlobPtr,
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will store a weak_ptr to the data member of the StrBlob from which it was
initialized. By using a weak_ptr, we don’t affect the lifetime of the vector to
which a given StrBlob points. However, we can prevent the user from attempt-
ing to access a vector that no longer exists.

StrBlobPtrwill have two data members: wptr, which is either null or points
to a vector in a StrBlob; and curr, which is the index of the element that this
object currently denotes. Like its companion StrBlob class, our pointer class has
a check member to verify that it is safe to dereference the StrBlobPtr:

// StrBlobPtr throws an exception on attempts to access a nonexistent element
class StrBlobPtr {
public:

StrBlobPtr(): curr(0) { }
StrBlobPtr(StrBlob &a, size_t sz = 0):

wptr(a.data), curr(sz) { }
std::string& deref() const;
StrBlobPtr& incr(); // prefix version

private:
// check returns a shared_ptr to the vector if the check succeeds
std::shared_ptr<std::vector<std::string>>

check(std::size_t, const std::string&) const;

// store a weak_ptr, which means the underlying vector might be destroyed
std::weak_ptr<std::vector<std::string>> wptr;
std::size_t curr; // current position within the array

};

The default constructor generates a null StrBlobPtr. Its constructor initial-
izer list (§ 7.1.4, p. 265) explicitly initializes curr to zero and implicitly initializes
wptr as a null weak_ptr. The second constructor takes a reference to StrBlob
and an optional index value. This constructor initializes wptr to point to the
vector in the shared_ptr of the given StrBlob object and initializes curr to
the value of sz. We use a default argument (§ 6.5.1, p. 236) to initialize curr to
denote the first element by default. As we’ll see, the sz parameter will be used by
the end member of StrBlob.

It is worth noting that we cannot bind a StrBlobPtr to a const StrBlob
object. This restriction follows from the fact that the constructor takes a reference
to a nonconst object of type StrBlob.

The check member of StrBlobPtr differs from the one in StrBlob because
it must check whether the vector to which it points is still around:

std::shared_ptr<std::vector<std::string>>
StrBlobPtr::check(std::size_t i, const std::string &msg) const
{

auto ret = wptr.lock(); // is the vector still around?
if (!ret)

throw std::runtime_error("unbound StrBlobPtr");
if (i >= ret->size())

throw std::out_of_range(msg);
return ret; // otherwise, return a shared_ptr to the vector

}
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Because a weak_ptr does not participate in the reference count of its correspond-
ing shared_ptr, the vector to which this StrBlobPtr points might have been
deleted. If the vector is gone, lock will return a null pointer. In this case, any
reference to the vector will fail, so we throw an exception. Otherwise, check
verifies its given index. If that value is okay, check returns the shared_ptr it
obtained from lock.

Pointer Operations

We’ll learn how to define our own operators in Chapter 14. For now, we’ve defined
functions named deref and incr to dereference and increment the StrBlobPtr,
respectively. The deref member calls check to verify that it is safe to use the
vector and that curr is in range:

std::string& StrBlobPtr::deref() const
{

auto p = check(curr, "dereference past end");
return (*p)[curr]; // (*p) is the vector to which this object points

}

If check succeeds, p is a shared_ptr to the vector to which this StrBlobPtr
points. The expression (*p)[curr] dereferences that shared_ptr to get the
vector and uses the subscript operator to fetch and return the element at curr.

The incr member also calls check:

// prefix: return a reference to the incremented object
StrBlobPtr& StrBlobPtr::incr()
{

// if curr already points past the end of the container, can’t increment it
check(curr, "increment past end of StrBlobPtr");
++curr; // advance the current state
return *this;

}

We’ll also give our StrBlob class begin and end operations. These members
will return StrBlobPtrs pointing to the first or one past the last element in the
StrBlob itself. In addition, because StrBlobPtr accesses the data member of
StrBlob, we must also make StrBlobPtr a friend of StrBlob (§ 7.3.4, p. 279):

class StrBlob {
friend class StrBlobPtr;
// other members as in § 12.1.1 (p. 456)
StrBlobPtr begin(); // return StrBlobPtr to the first element
StrBlobPtr end(); // and one past the last element

};
// these members can’t be defined until StrStrBlob and StrStrBlobPtr are defined
StrBlobPtr StrBlob::begin() { return StrBlobPtr(*this); }
StrBlobPtr StrBlob::end()

{ return StrBlobPtr(*this, data->size()); }
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EXE R C I S E S SE C TI O N 12.1.6

Exercise 12.19: Define your own version of StrBlobPtr and update your StrBlob
class with the appropriate friend declaration and begin and end members.

Exercise 12.20: Write a program that reads an input file a line at a time into a StrBlob
and uses a StrBlobPtr to print each element in that StrBlob.

Exercise 12.21: We could have written StrBlobPtr’s deref member as follows:

std::string& deref() const
{ return (*check(curr, "dereference past end"))[curr]; }

Which version do you think is better and why?

Exercise 12.22: What changes would need to be made to StrBlobPtr to create a class
that can be used with a const StrBlob? Define a class named ConstStrBlobPtr
that can point to a const StrBlob.

12.2 Dynamic Arrays
The new and delete operators allocate objects one at a time. Some applications,
need the ability to allocate storage for many objects at once. For example, vectors
and strings store their elements in contiguous memory and must allocate several
elements at once whenever the container has to be reallocated (§ 9.4, p. 355).

To support such usage, the language and library provide two ways to allocate
an array of objects at once. The language defines a second kind of new expression
that allocates and initializes an array of objects. The library includes a template
class named allocator that lets us separate allocation from initialization. For
reasons we’ll explain in § 12.2.2 (p. 481), using an allocator generally provides
better performance and more flexible memory management.

Many, perhaps even most, applications have no direct need for dynamic arrays.
When an application needs a varying number of objects, it is almost always easier,
faster, and safer to do as we did with StrBlob: use a vector (or other library
container). For reasons we’ll explain in § 13.6 (p. 531), the advantages of using a li-
brary container are even more pronounced under the new standard. Libraries that
support the new standard tend to be dramatically faster than previous releases.

Most applications should use a library container rather than dynami-
cally allocated arrays. Using a container is easier, less likely to contain
memory-management bugs, and is likely to give better performance.

As we’ve seen, classes that use the containers can use the default versions of the
operations for copy, assignment, and destruction (§ 7.1.5, p. 267). Classes that allo-
cate dynamic arrays must define their own versions of these operations to manage
the associated memory when objects are copied, assigned, and destroyed.

Do not allocate dynamic arrays in code inside classes until you have read
Chapter 13.
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12.2.1 new and Arrays
We ask new to allocate an array of objects by specifying the number of objects to
allocate in a pair of square brackets after a type name. In this case, new allocates
the requested number of objects and (assuming the allocation succeeds) returns a
pointer to the first one:

// call get_size to determine how many ints to allocate
int *pia = new int[get_size()]; // pia points to the first of these ints

The size inside the brackets must have integral type but need not be a constant.
We can also allocate an array by using a type alias (§ 2.5.1, p. 67) to represent

an array type. In this case, we omit the brackets:

typedef int arrT[42]; // arrT names the type array of 42 ints
int *p = new arrT; // allocates an array of 42 ints; p points to the first one

Here, new allocates an array of ints and returns a pointer to the first one. Even
though there are no brackets in our code, the compiler executes this expression
using new[]. That is, the compiler executes this expression as if we had written

int *p = new int[42];

Allocating an Array Yields a Pointer to the Element Type

Although it is common to refer to memory allocated by new T[] as a “dynamic
array,” this usage is somewhat misleading. When we use new to allocate an array,
we do not get an object with an array type. Instead, we get a pointer to the element
type of the array. Even if we use a type alias to define an array type, new does
not allocate an object of array type. In this case, the fact that we’re allocating an
array is not even visible; there is no [num]. Even so, new returns a pointer to the
element type.

Because the allocated memory does not have an array type, we cannot call
begin or end (§ 3.5.3, p. 118) on a dynamic array. These functions use the ar-
ray dimension (which is part of an array’s type) to return pointers to the first and
one past the last elements, respectively. For the same reasons, we also cannot use
a range for to process the elements in a (so-called) dynamic array.

It is important to remember that what we call a dynamic array does not
have an array type.

Initializing an Array of Dynamically Allocated Objects

By default, objects allocated by new—whether allocated as a single object or in an
array—are default initialized. We can value initialize (§ 3.3.1, p. 98) the elements
in an array by following the size with an empty pair of parentheses.

int *pia = new int[10]; // block of ten uninitialized ints
int *pia2 = new int[10](); // block of ten ints value initialized to 0

string *psa = new string[10]; // block of ten empty strings
string *psa2 = new string[10](); // block of ten empty strings
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Under the new standard, we can also provide a braced list of element initializers:

// block of ten ints each initialized from the corresponding initializer
int *pia3 = new int[10]{0,1,2,3,4,5,6,7,8,9};
// block of ten strings; the first four are initialized from the given initializers
// remaining elements are value initialized
string *psa3 = new string[10]{"a", "an", "the", string(3,’x’)};

As when we list initialize an object of built-in array type (§ 3.5.1, p. 114), the initial-
izers are used to initialize the first elements in the array. If there are fewer initial-
izers than elements, the remaining elements are value initialized. If there are more
initializers than the given size, then the new expression fails and no storage is al-
located. In this case, new throws an exception of type bad_array_new_length.
Like bad_alloc, this type is defined in the new header.

Although we can use empty parentheses to value initialize the elements of an
array, we cannot supply an element initializer inside the parentheses. The fact that
we cannot supply an initial value inside the parentheses means that we cannot use
auto to allocate an array (§ 12.1.2, p. 459).

It Is Legal to Dynamically Allocate an Empty Array

We can use an arbitrary expression to determine the number of objects to allocate:

size_t n = get_size(); // get_size returns the number of elements needed
int* p = new int[n]; // allocate an array to hold the elements
for (int* q = p; q != p + n; ++q)

/* process the array */ ;

An interesting question arises: What happens if get_size returns 0? The answer
is that our code works fine. Calling new[n] with n equal to 0 is legal even though
we cannot create an array variable of size 0:

char arr[0]; // error: cannot define a zero-length array
char *cp = new char[0]; // ok: but cp can’t be dereferenced

When we use new to allocate an array of size zero, new returns a valid, nonzero
pointer. That pointer is guaranteed to be distinct from any other pointer returned
by new. This pointer acts as the off-the-end pointer (§ 3.5.3, p. 119) for a zero-
element array. We can use this pointer in ways that we use an off-the-end iterator.
The pointer can be compared as in the loop above. We can add zero to (or subtract
zero from) such a pointer and can subtract the pointer from itself, yielding zero.
The pointer cannot be dereferenced—after all, it points to no element.

In our hypothetical loop, if get_size returns 0, then n is also 0. The call to
new will allocate zero objects. The condition in the for will fail (p is equal to q +
n because n is 0). Thus, the loop body is not executed.

Freeing Dynamic Arrays

To free a dynamic array, we use a special form of delete that includes an empty
pair of square brackets:
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delete p; // p must point to a dynamically allocated object or be null
delete [] pa; // pa must point to a dynamically allocated array or be null

The second statement destroys the elements in the array to which pa points and
frees the corresponding memory. Elements in an array are destroyed in reverse
order. That is, the last element is destroyed first, then the second to last, and so on.

When we delete a pointer to an array, the empty bracket pair is essential: It
indicates to the compiler that the pointer addresses the first element of an array of
objects. If we omit the brackets when we delete a pointer to an array (or provide
them when we delete a pointer to an object), the behavior is undefined.

Recall that when we use a type alias that defines an array type, we can allocate
an array without using [] with new. Even so, we must use brackets when we
delete a pointer to that array:

typedef int arrT[42]; // arrT names the type array of 42 ints
int *p = new arrT; // allocates an array of 42 ints; p points to the first one
delete [] p; // brackets are necessary because we allocated an array

Despite appearances, p points to the first element of an array of objects, not to a
single object of type arrT. Thus, we must use [] when we delete p.

The compiler is unlikely to warn us if we forget the brackets when we
delete a pointer to an array or if we use them when we delete a
pointer to an object. Instead, our program is apt to misbehave without
warning during execution.

Smart Pointers and Dynamic Arrays

The library provides a version of unique_ptr that can manage arrays allocated
by new. To use a unique_ptr to manage a dynamic array, we must include a pair
of empty brackets after the object type:

// up points to an array of ten uninitialized ints
unique_ptr<int[]> up(new int[10]);
up.release(); // automatically uses delete[] to destroy its pointer

The brackets in the type specifier (<int[]>) say that up points not to an int but
to an array of ints. Because up points to an array, when up destroys the pointer it
manages, it will automatically use delete[].

unqiue_ptrs that point to arrays provide slightly different operations than
those we used in § 12.1.5 (p. 470). These operations are described in Table 12.6
(overleaf). When a unique_ptr points to an array, we cannot use the dot and
arrow member access operators. After all, the unqiue_ptr points to an array, not
an object so these operators would be meaningless. On the other hand, when a
unqiue_ptr points to an array, we can use the subscript operator to access the
elements in the array:

for (size_t i = 0; i != 10; ++i)
up[i] = i; // assign a new value to each of the elements
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Table 12.6: unique_ptrs to Arrays

Member access operators (dot and arrow) are not supported for unique_ptrs to arrays.
Other unique_ptr operations unchanged.

unique_ptr<T[]> u u can point to a dynamically allocated array of type T.
unique_ptr<T[]> u(p) u points to the dynamically allocated array to which the built-in

pointer p points. p must be convertible to T* (§ 4.11.2, p. 161).
u[i] Returns the object at position i in the array that u owns.

u must point to an array.

Unlike unique_ptr, shared_ptrs provide no direct support for managing a
dynamic array. If we want to use a shared_ptr to manage a dynamic array, we
must provide our own deleter:

// to use a shared_ptr we must supply a deleter
shared_ptr<int> sp(new int[10], [](int *p) { delete[] p; });
sp.reset(); // uses the lambda we supplied that uses delete[] to free the array

Here we pass a lambda (§ 10.3.2, p. 388) that uses delete[] as the deleter.
Had we neglected to supply a deleter, this code would be undefined. By de-

fault, shared_ptr uses delete to destroy the object to which it points. If that
object is a dynamic array, using delete has the same kinds of problems that arise
if we forget to use []when we delete a pointer to a dynamic array (§ 12.2.1, p. 479).

The fact that shared_ptr does not directly support managing arrays affects
how we access the elements in the array:

// shared_ptrs don’t have subscript operator and don’t support pointer arithmetic
for (size_t i = 0; i != 10; ++i)

*(sp.get() + i) = i; // use get to get a built-in pointer

There is no subscript operator for shared_ptrs, and the smart pointer types do
not support pointer arithmetic. As a result, to access the elements in the array, we
must use get to obtain a built-in pointer, which we can then use in normal ways.

EXE R C I S E S SE C TI O N 12.2.1

Exercise 12.23: Write a program to concatenate two string literals, putting the result
in a dynamically allocated array of char. Write a program to concatenate two library
strings that have the same value as the literals used in the first program.

Exercise 12.24: Write a program that reads a string from the standard input into a
dynamically allocated character array. Describe how your program handles varying
size inputs. Test your program by giving it a string of data that is longer than the array
size you’ve allocated.

Exercise 12.25: Given the following new expression, how would you delete pa?

int *pa = new int[10];
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12.2.2 The allocator Class
An aspect of new that limits its flexibility is that new combines allocating memory
with constructing object(s) in that memory. Similarly, delete combines destruc-
tion with deallocation. Combining initialization with allocation is usually what we
want when we allocate a single object. In that case, we almost certainly know the
value the object should have.

When we allocate a block of memory, we often plan to construct objects in that
memory as needed. In this case, we’d like to decouple memory allocation from
object construction. Decoupling construction from allocation means that we can
allocate memory in large chunks and pay the overhead of constructing the objects
only when we actually need to create them.

In general, coupling allocation and construction can be wasteful. For example:

string *const p = new string[n]; // construct n empty strings
string s;
string *q = p; // q points to the first string
while (cin >> s && q != p + n)

*q++ = s; // assign a new value to *q
const size_t size = q - p; // remember how many strings we read
// use the array
delete[] p; // p points to an array; must remember to use delete[]

This new expression allocates and initializes n strings. However, we might not
need n strings; a smaller number might suffice. As a result, we may have created
objects that are never used. Moreover, for those objects we do use, we immediately
assign new values over the previously initialized strings. The elements that are
used are written twice: first when the elements are default initialized, and subse-
quently when we assign to them.

More importantly, classes that do not have default constructors cannot be dy-
namically allocated as an array.

The allocator Class

The library allocator class, which is defined in the memory header, lets us sepa-
rate allocation from construction. It provides type-aware allocation of raw, uncon-
structed, memory. Table 12.7 (overleaf) outlines the operations that allocator
supports. In this section, we’ll describe the allocator operations. In § 13.5
(p. 524), we’ll see an example of how this class is typically used.

Like vector, allocator is a template (§ 3.3, p. 96). To define an allocator
we must specify the type of objects that a particular allocator can allocate.
When an allocator object allocates memory, it allocates memory that is appro-
priately sized and aligned to hold objects of the given type:

allocator<string> alloc; // object that can allocate strings
auto const p = alloc.allocate(n); // allocate n unconstructed strings

This call to allocate allocates memory for n strings.
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Table 12.7: Standard allocator Class and Customized Algorithms

allocator<T> a Defines an allocator object named a that can allocate memory
for objects of type T.

a.allocate(n) Allocates raw, unconstructed memory to hold n objects of type T.
a.deallocate(p, n) Deallocates memory that held n objects of type T starting at the

address in the T* pointer p; p must be a pointer previously
returned by allocate, and n must be the size requested when p
was created. The user must run destroy on any objects that
were constructed in this memory before calling deallocate.

a.construct(p, args) p must be a pointer to type T that points to raw memory; args are
passed to a constructor for type T, which is used to construct an
object in the memory pointed to by p.

a.destroy(p) Runs the destructor (§ 12.1.1, p. 452) on the object pointed to by
the T* pointer p.

allocators Allocate Unconstructed Memory

The memory an allocator allocates is unconstructed. We use this memory by
constructing objects in that memory. In the new library the construct member
takes a pointer and zero or more additional arguments; it constructs an element
at the given location. The additional arguments are used to initialize the object
being constructed. Like the arguments to make_shared (§ 12.1.1, p. 451), these
additional arguments must be valid initializers for an object of the type being con-
structed. In particular, if the , object is a class type, these arguments must match a
constructor for that class:

auto q = p; // q will point to one past the last constructed element
alloc.construct(q++); // *q is the empty string
alloc.construct(q++, 10, ’c’); // *q is cccccccccc
alloc.construct(q++, "hi"); // *q is hi!

In earlier versions of the library, construct took only two arguments: the pointer
at which to construct an object and a value of the element type. As a result, we
could only copy an element into unconstructed space, we could not use any other
constructor for the element type.

It is an error to use raw memory in which an object has not been constructed:

cout << *p << endl; // ok: uses the string output operator
cout << *q << endl; // disaster: q points to unconstructed memory!

We must construct objects in order to use memory returned by
allocate. Using unconstructed memory in other ways is undefined.

When we’re finished using the objects, we must destroy the elements we con-
structed, which we do by calling destroy on each constructed element. The
destroy function takes a pointer and runs the destructor (§ 12.1.1, p. 452) on the
pointed-to object:
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while (q != p)
alloc.destroy(--q); // free the strings we actually allocated

At the beginning of our loop, q points one past the last constructed element. We
decrement q before calling destroy. Thus, on the first call to destroy, q points
to the last constructed element. We destroy the first element in the last iteration,
after which q will equal p and the loop ends.

We may destroy only elements that are actually constructed.

Once the elements have been destroyed, we can either reuse the memory to
hold other strings or return the memory to the system. We free the memory by
calling deallocate:

alloc.deallocate(p, n);

The pointer we pass to deallocate cannot be null; it must point to memory allo-
cated by allocate. Moreover, the size argument passed to deallocatemust be
the same size as used in the call to allocate that obtained the memory to which
the pointer points.

Algorithms to Copy and Fill Uninitialized Memory

As a companion to the allocator class, the library also defines two algorithms
that can construct objects in uninitialized memory. These functions, described in
Table 12.8, are defined in the memory header.

Table 12.8: allocator Algorithms

These functions construct elements in the destination, rather than assigning to them.

uninitialized_copy(b, e, b2)
Copies elements from the input range denoted by iterators b and e into
unconstructed, raw memory denoted by the iterator b2. The memory denoted by
b2 must be large enough to hold a copy of the elements in the input range.

uninitialized_copy_n(b, n, b2)
Copies n elements starting from the one denoted by the iterator b into raw
memory starting at b2.

uninitialized_fill(b, e, t)
Constructs objects in the range of raw memory denoted by iterators b and e as a
copy of t.

uninitialized_fill_n(b, n, t)
Constructs an unsigned number n objects starting at b. b must denote
unconstructed, raw memory large enough to hold the given number of objects.

As an example, assume we have a vector of ints that we want to copy into
dynamic memory. We’ll allocate memory for twice as many ints as are in the
vector. We’ll construct the first half of the newly allocated memory by copying
elements from the original vector. We’ll construct elements in the second half by
filling them with a given value:
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// allocate twice as many elements as vi holds
auto p = alloc.allocate(vi.size() * 2);

// construct elements starting at p as copies of elements in vi
auto q = uninitialized_copy(vi.begin(), vi.end(), p);

// initialize the remaining elements to 42
uninitialized_fill_n(q, vi.size(), 42);

Like the copy algorithm (§ 10.2.2, p. 382), uninitialized_copy takes three
iterators. The first two denote an input sequence and the third denotes the desti-
nation into which those elements will be copied. The destination iterator passed
to uninitialized_copy must denote unconstructed memory. Unlike copy,
uninitialized_copy constructs elements in its destination.

Like copy, uninitialized_copy returns its (incremented) destination iter-
ator. Thus, a call to uninitialized_copy returns a pointer positioned one ele-
ment past the last constructed element. In this example, we store that pointer in q,
which we pass to uninitialized_fill_n. This function, like fill_n (§ 10.2.2,
p. 380), takes a pointer to a destination, a count, and a value. It will construct
the given number of objects from the given value at locations starting at the given
destination.

EXE R C I S E S SE C TI O N 12.2.2

Exercise 12.26: Rewrite the program on page 481 using an allocator.

12.3 Using the Library: A Text-Query Program
To conclude our discussion of the library, we’ll implement a simple text-query pro-
gram. Our program will let a user search a given file for words that might occur
in it. The result of a query will be the number of times the word occurs and a
list of lines on which that word appears. If a word occurs more than once on the
same line, we’ll display that line only once. Lines will be displayed in ascending
order—that is, line 7 should be displayed before line 9, and so on.

For example, we might read the file that contains the input for this chapter and
look for the word element. The first few lines of the output would be

element occurs 112 times
(line 36) A set element contains only a key;
(line 158) operator creates a new element
(line 160) Regardless of whether the element
(line 168) When we fetch an element from a map, we
(line 214) If the element is not found, find returns

followed by the remaining 100 or so lines in which the word element occurs.
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12.3.1 Design of the Query Program
A good way to start the design of a program is to list the program’s operations.
Knowing what operations we need can help us see what data structures we’ll need.
Starting from requirements, the tasks our program must do include the following:

• When it reads the input, the program must remember the line(s) in which
each word appears. Hence, the program will need to read the input a line at
a time and break up the lines from the input file into its separate words

• When it generates output,

– The program must be able to fetch the line numbers associated with a
given word

– The line numbers must appear in ascending order with no duplicates

– The program must be able to print the text appearing in the input file at
a given line number.

These requirements can be met quite neatly by using various library facilities:

• We’ll use a vector<string> to store a copy of the entire input file. Each
line in the input file will be an element in this vector. When we want to
print a line, we can fetch the line using its line number as the index.

• We’ll use an istringstream (§ 8.3, p. 321) to break each line into words.

• We’ll use a set to hold the line numbers on which each word in the input
appears. Using a set guarantees that each line will appear only once and
that the line numbers will be stored in ascending order.

• We’ll use a map to associate each word with the set of line numbers on which
the word appears. Using a map will let us fetch the set for any given word.

For reasons we’ll explain shortly, our solution will also use shared_ptrs.

Data Structures

Although we could write our program using vector, set, and map directly, it
will be more useful if we define a more abstract solution. We’ll start by designing
a class to hold the input file in a way that makes querying the file easy. This class,
which we’ll name TextQuery, will hold a vector and a map. The vector will
hold the text of the input file; the map will associate each word in that file to the
set of line numbers on which that word appears. This class will have a constructor
that reads a given input file and an operation to perform the queries.

The work of the query operation is pretty simple: It will look inside its map to
see whether the given word is present. The hard part in designing this function
is deciding what the query function should return. Once we know that a word
was found, we need to know how often it occurred, the line numbers on which it
occurred, and the corresponding text for each of those line numbers.

The easiest way to return all those data is to define a second class, which we’ll
name QueryResult, to hold the results of a query. This class will have a print
function to print the results in a QueryResult.
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Sharing Data between Classes

Our QueryResult class is intended to represent the results of a query. Those
results include the set of line numbers associated with the given word and the
corresponding lines of text from the input file. These data are stored in objects of
type TextQuery.

Because the data that a QueryResult needs are stored in a TextQuery object,
we have to decide how to access them. We could copy the set of line numbers,
but that might be an expensive operation. Moreover, we certainly wouldn’t want
to copy the vector, because that would entail copying the entire file in order to
print (what will usually be) a small subset of the file.

We could avoid making copies by returning iterators (or pointers) into the
TextQuery object. However, this approach opens up a pitfall: What happens
if the TextQuery object is destroyed before a corresponding QueryResult? In
that case, the QueryResult would refer to data in an object that no longer exists.

This last observation about synchronizing the lifetime of a QueryResultwith
the TextQuery object whose results it represents suggests a solution to our de-
sign problem. Given that these two classes conceptually “share” data, we’ll use
shared_ptrs (§ 12.1.1, p. 450) to reflect that sharing in our data structures.

Using the TextQuery Class

When we design a class, it can be helpful to write programs using the class before
actually implementing the members. That way, we can see whether the class has
the operations we need. For example, the following program uses our proposed
TextQuery and QueryResult classes. This function takes an ifstream that
points to the file we want to process, and interacts with a user, printing the results
for the given words:

void runQueries(ifstream &infile)
{

// infile is an ifstream that is the file we want to query
TextQuery tq(infile); // store the file and build the query map
// iterate with the user: prompt for a word to find and print results
while (true) {

cout << "enter word to look for, or q to quit: ";
string s;
// stop if we hit end-of-file on the input or if a ’q’ is entered
if (!(cin >> s) || s == "q") break;
// run the query and print the results
print(cout, tq.query(s)) << endl;

}
}

We start by initializing a TextQuery object named tq from a given ifstream.
The TextQuery constructor reads that file into its vector and builds the map
that associates the words in the input with the line numbers on which they appear.

The while loop iterates (indefinitely) with the user asking for a word to query
and printing the related results. The loop condition tests the literal true (§ 2.1.3,
p. 41), so it always succeeds. We exit the loop through the break (§ 5.5.1, p. 190)

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 12.3 Using the Library: A Text-Query Program 487

after the first if. That if checks that the read succeeded. If so, it also checks
whether the user entered a q to quit. Once we have a word to look for, we ask tq
to find that word and then call print to print the results of the search.

EXE R C I S E S SE C TI O N 12.3.1

Exercise 12.27: The TextQuery and QueryResult classes use only capabilities that
we have already covered. Without looking ahead, write your own versions of these
classes.

Exercise 12.28: Write a program to implement text queries without defining classes to
manage the data. Your program should take a file and interact with a user to query for
words in that file. Use vector, map, and set containers to hold the data for the file
and to generate the results for the queries.

Exercise 12.29: We could have written the loop to manage the interaction with the
user as a do while (§ 5.4.4, p. 189) loop. Rewrite the loop to use a do while. Explain
which version you prefer and why.

12.3.2 Defining the Query Program Classes
We’ll start by defining our TextQuery class. The user will create objects of this
class by supplying an istream from which to read the input file. This class also
provides the query operation that will take a string and return a QueryResult
representing the lines on which that string appears.

The data members of the class have to take into account the intended sharing
with QueryResult objects. The QueryResult class will share the vector repre-
senting the input file and the sets that hold the line numbers associated with each
word in the input. Hence, our class has two data members: a shared_ptr to a
dynamically allocated vector that holds the input file, and a map from string to
shared_ptr<set>. The map associates each word in the file with a dynamically
allocated set that holds the line numbers on which that word appears.

To make our code a bit easier to read, we’ll also define a type member (§ 7.3.1,
p. 271) to refer to line numbers, which are indices into a vector of strings:

class QueryResult; // declaration needed for return type in the query function
class TextQuery {
public:

using line_no = std::vector<std::string>::size_type;
TextQuery(std::ifstream&);
QueryResult query(const std::string&) const;

private:
std::shared_ptr<std::vector<std::string>> file; // input file
// map of each word to the set of the lines in which that word appears
std::map<std::string,

std::shared_ptr<std::set<line_no>>> wm;
};
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The hardest part about this class is untangling the class names. As usual, for code
that will go in a header file, we use std:: when we use a library name (§ 3.1,
p. 83). In this case, the repeated use of std:: makes the code a bit hard to read at
first. For example,

std::map<std::string, std::shared_ptr<std::set<line_no>>> wm;

is easier to understand when rewritten as

map<string, shared_ptr<set<line_no>>> wm;

The TextQuery Constructor

The TextQuery constructor takes an ifstream, which it reads a line at a time:

// read the input file and build the map of lines to line numbers
TextQuery::TextQuery(ifstream &is): file(new vector<string>)
{

string text;
while (getline(is, text)) { // for each line in the file

file->push_back(text); // remember this line of text
int n = file->size() - 1; // the current line number
istringstream line(text); // separate the line into words
string word;
while (line >> word) { // for each word in that line

// if word isn’t already in wm, subscripting adds a new entry
auto &lines = wm[word]; // lines is a shared_ptr
if (!lines) // that pointer is null the first time we see word

lines.reset(new set<line_no>); // allocate a new set
lines->insert(n); // insert this line number

}
}

}

The constructor initializer allocates a new vector to hold the text from the input
file. We use getline to read the file a line at a time and push each line onto the
vector. Because file is a shared_ptr, we use the -> operator to dereference
file to fetch the push_back member of the vector to which file points.

Next we use an istringstream (§ 8.3, p. 321) to process each word in the
line we just read. The inner while uses the istringstream input operator to
read each word from the current line into word. Inside the while, we use the map
subscript operator to fetch the shared_ptr<set> associated with word and bind
lines to that pointer. Note that lines is a reference, so changes made to lines
will be made to the element in wm.

If word wasn’t in the map, the subscript operator adds word to wm (§ 11.3.4,
p. 435). The element associated with word is value initialized, which means that
lines will be a null pointer if the subscript operator added word to wm. If lines
is null, we allocate a new set and call reset to update the shared_ptr to which
lines refers to point to this newly allocated set.

Regardless of whether we created a new set, we call insert to add the cur-
rent line number. Because lines is a reference, the call to insert adds an element
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to the set in wm. If a given word occurs more than once in the same line, the call
to insert does nothing.

The QueryResult Class

The QueryResult class has three data members: a string that is the word whose
results it represents; a shared_ptr to the vector containing the input file; and
a shared_ptr to the set of line numbers on which this word appears. Its only
member function is a constructor that initializes these three members:

class QueryResult {
friend std::ostream& print(std::ostream&, const QueryResult&);
public:

QueryResult(std::string s,
std::shared_ptr<std::set<line_no>> p,
std::shared_ptr<std::vector<std::string>> f):

sought(s), lines(p), file(f) { }
private:

std::string sought; // word this query represents
std::shared_ptr<std::set<line_no>> lines; // lines it’s on
std::shared_ptr<std::vector<std::string>> file; // input file

};

The constructor’s only job is to store its arguments in the corresponding data mem-
bers, which it does in the constructor initializer list (§ 7.1.4, p. 265).

The query Function

The query function takes a string, which it uses to locate the corresponding set
of line numbers in the map. If the string is found, the query function constructs
a QueryResult from the given string, the TextQuery file member, and the
set that was fetched from wm.

The only question is: What should we return if the given string is not found?
In this case, there is no set to return. We’ll solve this problem by defining a local
static object that is a shared_ptr to an empty set of line numbers. When the
word is not found, we’ll return a copy of this shared_ptr:

QueryResult
TextQuery::query(const string &sought) const
{

// we’ll return a pointer to this set if we don’t find sought
static shared_ptr<set<line_no>> nodata(new set<line_no>);
// use find and not a subscript to avoid adding words to wm!
auto loc = wm.find(sought);
if (loc == wm.end())

return QueryResult(sought, nodata, file); // not found
else

return QueryResult(sought, loc->second, file);
}
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Printing the Results

The print function prints its given QueryResult object on its given stream:

ostream &print(ostream & os, const QueryResult &qr)
{

// if the word was found, print the count and all occurrences
os << qr.sought << " occurs " << qr.lines->size() << " "

<< make_plural(qr.lines->size(), "time", "s") << endl;
// print each line in which the word appeared
for (auto num : *qr.lines) // for every element in the set

// don’t confound the user with text lines starting at 0
os << "\t(line " << num + 1 << ") "

<< *(qr.file->begin() + num) << endl;
return os;

}

We use the size of the set to which the qr.lines points to report how many
matches were found. Because that set is in a shared_ptr, we have to remember
to dereference lines. We call make_plural (§ 6.3.2, p. 224) to print time or
times, depending on whether that size is equal to 1.

In the for we iterate through the set to which lines points. The body of
the for prints the line number, adjusted to use human-friendly counting. The
numbers in the set are indices of elements in the vector, which are numbered
from zero. However, most users think of the first line as line number 1, so we
systematically add 1 to the line numbers to convert to this more common notation.

We use the line number to fetch a line from the vector to which file points.
Recall that when we add a number to an iterator, we get the element that many
elements further into the vector (§ 3.4.2, p. 111). Thus, file->begin() + num
is the numth element after the start of the vector to which file points.

Note that this function correctly handles the case that the word is not found. In
this case, the set will be empty. The first output statement will note that the word
occurred 0 times. Because *res.lines is empty. the for loop won’t be executed.

EXE R C I S E S SE C TI O N 12.3.2

Exercise 12.30: Define your own versions of the TextQuery and QueryResult
classes and execute the runQueries function from § 12.3.1 (p. 486).

Exercise 12.31: What difference(s) would it make if we used a vector instead of a
set to hold the line numbers? Which approach is better? Why?

Exercise 12.32: Rewrite the TextQuery and QueryResult classes to use a StrBlob
instead of a vector<string> to hold the input file.

Exercise 12.33: In Chapter 15 we’ll extend our query system and will need some addi-
tional members in the QueryResult class. Add members named begin and end that
return iterators into the set of line numbers returned by a given query, and a member
named get_file that returns a shared_ptr to the file in the QueryResult object.
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CH A P T E R SU M M A R Y
In C++, memory is allocated through new expressions and freed through delete
expressions. The library also defines an allocator class for allocating blocks of
dynamic memory.

Programs that allocate dynamic memory are responsible for freeing the mem-
ory they allocate. Properly freeing dynamic memory is a rich source of bugs: Either
the memory is never freed, or it is freed while there are still pointers referring to the
memory. The new library defines smart pointers—shared_ptr, unique_ptr,
and weak_ptr—that make managing dynamic memory much safer. A smart
pointer automatically frees the memory once there are no other users of that mem-
ory. When possible, modern C++ programs ought to use smart pointers.

DEFINED TERMS

allocator Library class that allocates un-
constructed memory.

dangling pointer A pointer that refers to
memory that once had an object but no
longer does. Program errors due to dan-
gling pointers are notoriously difficult to
debug.

delete Frees memory allocated by new.
delete p frees the object and delete [] p
frees the array to which p points. p may be
null or point to memory allocated by new.

deleter Function passed to a smart pointer
to use in place of delete when destroying
the object to which the pointer is bound.

destructor Special member function that
cleans up an object when the object goes out
of scope or is deleted.

dynamically allocated Object that is allo-
cated on the free store. Objects allocated on
the free store exist until they are explicitly
deleted or the program terminates.

free store Memory pool available to a pro-
gram to hold dynamically allocated objects.

heap Synonym for free store.

new Allocates memory from the free store.
new T allocates and constructs an object of
type T and returns a pointer to that object;
if T is an array type, new returns a pointer
to the first element in the array. Similarly,

new [n] T allocates n objects of type T and
returns a pointer to the first element in the
array. By default, the allocated object is de-
fault initialized. We may also provide op-
tional initializers.

placement new Form of new that takes
additional arguments passed in parenthe-
ses following the keyword new; for exam-
ple, new (nothrow) int tells new that it
should not throw an exception.

reference count Counter that tracks how
many users share a common object. Used
by smart pointers to know when it is safe to
delete memory to which the pointers point.

shared_ptr Smart pointer that provides
shared ownership: The object is deleted
when the last shared_ptr pointing to that
object is destroyed.

smart pointer Library type that acts like a
pointer but can be checked to see whether it
is safe to use. The type takes care of deleting
memory when appropriate.

unique_ptr Smart pointer that provides
single ownership: The object is deleted
when the unique_ptr pointing to that ob-
ject is destroyed. unique_ptrs cannot be
directly copied or assigned.

weak_ptr Smart pointer that points to an
object managed by a shared_ptr. The
shared_ptr does not count weak_ptrs
when deciding whether to delete its object.
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TOOLS FOR CLASS AUTHORS
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Classes are the central concept in C++. Chapter 7 began our de-
tailed coverage of how classes are defined. That chapter covered
topics fundamental to any use of classes: class scope, data hiding,
and constructors. It also introduced various important class features:
member functions, the implicit this pointer, friends, and const,
static, and mutable members. In this part, we’ll extend our cov-
erage of classes by looking at copy control, overloaded operators,
inheritance, and templates.

As we’ve seen, in C++ classes define constructors to control what
happens when objects of the class type are initialized. Classes also
control what happens when objects are copied, assigned, moved, and
destroyed. In this respect, C++ differs from other languages, many
of which do not give class designers the ability to control these op-
erations. Chapter 13 covers these topics. This chapter also covers
two important concepts introduced by the new standard: rvalue ref-
erences and move operations.

Chapter 14 looks at operator overloading, which allows operands
of class types to be used with the built-in operators. Operator over-
loading is one of the ways whereby C++ lets us create new types that
are as intuitive to use as are the built-in types.

Among the operators that a class can overload is the funtion call
operator. We can “call” objects of such classes just as if they were
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functions. We’ll also look at new library facilities that make it easy to
use different types of callable objects in a uniform way.

This chapter concludes by looking at another special kind of class
member function—conversion operators. These operators define im-
plicit conversions from objects of class type. The compiler applies
these conversions in the same contexts—and for the same reasons—
as it does with conversions among the built-in types.

The last two chapters in this part cover how C++ supports object-
oriented and generic programming.

Chapter 15 covers inheritance and dynamic binding. Along with
data abstraction, inheritance and dynamic binding are fundamen-
tal to object-oriented programming. Inheritance makes it easier for
us to define related types and dynamic binding lets us write type-
indepenent code that can ignore the differences among types that
are related by inheritance.

Chapter 16 covers function and class templates. Templates let us
write generic classes and functions that are type-independent. A
number of new template-related features were introduced by the
new standard: variadic templates, template type aliases, and new
ways to control instantiation.

Writing our own object-oriented or generic types requires a fairly
good understanding of C++. Fortunately, we can use object-oriented
and generic types without understanding the details of how to build
them. For example, the standard library uses the facilities we’ll study
in Chapters 15 and 16 extensively, and we’ve used the library types
and algorithms without needing to know how they are implemented.

Readers, therefore, should understand that Part III covers fairly
advanced topics. Writing templates or object-oriented classes requires
a good understanding of the basics of C++ and a good grasp of how
to define more basic classes.
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As we saw in Chapter 7, each class defines a new type and defines
the operations that objects of that type can perform. In that chapter,
we also learned that classes can define constructors, which control
what happens when objects of the class type are created.

In this chapter we’ll learn how classes can control what happens
when objects of the class type are copied, assigned, moved, or de-
stroyed. Classes control these actions through special member func-
tions: the copy constructor, move constructor, copy-assignment op-
erator, move-assignment operator, and destructor.
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When we define a class, we specify—explicitly or implicitly—what hap-
pens when objects of that class type are copied, moved, assigned, and destroyed.
A class controls these operations by defining five special member functions: copy
constructor, copy-assignment operator, move constructor, move-assignment op-
erator, and destructor. The copy and move constructors define what happens
when an object is initialized from another object of the same type. The copy- and
move-assignment operators define what happens when we assign an object of a
class type to another object of that same class type. The destructor defines what
happens when an object of the type ceases to exist. Collectively, we’ll refer to these
operations as copy control.

If a class does not define all of the copy-control members, the compiler auto-
matically defines the missing operations. As a result, many classes can ignore copy
control (§ 7.1.5, p. 267). However, for some classes, relying on the default defini-
tions leads to disaster. Frequently, the hardest part of implementing copy-control
operations is recognizing when we need to define them in the first place.

Copy control is an essential part of defining any C++ class. Program-
mers new to C++ are often confused by having to define what happens
when objects are copied, moved, assigned, or destroyed. This confusion
is compounded because if we do not explicitly define these operations,
the compiler defines them for us—although the compiler-defined ver-
sions might not behave as we intend.

13.1 Copy, Assign, and Destroy
We’ll start by covering the most basic operations, which are the copy constructor,
copy-assignment operator, and destructor. We’ll cover the move operations (which
were introduced by the new standard) in § 13.6 (p. 531).

13.1.1 The Copy Constructor
A constructor is the copy constructor if its first parameter is a reference to the class
type and any additional parameters have default values:

class Foo {
public:

Foo(); // default constructor
Foo(const Foo&); // copy constructor
// . . .

};

For reasons we’ll explain shortly, the first parameter must be a reference type. That
parameter is almost always a reference to const, although we can define the copy
constructor to take a reference to nonconst. The copy constructor is used implic-
itly in several circumstances. Hence, the copy constructor usually should not be
explicit (§ 7.5.4, p. 296).
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The Synthesized Copy Constructor

When we do not define a copy constructor for a class, the compiler synthesizes
one for us. Unlike the synthesized default constructor (§ 7.1.4, p. 262), a copy
constructor is synthesized even if we define other constructors.

As we’ll see in § 13.1.6 (p. 508), the synthesized copy constructor for some
classes prevents us from copying objects of that class type. Otherwise, the synthe-
sized copy constructor memberwise copies the members of its argument into the
object being created (§ 7.1.5, p. 267). The compiler copies each nonstaticmember
in turn from the given object into the one being created.

The type of each member determines how that member is copied: Members
of class type are copied by the copy constructor for that class; members of built-in
type are copied directly. Although we cannot directly copy an array (§ 3.5.1, p. 114),
the synthesized copy constructor copies members of array type by copying each
element. Elements of class type are copied by using the elements’ copy constructor.

As an example, the synthesized copy constructor for our Sales_data class is
equivalent to:

class Sales_data {
public:

// other members and constructors as before
// declaration equivalent to the synthesized copy constructor
Sales_data(const Sales_data&);

private:
std::string bookNo;
int units_sold = 0;
double revenue = 0.0;

};
// equivalent to the copy constructor that would be synthesized for Sales_data
Sales_data::Sales_data(const Sales_data &orig):

bookNo(orig.bookNo), // uses the string copy constructor
units_sold(orig.units_sold), // copies orig.units_sold
revenue(orig.revenue) // copies orig.revenue
{ } // empty body

Copy Initialization

We are now in a position to fully understand the differences between direct initial-
ization and copy initialization (§ 3.2.1, p. 84):

string dots(10, ’.’); // direct initialization
string s(dots); // direct initialization
string s2 = dots; // copy initialization
string null_book = "9-999-99999-9"; // copy initialization
string nines = string(100, ’9’); // copy initialization

When we use direct initialization, we are asking the compiler to use ordinary func-
tion matching (§ 6.4, p. 233) to select the constructor that best matches the argu-
ments we provide. When we use copy initialization, we are asking the compiler
to copy the right-hand operand into the object being created, converting that oper-
and if necessary (§ 7.5.4, p. 294).
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Copy initialization ordinarily uses the copy constructor. However, as we’ll see
in § 13.6.2 (p. 534), if a class has a move constructor, then copy initialization some-
times uses the move constructor instead of the copy constructor. For now, what’s
useful to know is when copy initialization happens and that copy initialization
requires either the copy constructor or the move constructor.

Copy initialization happens not only when we define variables using an =, but
also when we

• Pass an object as an argument to a parameter of nonreference type

• Return an object from a function that has a nonreference return type

• Brace initialize the elements in an array or the members of an aggregate class
(§ 7.5.5, p. 298)

Some class types also use copy initialization for the objects they allocate. For exam-
ple, the library containers copy initialize their elements when we initialize the con-
tainer, or when we call an insert or push member (§ 9.3.1, p. 342). By contrast,
elements created by an emplace member are direct initialized (§ 9.3.1, p. 345).

Parameters and Return Values

During a function call, parameters that have a nonreference type are copy initial-
ized (§ 6.2.1, p. 209). Similarly, when a function has a nonreference return type, the
return value is used to copy initialize the result of the call operator at the call site
(§ 6.3.2, p. 224).

The fact that the copy constructor is used to initialize nonreference parameters
of class type explains why the copy constructor’s own parameter must be a refer-
ence. If that parameter were not a reference, then the call would never succeed—to
call the copy constructor, we’d need to use the copy constructor to copy the argu-
ment, but to copy the argument, we’d need to call the copy constructor, and so on
indefinitely.

Constraints on Copy Initialization

As we’ve seen, whether we use copy or direct initialization matters if we use an
initializer that requires conversion by an explicit constructor (§ 7.5.4, p. 296):

vector<int> v1(10); // ok: direct initialization
vector<int> v2 = 10; // error: constructor that takes a size is explicit

void f(vector<int>); // f’s parameter is copy initialized
f(10); // error: can’t use an explicit constructor to copy an argument
f(vector<int>(10)); // ok: directly construct a temporary vector from an int

Directly initializing v1 is fine, but the seemingly equivalent copy initialization of
v2 is an error, because the vector constructor that takes a single size parameter
is explicit. For the same reasons that we cannot copy initialize v2, we cannot
implicitly use an explicit constructor when we pass an argument or return a
value from a function. If we want to use an explicit constructor, we must do so
explicitly, as in the last line of the example above.
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The Compiler Can Bypass the Copy Constructor

During copy initialization, the compiler is permitted (but not obligated) to skip
the copy/move constructor and create the object directly. That is, the compiler is
permitted to rewrite

string null_book = "9-999-99999-9"; // copy initialization

into

string null_book("9-999-99999-9"); // compiler omits the copy constructor

However, even if the compiler omits the call to the copy/move constructor, the
copy/move constructor must exist and must be accessible (e.g., not private) at
that point in the program.

EXE R C I S E S SE C TI O N 13.1.1

Exercise 13.1: What is a copy constructor? When is it used?

Exercise 13.2: Explain why the following declaration is illegal:

Sales_data::Sales_data(Sales_data rhs);

Exercise 13.3: What happens when we copy a StrBlob? What about StrBlobPtrs?

Exercise 13.4: Assuming Point is a class type with a public copy constructor, iden-
tify each use of the copy constructor in this program fragment:

Point global;
Point foo_bar(Point arg)
{

Point local = arg, *heap = new Point(global);

*heap = local;
Point pa[ 4 ] = { local, *heap };
return *heap;

}

Exercise 13.5: Given the following sketch of a class, write a copy constructor that
copies all the members. Your constructor should dynamically allocate a new string
(§ 12.1.2, p. 458) and copy the object to which ps points, rather than copying ps itself.

class HasPtr {
public:

HasPtr(const std::string &s = std::string()):
ps(new std::string(s)), i(0) { }

private:
std::string *ps;
int i;

};
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13.1.2 The Copy-Assignment Operator
Just as a class controls how objects of that class are initialized, it also controls how
objects of its class are assigned:

Sales_data trans, accum;
trans = accum; // uses the Sales_data copy-assignment operator

As with the copy constructor, the compiler synthesizes a copy-assignment operator
if the class does not define its own.

Introducing Overloaded Assignment

Before we look at the synthesized assignment operator, we need to know a bit
about overloaded operators, which we cover in detail in Chapter 14.

Overloaded operators are functions that have the name operator followed
by the symbol for the operator being defined. Hence, the assignment operator is a
function named operator=. Like any other function, an operator function has a
return type and a parameter list.

The parameters in an overloaded operator represent the operands of the oper-
ator. Some operators, assignment among them, must be defined as member func-
tions. When an operator is a member function, the left-hand operand is bound to
the implicit this parameter (§ 7.1.2, p. 257). The right-hand operand in a binary
operator, such as assignment, is passed as an explicit parameter.

The copy-assignment operator takes an argument of the same type as the class:

class Foo {
public:

Foo& operator=(const Foo&); // assignment operator
// . . .

};

To be consistent with assignment for the built-in types (§ 4.4, p. 145), assignment
operators usually return a reference to their left-hand operand. It is also worth
noting that the library generally requires that types stored in a container have as-
signment operators that return a reference to the left-hand operand.

Assignment operators ordinarily should return a reference to their left-
hand operand.

The Synthesized Copy-Assignment Operator

Just as it does for the copy constructor, the compiler generates a synthesized copy-
assignment operator for a class if the class does not define its own. Analogously to
the copy constructor, for some classes the synthesized copy-assignment operator
disallows assignment (§ 13.1.6, p. 508). Otherwise, it assigns each nonstatic
member of the right-hand object to the corresponding member of the left-hand
object using the copy-assignment operator for the type of that member. Array
members are assigned by assigning each element of the array. The synthesized
copy-assignment operator returns a reference to its left-hand object.
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As an example, the following is equivalent to the synthesized Sales_data
copy-assignment operator:

// equivalent to the synthesized copy-assignment operator
Sales_data&
Sales_data::operator=(const Sales_data &rhs)
{

bookNo = rhs.bookNo; // calls the string::operator=
units_sold = rhs.units_sold; // uses the built-in int assignment
revenue = rhs.revenue; // uses the built-in double assignment
return *this; // return a reference to this object

}

EXE R C I S E S SE C TI O N 13.1.2

Exercise 13.6: What is a copy-assignment operator? When is this operator used?
What does the synthesized copy-assignment operator do? When is it synthesized?

Exercise 13.7: What happens when we assign one StrBlob to another? What about
StrBlobPtrs?

Exercise 13.8: Write the assignment operator for the HasPtr class from exercise 13.5
in § 13.1.1 (p. 499). As with the copy constructor, your assignment operator should
copy the object to which ps points.

13.1.3 The Destructor
The destructor operates inversely to the constructors: Constructors initialize the
nonstatic data members of an object and may do other work; destructors do
whatever work is needed to free the resources used by an object and destroy the
nonstatic data members of the object.

The destructor is a member function with the name of the class prefixed by a
tilde (~). It has no return value and takes no parameters:

class Foo {
public:

~Foo(); // destructor
// . . .

};

Because it takes no parameters, it cannot be overloaded. There is always only one
destructor for a given class.

What a Destructor Does

Just as a constructor has an initialization part and a function body (§ 7.5.1, p. 288),
a destructor has a function body and a destruction part. In a constructor, members
are initialized before the function body is executed, and members are initialized
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in the same order as they appear in the class. In a destructor, the function body
is executed first and then the members are destroyed. Members are destroyed in
reverse order from the order in which they were initialized.

The function body of a destructor does whatever operations the class designer
wishes to have executed subsequent to the last use of an object. Typically, the
destructor frees resources an object allocated during its lifetime.

In a destructor, there is nothing akin to the constructor initializer list to control
how members are destroyed; the destruction part is implicit. What happens when
a member is destroyed depends on the type of the member. Members of class type
are destroyed by running the member’s own destructor. The built-in types do not
have destructors, so nothing is done to destroy members of built-in type.

The implicit destruction of a member of built-in pointer type does not
delete the object to which that pointer points.

Unlike ordinary pointers, the smart pointers (§ 12.1.1, p. 452) are class types and
have destructors. As a result, unlike ordinary pointers, members that are smart
pointers are automatically destroyed during the destruction phase.

When a Destructor Is Called

The destructor is used automatically whenever an object of its type is destroyed:

• Variables are destroyed when they go out of scope.

• Members of an object are destroyed when the object of which they are a part
is destroyed.

• Elements in a container—whether a library container or an array—are de-
stroyed when the container is destroyed.

• Dynamically allocated objects are destroyed when the delete operator is
applied to a pointer to the object (§ 12.1.2, p. 460).

• Temporary objects are destroyed at the end of the full expression in which
the temporary was created.

Because destructors are run automatically, our programs can allocate resources and
(usually) not worry about when those resources are released.

For example, the following fragment defines four Sales_data objects:

{ // new scope
// p and p2 point to dynamically allocated objects
Sales_data *p = new Sales_data; // p is a built-in pointer
auto p2 = make_shared<Sales_data>(); // p2 is a shared_ptr
Sales_data item(*p); // copy constructor copies *p into item
vector<Sales_data> vec; // local object
vec.push_back(*p2); // copies the object to which p2 points
delete p; // destructor called on the object pointed to by p

} // exit local scope; destructor called on item, p2, and vec
// destroying p2 decrements its use count; if the count goes to 0, the object is freed
// destroying vec destroys the elements in vec
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Each of these objects contains a string member, which allocates dynamic mem-
ory to contain the characters in its bookNo member. However, the only memory
our code has to manage directly is the object we directly allocated. Our code di-
rectly frees only the dynamically allocated object bound to p.

The other Sales_data objects are automatically destroyed when they go out
of scope. When the block ends, vec, p2, and item all go out of scope, which
means that the vector, shared_ptr, and Sales_data destructors will be run
on those objects, respectively. The vector destructor will destroy the element we
pushed onto vec. The shared_ptr destructor will decrement the reference count
of the object to which p2 points. In this example, that count will go to zero, so the
shared_ptr destructor will delete the Sales_data object that p2 allocated.

In all cases, the Sales_data destructor implicitly destroys the bookNo mem-
ber. Destroying bookNo runs the stringdestructor, which frees the memory used
to store the ISBN.

The destructor is not run when a reference or a pointer to an object goes
out of scope.

The Synthesized Destructor

The compiler defines a synthesized destructor for any class that does not define its
own destructor. As with the copy constructor and the copy-assignment operator,
for some classes, the synthesized destructor is defined to disallow objects of the
type from being destroyed (§ 13.1.6, p. 508). Otherwise, the synthesized destructor
has an empty function body.

For example, the synthesized Sales_data destructor is equivalent to:

class Sales_data {
public:

// no work to do other than destroying the members, which happens automatically
~Sales_data() { }
// other members as before

};

The members are automatically destroyed after the (empty) destructor body is run.
In particular, the string destructor will be run to free the memory used by the
bookNo member.

It is important to realize that the destructor body does not directly destroy the
members themselves. Members are destroyed as part of the implicit destruction
phase that follows the destructor body. A destructor body executes in addition to
the memberwise destruction that takes place as part of destroying an object.

13.1.4 The Rule of Three/Five
As we’ve seen, there are three basic operations to control copies of class objects: the
copy constructor, copy-assignment operator, and destructor. Moreover, as we’ll see
in § 13.6 (p. 531), under the new standard, a class can also define a move construc-
tor and move-assignment operator.
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EXE R C I S E S SE C TI O N 13.1.3

Exercise 13.9: What is a destructor? What does the synthesized destructor do? When
is a destructor synthesized?

Exercise 13.10: What happens when a StrBlob object is destroyed? What about a
StrBlobPtr?

Exercise 13.11: Add a destructor to your HasPtr class from the previous exercises.

Exercise 13.12: How many destructor calls occur in the following code fragment?

bool fcn(const Sales_data *trans, Sales_data accum)
{

Sales_data item1(*trans), item2(accum);
return item1.isbn() != item2.isbn();

}

Exercise 13.13: A good way to understand copy-control members and constructors is
to define a simple class with these members in which each member prints its name:

struct X {
X() {std::cout << "X()" << std::endl;}
X(const X&) {std::cout << "X(const X&)" << std::endl;}

};

Add the copy-assignment operator and destructor to X and write a program using X
objects in various ways: Pass them as nonreference and reference parameters; dynam-
ically allocate them; put them in containers; and so forth. Study the output until you
are certain you understand when and why each copy-control member is used. As you
read the output, remember that the compiler can omit calls to the copy constructor.

There is no requirement that we define all of these operations: We can define
one or two of them without having to define all of them. However, ordinarily
these operations should be thought of as a unit. In general, it is unusual to need
one without needing to define them all.

Classes That Need Destructors Need Copy and Assignment

One rule of thumb to use when you decide whether a class needs to define its own
versions of the copy-control members is to decide first whether the class needs a
destructor. Often, the need for a destructor is more obvious than the need for the
copy constructor or assignment operator. If the class needs a destructor, it almost
surely needs a copy constructor and copy-assignment operator as well.

The HasPtr class that we have used in the exercises is a good example (§ 13.1.1,
p. 499). That class allocates dynamic memory in its constructor. The synthesized
destructor will not delete a data member that is a pointer. Therefore, this class
needs to define a destructor to free the memory allocated by its constructor.

What may be less clear—but what our rule of thumb tells us—is that HasPtr
also needs a copy constructor and copy-assignment operator.
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Consider what would happen if we gave HasPtr a destructor but used the
synthesized versions of the copy constructor and copy-assignment operator:

class HasPtr {
public:

HasPtr(const std::string &s = std::string()):
ps(new std::string(s)), i(0) { }

~HasPtr() { delete ps; }
// WRONG: HasPtr needs a copy constructor and copy-assignment operator
// other members as before

};

In this version of the class, the memory allocated in the constructor will be freed
when a HasPtr object is destroyed. Unfortunately, we have introduced a serious
bug! This version of the class uses the synthesized versions of copy and assign-
ment. Those functions copy the pointer member, meaning that multiple HasPtr
objects may be pointing to the same memory:

HasPtr f(HasPtr hp) // HasPtr passed by value, so it is copied
{

HasPtr ret = hp; // copies the given HasPtr
// process ret
return ret; // ret and hp are destroyed

}

When f returns, both hp and ret are destroyed and the HasPtr destructor is run
on each of these objects. That destructor will delete the pointer member in ret
and in hp. But these objects contain the same pointer value. This code will delete
that pointer twice, which is an error (§ 12.1.2, p. 462). What happens is undefined.

In addition, the caller of f may still be using the object that was passed to f:

HasPtr p("some values");
f(p); // when f completes, the memory to which p.ps points is freed
HasPtr q(p); // now both p and q point to invalid memory!

The memory to which p (and q) points is no longer valid. It was returned to the
system when hp (or ret!) was destroyed.

If a class needs a destructor, it almost surely also needs the copy-
assignment operator and a copy constructor.

Classes That Need Copy Need Assignment, and Vice Versa

Although many classes need to define all of (or none of) the copy-control members,
some classes have work that needs to be done to copy or assign objects but has no
need for the destructor.

As an example, consider a class that gives each object its own, unique serial
number. Such a class would need a copy constructor to generate a new, distinct
serial number for the object being created. That constructor would copy all the
other data members from the given object. This class would also need its own
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copy-assignment operator to avoid assigning to the serial number of the left-hand
object. However, this class would have no need for a destructor.

This example gives rise to a second rule of thumb: If a class needs a copy con-
structor, it almost surely needs a copy-assignment operator. And vice versa—if
the class needs an assignment operator, it almost surely needs a copy constructor
as well. Nevertheless, needing either the copy constructor or the copy-assignment
operator does not (necessarily) indicate the need for a destructor.

EXE R C I S E S SE C TI O N 13.1.4

Exercise 13.14: Assume that numbered is a class with a default constructor that gen-
erates a unique serial number for each object, which is stored in a data member named
mysn. Assuming numbered uses the synthesized copy-control members and given
the following function:

void f (numbered s) { cout << s.mysn << endl; }

what output does the following code produce?

numbered a, b = a, c = b;
f(a); f(b); f(c);

Exercise 13.15: Assume numbered has a copy constructor that generates a new serial
number. Does that change the output of the calls in the previous exercise? If so, why?
What output gets generated?

Exercise 13.16: What if the parameter in f were const numbered&? Does that
change the output? If so, why? What output gets generated?

Exercise 13.17: Write versions of numbered and f corresponding to the previous
three exercises and check whether you correctly predicted the output.

13.1.5 Using = default
We can explicitly ask the compiler to generate the synthesized versions of the

copy-control members by defining them as = default (§ 7.1.4, p. 264):

class Sales_data {
public:

// copy control; use defaults
Sales_data() = default;
Sales_data(const Sales_data&) = default;
Sales_data& operator=(const Sales_data &);
~Sales_data() = default;
// other members as before

};

Sales_data& Sales_data::operator=(const Sales_data&) = default;

When we specify = default on the declaration of the member inside the class
body, the synthesized function is implicitly inline (just as is any other member
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function defined in the body of the class). If we do not want the synthesized mem-
ber to be an inline function, we can specify = default on the member’s definition,
as we do in the definition of the copy-assignment operator.

We can use = default only on member functions that have a synthe-
sized version (i.e., the default constructor or a copy-control member).

13.1.6 Preventing Copies

Most classes should define—either implicitly or explicitly—the default
and copy constructors and the copy-assignment operator.

Although most classes should (and generally do) define a copy constructor and a
copy-assignment operator, for some classes, there really is no sensible meaning for
these operations. In such cases, the class must be defined so as to prevent copies or
assignments from being made. For example, the iostream classes prevent copy-
ing to avoid letting multiple objects write to or read from the same IO buffer. It
might seem that we could prevent copies by not defining the copy-control mem-
bers. However, this strategy doesn’t work: If our class doesn’t define these opera-
tions, the compiler will synthesize them.

Defining a Function as Deleted

Under the new standard, we can prevent copies by defining the copy constructor
and copy-assignment operator as deleted functions. A deleted function is one
that is declared but may not be used in any other way. We indicate that we want
to define a function as deleted by following its parameter list with = delete:

struct NoCopy {
NoCopy() = default; // use the synthesized default constructor
NoCopy(const NoCopy&) = delete; // no copy
NoCopy &operator=(const NoCopy&) = delete; // no assignment
~NoCopy() = default; // use the synthesized destructor
// other members

};

The = delete signals to the compiler (and to readers of our code) that we are
intentionally not defining these members.

Unlike = default, = delete must appear on the first declaration of a deleted
function. This difference follows logically from the meaning of these declarations.
A defaulted member affects only what code the compiler generates; hence the
= default is not needed until the compiler generates code. On the other hand, the
compiler needs to know that a function is deleted in order to prohibit operations
that attempt to use it.

Also unlike = default, we can specify = delete on any function (we can
use = default only on the default constructor or a copy-control member that
the compiler can synthesize). Although the primary use of deleted functions is to
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suppress the copy-control members, deleted functions are sometimes also useful
when we want to guide the function-matching process.

The Destructor Should Not be a Deleted Member

It is worth noting that we did not delete the destructor. If the destructor is deleted,
then there is no way to destroy objects of that type. The compiler will not let
us define variables or create temporaries of a type that has a deleted destructor.
Moreover, we cannot define variables or temporaries of a class that has a member
whose type has a deleted destructor. If a member has a deleted destructor, then
that member cannot be destroyed. If a member can’t be destroyed, the object as a
whole can’t be destroyed.

Although we cannot define variables or members of such types, we can dynam-
ically allocate objects with a deleted destructor. However, we cannot free them:

struct NoDtor {
NoDtor() = default; // use the synthesized default constructor
~NoDtor() = delete; // we can’t destroy objects of type NoDtor

};
NoDtor nd; // error: NoDtor destructor is deleted
NoDtor *p = new NoDtor(); // ok: but we can’t delete p
delete p; // error: NoDtor destructor is deleted

It is not possible to define an object or delete a pointer to a dynamically
allocated object of a type with a deleted destructor.

The Copy-Control Members May Be Synthesized as Deleted

As we’ve seen, if we do not define the copy-control members, the compiler defines
them for us. Similarly, if a class defines no constructors, the compiler synthesizes
a default constructor for that class (§ 7.1.4, p. 262). For some classes, the compiler
defines these synthesized members as deleted functions:

• The synthesized destructor is defined as deleted if the class has a member
whose own destructor is deleted or is inaccessible (e.g., private).

• The synthesized copy constructor is defined as deleted if the class has a mem-
ber whose own copy constructor is deleted or inaccessible. It is also deleted
if the class has a member with a deleted or inaccessible destructor.

• The synthesized copy-assignment operator is defined as deleted if a member
has a deleted or inaccessible copy-assignment operator, or if the class has a
const or reference member.

• The synthesized default constructor is defined as deleted if the class has a
member with a deleted or inaccessible destructor; or has a reference mem-
ber that does not have an in-class initializer (§ 2.6.1, p. 73); or has a const
member whose type does not explicitly define a default constructor and that
member does not have an in-class initializer.
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In essence, these rules mean that if a class has a data member that cannot be default
constructed, copied, assigned, or destroyed, then the corresponding member will
be a deleted function.

It may be surprising that a member that has a deleted or inaccessible destructor
causes the synthesized default and copy constructors to be defined as deleted. The
reason for this rule is that without it, we could create objects that we could not
destroy.

It should not be surprising that the compiler will not synthesize a default con-
structor for a class with a reference member or a const member that cannot be
default constructed. Nor should it be surprising that a class with a const mem-
ber cannot use the synthesized copy-assignment operator: After all, that operator
attempts to assign to every member. It is not possible to assign a new value to a
const object.

Although we can assign a new value to a reference, doing so changes the value
of the object to which the reference refers. If the copy-assignment operator were
synthesized for such classes, the left-hand operand would continue to refer to the
same object as it did before the assignment. It would not refer to the same object
as the right-hand operand. Because this behavior is unlikely to be desired, the syn-
thesized copy-assignment operator is defined as deleted if the class has a reference
member.

We’ll see in § 13.6.2 (p. 539), § 15.7.2 (p. 624), and § 19.6 (p. 849) that there are
other aspects of a class that can cause its copy members to be defined as deleted.

In essence, the copy-control members are synthesized as deleted when
it is impossible to copy, assign, or destroy a member of the class.

private Copy Control

Prior to the new standard, classes prevented copies by declaring their copy con-
structor and copy-assignment operator as private:

class PrivateCopy {
// no access specifier; following members are private by default; see § 7.2 (p. 268)
// copy control is private and so is inaccessible to ordinary user code
PrivateCopy(const PrivateCopy&);
PrivateCopy &operator=(const PrivateCopy&);
// other members

public:
PrivateCopy() = default; // use the synthesized default constructor
~PrivateCopy(); // users can define objects of this type but not copy them

};

Because the destructor is public, users will be able to define PrivateCopy ob-
jects. However, because the copy constructor and copy-assignment operator are
private, user code will not be able to copy such objects. However, friends and
members of the class can still make copies. To prevent copies by friends and mem-
bers, we declare these members as private but do not define them.

With one exception, which we’ll cover in § 15.2.1 (p. 594), it is legal to declare,
but not define, a member function (§ 6.1.2, p. 206). An attempt to use an undefined
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member results in a link-time failure. By declaring (but not defining) a private
copy constructor, we can forestall any attempt to copy an object of the class type:
User code that tries to make a copy will be flagged as an error at compile time;
copies made in member functions or friends will result in an error at link time.

Classes that want to prevent copying should define their copy con-
structor and copy-assignment operators using = delete rather than
making those members private.

EXE R C I S E S SE C TI O N 13.1.6

Exercise 13.18: Define an Employee class that contains an employee name and a
unique employee identifier. Give the class a default constructor and a constructor that
takes a string representing the employee’s name. Each constructor should generate
a unique ID by incrementing a static data member.

Exercise 13.19: Does your Employee class need to define its own versions of the
copy-control members? If so, why? If not, why not? Implement whatever copy-control
members you think Employee needs.

Exercise 13.20: Explain what happens when we copy, assign, or destroy objects of our
TextQuery and QueryResult classes from § 12.3 (p. 484).

Exercise 13.21: Do you think the TextQuery and QueryResult classes need to de-
fine their own versions of the copy-control members? If so, why? If not, why not?
Implement whichever copy-control operations you think these classes require.

13.2 Copy Control and Resource Management
Ordinarily, classes that manage resources that do not reside in the class must define
the copy-control members. As we saw in § 13.1.4 (p. 504), such classes will need
destructors to free the resources allocated by the object. Once a class needs a de-
structor, it almost surely needs a copy constructor and copy-assignment operator
as well.

In order to define these members, we first have to decide what copying an
object of our type will mean. In general, we have two choices: We can define the
copy operations to make the class behave like a value or like a pointer.

Classes that behave like values have their own state. When we copy a valuelike
object, the copy and the original are independent of each other. Changes made to
the copy have no effect on the original, and vice versa.

Classes that act like pointers share state. When we copy objects of such classes,
the copy and the original use the same underlying data. Changes made to the copy
also change the original, and vice versa.

Of the library classes we’ve used, the library containers and string class have
valuelike behavior. Not surprisingly, the shared_ptr class provides pointer-
like behavior, as does our StrBlob class (§ 12.1.1, p. 456). The IO types and
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unique_ptr do not allow copying or assignment, so they provide neither val-
uelike nor pointerlike behavior.

To illustrate these two approaches, we’ll define the copy-control members for
the HasPtr class used in the exercises. First, we’ll make the class act like a value;
then we’ll reimplement the class making it behave like a pointer.

Our HasPtr class has two members, an int and a pointer to string. Ordi-
narily, classes copy members of built-in type (other than pointers) directly; such
members are values and hence ordinarily ought to behave like values. What we
do when we copy the pointer member determines whether a class like HasPtr has
valuelike or pointerlike behavior.

EXE R C I S E S SE C TI ON 13.2

Exercise 13.22: Assume that we want HasPtr to behave like a value. That is, each
object should have its own copy of the string to which the objects point. We’ll show
the definitions of the copy-control members in the next section. However, you already
know everything you need to know to implement these members. Write the HasPtr
copy constructor and copy-assignment operator before reading on.

13.2.1 Classes That Act Like Values
To provide valuelike behavior, each object has to have its own copy of the resource
that the class manages. That means each HasPtr object must have its own copy of
the string to which ps points. To implement valuelike behavior HasPtr needs

• A copy constructor that copies the string, not just the pointer

• A destructor to free the string

• A copy-assignment operator to free the object’s existing string and copy
the string from its right-hand operand

The valuelike version of HasPtr is

class HasPtr {
public:

HasPtr(const std::string &s = std::string()):
ps(new std::string(s)), i(0) { }

// each HasPtr has its own copy of the string to which ps points
HasPtr(const HasPtr &p):

ps(new std::string(*p.ps)), i(p.i) { }
HasPtr& operator=(const HasPtr &);
~HasPtr() { delete ps; }

private:
std::string *ps;
int i;

};
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Our class is simple enough that we’ve defined all but the assignment operator in
the class body. The first constructor takes an (optional) string argument. That
constructor dynamically allocates its own copy of that string and stores a pointer
to that string in ps. The copy constructor also allocates its own, separate copy
of the string. The destructor frees the memory allocated in its constructors by
executing delete on the pointer member, ps.

Valuelike Copy-Assignment Operator

Assignment operators typically combine the actions of the destructor and the copy
constructor. Like the destructor, assignment destroys the left-hand operand’s re-
sources. Like the copy constructor, assignment copies data from the right-hand
operand. However, it is crucially important that these actions be done in a se-
quence that is correct even if an object is assigned to itself. Moreover, when pos-
sible, we should also write our assignment operators so that they will leave the
left-hand operand in a sensible state should an exception occur (§ 5.6.2, p. 196).

In this case, we can handle self-assignment—and make our code safe should an
exception happen—by first copying the right-hand side. After the copy is made,
we’ll free the left-hand side and update the pointer to point to the newly allocated
string:

HasPtr& HasPtr::operator=(const HasPtr &rhs)
{

auto newp = new string(*rhs.ps); // copy the underlying string
delete ps; // free the old memory
ps = newp; // copy data from rhs into this object
i = rhs.i;
return *this; // return this object

}

In this assignment operator, we quite clearly first do the work of the constructor:
The initializer of newp is identical to the initializer of ps in HasPtr’s copy con-
structor. As in the destructor, we next delete the string to which ps currently
points. What remains is to copy the pointer to the newly allocated string and the
int value from rhs into this object.

KEY CONCEPT: ASSIGNMENT OPERATORS

There are two points to keep in mind when you write an assignment operator:

• Assignment operators must work correctly if an object is assigned to itself.

• Most assignment operators share work with the destructor and copy constructor.

A good pattern to use when you write an assignment operator is to first copy the right-
hand operand into a local temporary. After the copy is done, it is safe to destroy the
existing members of the left-hand operand. Once the left-hand operand is destroyed,
copy the data from the temporary into the members of the left-hand operand.

To illustrate the importance of guarding against self-assignment, consider what
would happen if we wrote the assignment operator as
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// WRONG way to write an assignment operator!
HasPtr&
HasPtr::operator=(const HasPtr &rhs)
{

delete ps; // frees the string to which this object points
// if rhs and *this are the same object, we’re copying from deleted memory!
ps = new string(*(rhs.ps));
i = rhs.i;
return *this;

}

If rhs and this object are the same object, deleting ps frees the string to which
both *this and rhs point. When we attempt to copy *(rhs.ps) in the new
expression, that pointer points to invalid memory. What happens is undefined.

It is crucially important for assignment operators to work correctly, even
when an object is assigned to itself. A good way to do so is to copy the
right-hand operand before destroying the left-hand operand.

EXE R C I S E S SE C TI O N 13.2.1

Exercise 13.23: Compare the copy-control members that you wrote for the solutions
to the previous section’s exercises to the code presented here. Be sure you understand
the differences, if any, between your code and ours.

Exercise 13.24: What would happen if the version of HasPtr in this section didn’t
define a destructor? What if HasPtr didn’t define the copy constructor?

Exercise 13.25: Assume we want to define a version of StrBlob that acts like a value.
Also assume that we want to continue to use a shared_ptr so that our StrBlobPtr
class can still use a weak_ptr to the vector. Your revised class will need a copy
constructor and copy-assignment operator but will not need a destructor. Explain what
the copy constructor and copy-assignment operators must do. Explain why the class
does not need a destructor.

Exercise 13.26: Write your own version of the StrBlob class described in the previ-
ous exercise.

13.2.2 Defining Classes That Act Like Pointers
For our HasPtr class to act like a pointer, we need the copy constructor and copy-
assignment operator to copy the pointer member, not the string to which that
pointer points. Our class will still need its own destructor to free the memory
allocated by the constructor that takes a string (§ 13.1.4, p. 504). In this case,
though, the destructor cannot unilaterally free its associated string. It can do so
only when the last HasPtr pointing to that string goes away.

The easiest way to make a class act like a pointer is to use shared_ptrs to
manage the resources in the class. Copying (or assigning) a shared_ptr copies
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(assigns) the pointer to which the shared_ptr points. The shared_ptr class
itself keeps track of how many users are sharing the pointed-to object. When there
are no more users, the shared_ptr class takes care of freeing the resource.

However, sometimes we want to manage a resource directly. In such cases, it
can be useful to use a reference count (§ 12.1.1, p. 452). To show how reference
counting works, we’ll redefine HasPtr to provide pointerlike behavior, but we
will do our own reference counting.

Reference Counts

Reference counting works as follows:

• In addition to initializing the object, each constructor (other than the copy
constructor) creates a counter. This counter will keep track of how many
objects share state with the object we are creating. When we create an object,
there is only one such object, so we initialize the counter to 1.

• The copy constructor does not allocate a new counter; instead, it copies the
data members of its given object, including the counter. The copy constructor
increments this shared counter, indicating that there is another user of that
object’s state.

• The destructor decrements the counter, indicating that there is one less user
of the shared state. If the count goes to zero, the destructor deletes that state.

• The copy-assignment operator increments the right-hand operand’s counter
and decrements the counter of the left-hand operand. If the counter for the
left-hand operand goes to zero, there are no more users. In this case, the
copy-assignment operator must destroy the state of the left-hand operand.

The only wrinkle is deciding where to put the reference count. The counter
cannot be a direct member of a HasPtr object. To see why, consider what happens
in the following example:

HasPtr p1("Hiya!");
HasPtr p2(p1); // p1 and p2 point to the same string
HasPtr p3(p1); // p1, p2, and p3 all point to the same string

If the reference count is stored in each object, how can we update it correctly when
p3 is created? We could increment the count in p1 and copy that count into p3,
but how would we update the counter in p2?

One way to solve this problem is to store the counter in dynamic memory.
When we create an object, we’ll also allocate a new counter. When we copy or
assign an object, we’ll copy the pointer to the counter. That way the copy and the
original will point to the same counter.

Defining a Reference-Counted Class

Using a reference count, we can write the pointerlike version of HasPtr as follows:
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class HasPtr {
public:

// constructor allocates a new string and a new counter, which it sets to 1
HasPtr(const std::string &s = std::string()):

ps(new std::string(s)), i(0), use(new std::size_t(1)) {}
// copy constructor copies all three data members and increments the counter
HasPtr(const HasPtr &p):

ps(p.ps), i(p.i), use(p.use) { ++*use; }
HasPtr& operator=(const HasPtr&);
~HasPtr();

private:
std::string *ps;
int i;
std::size_t *use; // member to keep track of how many objects share *ps

};

Here, we’ve added a new data member named use that will keep track of how
many objects share the same string. The constructor that takes a string allo-
cates this counter and initializes it to 1, indicating that there is one user of this
object’s string member.

Pointerlike Copy Members “Fiddle” the Reference Count

When we copy or assign a HasPtr object, we want the copy and the original to
point to the same string. That is, when we copy a HasPtr, we’ll copy ps itself,
not the string to which ps points. When we make a copy, we also increment the
counter associated with that string.

The copy constructor (which we defined inside the class) copies all three mem-
bers from its given HasPtr. This constructor also increments the use member,
indicating that there is another user for the string to which ps and p.ps point.

The destructor cannot unconditionally delete ps—there might be other ob-
jects pointing to that memory. Instead, the destructor decrements the reference
count, indicating that one less object shares the string. If the counter goes to
zero, then the destructor frees the memory to which both ps and use point:

HasPtr::~HasPtr()
{

if (--*use == 0) { // if the reference count goes to 0
delete ps; // delete the string
delete use; // and the counter

}
}

The copy-assignment operator, as usual, does the work common to the copy
constructor and to the destructor. That is, the assignment operator must incre-
ment the counter of the right-hand operand (i.e., the work of the copy constructor)
and decrement the counter of the left-hand operand, deleting the memory used if
appropriate (i.e., the work of the destructor).

Also, as usual, the operator must handle self-assignment. We do so by incre-
menting the count in rhs before decrementing the count in the left-hand object.
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That way if both objects are the same, the counter will have been incremented be-
fore we check to see if ps (and use) should be deleted:

HasPtr& HasPtr::operator=(const HasPtr &rhs)
{

++*rhs.use; // increment the use count of the right-hand operand
if (--*use == 0) { // then decrement this object’s counter

delete ps; // if no other users
delete use; // free this object’s allocated members

}
ps = rhs.ps; // copy data from rhs into this object
i = rhs.i;
use = rhs.use;
return *this; // return this object

}

EXE R C I S E S SE C TI O N 13.2.2

Exercise 13.27: Define your own reference-counted version of HasPtr.

Exercise 13.28: Given the following classes, implement a default constructor and the
necessary copy-control members.

(a) class TreeNode { (b) class BinStrTree {
private: private:

std::string value; TreeNode *root;
int count; };
TreeNode *left;
TreeNode *right;

};

13.3 Swap
In addition to defining the copy-control members, classes that manage resources
often also define a function named swap (§ 9.2.5, p. 339). Defining swap is par-
ticularly important for classes that we plan to use with algorithms that reorder
elements (§ 10.2.3, p. 383). Such algorithms call swap whenever they need to ex-
change two elements.

If a class defines its own swap, then the algorithm uses that class-specific ver-
sion. Otherwise, it uses the swap function defined by the library. Although, as
usual, we don’t know how swap is implemented, conceptually it’s easy to see that
swapping two objects involves a copy and two assignments. For example, code
to swap two objects of our valuelike HasPtr class (§ 13.2.1, p. 511) might look
something like:

HasPtr temp = v1; // make a temporary copy of the value of v1
v1 = v2; // assign the value of v2 to v1
v2 = temp; // assign the saved value of v1 to v2
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This code copies the string that was originally in v1 twice—once when the
HasPtr copy constructor copies v1 into temp and again when the assignment
operator assigns temp to v2. It also copies the string that was originally in v2
when it assigns v2 to v1. As we’ve seen, copying a valuelike HasPtr allocates a
new string and copies the string to which the HasPtr points.

In principle, none of this memory allocation is necessary. Rather than allocating
new copies of the string, we’d like swap to swap the pointers. That is, we’d like
swapping two HasPtrs to execute as:

string *temp = v1.ps; // make a temporary copy of the pointer in v1.ps
v1.ps = v2.ps; // assign the pointer in v2.ps to v1.ps
v2.ps = temp; // assign the saved pointer in v1.ps to v2.ps

Writing Our Own swap Function

We can override the default behavior of swap by defining a version of swap that
operates on our class. The typical implementation of swap is:

class HasPtr {
friend void swap(HasPtr&, HasPtr&);
// other members as in § 13.2.1 (p. 511)

};
inline
void swap(HasPtr &lhs, HasPtr &rhs)
{

using std::swap;
swap(lhs.ps, rhs.ps); // swap the pointers, not the string data
swap(lhs.i, rhs.i); // swap the int members

}

We start by declaring swap as a friend to give it access to HasPtr’s (private)
data members. Because swap exists to optimize our code, we’ve defined swap as
an inline function (§ 6.5.2, p. 238). The body of swap calls swap on each of the
data members of the given object. In this case, we first swap the pointers and then
the int members of the objects bound to rhs and lhs.

Unlike the copy-control members, swap is never necessary. However,
defining swap can be an important optimization for classes that allocate
resources.

swap Functions Should Call swap, Not std::swap

There is one important subtlety in this code: Although it doesn’t matter in this
particular case, it is essential that swap functions call swap and not std::swap.
In the HasPtr function, the data members have built-in types. There is no type-
specific version of swap for the built-in types. In this case, these calls will invoke
the library std::swap.

However, if a class has a member that has its own type-specific swap function,
calling std::swap would be a mistake. For example, assume we had another
class named Foo that has a member named h, which has type HasPtr. If we did
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not write a Foo version of swap, then the library version of swap would be used.
As we’ve already seen, the library swapmakes unnecessary copies of the strings
managed by HasPtr.

We can avoid these copies by writing a swap function for Foo. However, if we
wrote the Foo version of swap as:

void swap(Foo &lhs, Foo &rhs)
{

// WRONG: this function uses the library version of swap, not the HasPtr version
std::swap(lhs.h, rhs.h);
// swap other members of type Foo

}

this code would compile and execute. However, there would be no performance
difference between this code and simply using the default version of swap. The
problem is that we’ve explicitly requested the library version of swap. However,
we don’t want the version in std; we want the one defined for HasPtr objects.

The right way to write this swap function is:

void swap(Foo &lhs, Foo &rhs)
{

using std::swap;
swap(lhs.h, rhs.h); // uses the HasPtr version of swap
// swap other members of type Foo

}

Each call to swap must be unqualified. That is, each call should be to swap, not
std::swap. For reasons we’ll explain in § 16.3 (p. 697), if there is a type-specific
version of swap, that version will be a better match than the one defined in std.
As a result, if there is a type-specific version of swap, calls to swap will match that
type-specific version. If there is no type-specific version, then—assuming there is
a using declaration for swap in scope—calls to swap will use the version in std.

Very careful readers may wonder why the using declaration inside swap does
not hide the declarations for the HasPtr version of swap (§ 6.4.1, p. 234). We’ll
explain the reasons for why this code works in § 18.2.3 (p. 798).

Using swap in Assignment Operators

Classes that define swap often use swap to define their assignment operator. These
operators use a technique known as copy and swap. This technique swaps the left-
hand operand with a copy of the right-hand operand:

// note rhs is passed by value, which means the HasPtr copy constructor
// copies the string in the right-hand operand into rhs
HasPtr& HasPtr::operator=(HasPtr rhs)
{

// swap the contents of the left-hand operand with the local variable rhs
swap(*this, rhs); // rhs now points to the memory this object had used
return *this; // rhs is destroyed, which deletes the pointer in rhs

}
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In this version of the assignment operator, the parameter is not a reference. Instead,
we pass the right-hand operand by value. Thus, rhs is a copy of the right-hand
operand. Copying a HasPtr allocates a new copy of that object’s string.

In the body of the assignment operator, we call swap, which swaps the data
members of rhs with those in *this. This call puts the pointer that had been in
the left-hand operand into rhs, and puts the pointer that was in rhs into *this.
Thus, after the swap, the pointer member in *this points to the newly allocated
string that is a copy of the right-hand operand.

When the assignment operator finishes, rhs is destroyed and the HasPtr de-
structor is run. That destructor deletes the memory to which rhs now points,
thus freeing the memory to which the left-hand operand had pointed.

The interesting thing about this technique is that it automatically handles self
assignment and is automatically exception safe. By copying the right-hand oper-
and before changing the left-hand operand, it handles self assignment in the same
was as we did in our original assignment operator (§ 13.2.1, p. 512). It manages
exception safety in the same way as the original definition as well. The only code
that might throw is the new expression inside the copy constructor. If an exception
occurs, it will happen before we have changed the left-hand operand.

Assignment operators that use copy and swap are automatically excep-
tion safe and correctly handle self-assignment.

EXE R C I S E S SE C TI ON 13.3

Exercise 13.29: Explain why the calls to swap inside swap(HasPtr&, HasPtr&) do
not cause a recursion loop.

Exercise 13.30: Write and test a swap function for your valuelike version of HasPtr.
Give your swap a print statement that notes when it is executed.

Exercise 13.31: Give your class a < operator and define a vector of HasPtrs. Give
that vector some elements and then sort the vector. Note when swap is called.

Exercise 13.32: Would the pointerlike version of HasPtr benefit from defining a swap
function? If so, what is the benefit? If not, why not?

13.4 A Copy-Control Example
Although copy control is most often needed for classes that allocate resources, re-
source management is not the only reason why a class might need to define these
members. Some classes have bookkeeping or other actions that the copy-control
members must perform.

As an example of a class that needs copy control in order to do some bookkeep-
ing, we’ll sketch out two classes that might be used in a mail-handling application.
These classes, Message and Folder, represent, respectively, email (or other kinds
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of) messages, and directories in which a message might appear. Each Message can
appear in multiple Folders. However, there will be only one copy of the contents
of any given Message. That way, if the contents of a Message are changed, those
changes will appear when we view that Message from any of its Folders.

To keep track of which Messages are in which Folders, each Message will
store a set of pointers to the Folders in which it appears, and each Folder will
contain a set of pointers to its Messages. Figure 13.1 illustrates this design.

Figure 13.1: Message and Folder Class Design
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Our Message class will provide save and remove operations to add or re-
move a Message from a specified Folder. To create a new Message, we will
specify the contents of the message but no Folder. To put a Message in a partic-
ular Folder, we must call save.

When we copy a Message, the copy and the original will be distinct Messages,
but both Messages should appear in the same set of Folders. Thus, copying a
Message will copy the contents and the set of Folder pointers. It must also add
a pointer to the newly created Message to each of those Folders.

When we destroy a Message, that Message no longer exists. Therefore, de-
stroying a Message must remove pointers to that Message from the Folders
that had contained that Message.

When we assign one Message to another, we’ll replace the contents of the
left-hand Message with those in the right-hand side. We must also update the
set of Folders, removing the left-hand Message from its previous Folders and
adding that Message to the Folders in which the right-hand Message appears.

Looking at this list of operations, we can see that both the destructor and the
copy-assignment operator have to remove this Message from the Folders that
point to it. Similarly, both the copy constructor and the copy-assignment operator
add a Message to a given list of Folders. We’ll define a pair of private utility
functions to do these tasks.

The copy-assignment operator often does the same work as is needed
in the copy constructor and destructor. In such cases, the common
work should be put in private utility functions.
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The Folder class will need analogous copy control members to add or remove
itself from the Messages it stores.

We’ll leave the design and implementation of the Folder class as an exercise.
However, we’ll assume that the Folder class has members named addMsg and
remMsg that do whatever work is need to add or remove this Message, respec-
tively, from the set of messages in the given Folder.

The Message Class

Given this design, we can write our Message class as follows:

class Message {
friend class Folder;

public:
// folders is implicitly initialized to the empty set
explicit Message(const std::string &str = ""):

contents(str) { }

// copy control to manage pointers to this Message
Message(const Message&); // copy constructor
Message& operator=(const Message&); // copy assignment
~Message(); // destructor

// add/remove this Message from the specified Folder’s set of messages
void save(Folder&);
void remove(Folder&);

private:
std::string contents; // actual message text
std::set<Folder*> folders; // Folders that have this Message

// utility functions used by copy constructor, assignment, and destructor
// add this Message to the Folders that point to the parameter
void add_to_Folders(const Message&);
// remove this Message from every Folder in folders
void remove_from_Folders();

};

The class defines two data members: contents, to store the message text, and
folders, to store pointers to the Folders in which this Message appears. The
constructor that takes a string copies the given string into contents and (im-
plicitly) initializes folders to the empty set. Because this constructor has a de-
fault argument, it is also the Message default constructor (§ 7.5.1, p. 290).

The save and remove Members

Aside from copy control, the Message class has only two publicmembers: save,
which puts the Message in the given Folder, and remove, which takes it out:

void Message::save(Folder &f)
{

folders.insert(&f); // add the given Folder to our list of Folders
f.addMsg(this); // add this Message to f’s set of Messages

}
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void Message::remove(Folder &f)
{

folders.erase(&f); // take the given Folder out of our list of Folders
f.remMsg(this); // remove this Message to f’s set of Messages

}

To save (or remove) a Message requires updating the folders member of the
Message. When we save a Message, we store a pointer to the given Folder;
when we remove a Message, we remove that pointer.

These operations must also update the given Folder. Updating a Folder is
a job that the Folder class controls through its addMsg and remMsg members,
which will add or remove a pointer to a given Message, respectively.

Copy Control for the Message Class

When we copy a Message, the copy should appear in the same Folders as the
original Message. As a result, we must traverse the set of Folder pointers
adding a pointer to the new Message to each Folder that points to the origi-
nal Message. Both the copy constructor and the copy-assignment operator will
need to do this work, so we’ll define a function to do this common processing:

// add this Message to Folders that point to m
void Message::add_to_Folders(const Message &m)
{

for (auto f : m.folders) // for each Folder that holds m
f->addMsg(this); // add a pointer to this Message to that Folder

}

Here we call addMsg on each Folder in m.folders. The addMsg function will
add a pointer to this Message to that Folder.

The Message copy constructor copies the data members of the given object:

Message::Message(const Message &m):
contents(m.contents), folders(m.folders)

{
add_to_Folders(m); // add this Message to the Folders that point to m

}

and calls add_to_Folders to add a pointer to the newly created Message to
each Folder that contains the original Message.

The Message Destructor

When a Message is destroyed, we must remove this Message from the Folders
that point to it. This work is shared with the copy-assignment operator, so we’ll
define a common function to do it:

void Message::remove_from_Folders()
{

for (auto f : folders) // for each pointer in folders
f->remMsg(this); // remove this Message from that Folder

folders.clear(); // no Folder points to this Message
}
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The implementation of the remove_from_Folders function is similar to that of
add_to_Folders, except that it uses remMsg to remove the current Message.

Given the remove_from_Folders function, writing the destructor is trivial:

Message::~Message()
{

remove_from_Folders();
}

The call to remove_from_Folders ensures that no Folder has a pointer to the
Message we are destroying. The compiler automatically invokes the string de-
structor to free contents and the set destructor to clean up the memory used by
those members.

Message Copy-Assignment Operator

In common with most assignment operators, our Folder copy-assignment oper-
ator must do the work of the copy constructor and the destructor. As usual, it is
crucial that we structure our code to execute correctly even if the left- and right-
hand operands happen to be the same object.

In this case, we protect against self-assignment by removing pointers to this
Message from the folders of the left-hand operand before inserting pointers in
the folders in the right-hand operand:

Message& Message::operator=(const Message &rhs)
{

// handle self-assignment by removing pointers before inserting them
remove_from_Folders(); // update existing Folders
contents = rhs.contents; // copy message contents from rhs
folders = rhs.folders; // copy Folder pointers from rhs
add_to_Folders(rhs); // add this Message to those Folders
return *this;

}

If the left- and right-hand operands are the same object, then they have the same
address. Had we called remove_from_folders after calling add_to_folders,
we would have removed this Message from all of its corresponding Folders.

A swap Function for Message

The library defines versions of swap for both string and set (§ 9.2.5, p. 339). As
a result, our Message class will benefit from defining its own version of swap. By
defining a Message-specific version of swap, we can avoid extraneous copies of
the contents and folders members.

However, our swap function must also manage the Folder pointers that point
to the swapped Messages. After a call such as swap(m1, m2), the Folders that
had pointed to m1 must now point to m2, and vice versa.

We’ll manage the Folder pointers by making two passes through each of the
foldersmembers. The first pass will remove the Messages from their respective
Folders. We’ll next call swap to swap the data members. We’ll make the second
pass through folders this time adding pointers to the swapped Messages:
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void swap(Message &lhs, Message &rhs)
{

using std::swap; // not strictly needed in this case, but good habit

// remove pointers to each Message from their (original) respective Folders
for (auto f: lhs.folders)

f->remMsg(&lhs);
for (auto f: rhs.folders)

f->remMsg(&rhs);

// swap the contents and Folder pointer sets
swap(lhs.folders, rhs.folders); // uses swap(set&, set&)
swap(lhs.contents, rhs.contents); // swap(string&, string&)

// add pointers to each Message to their (new) respective Folders
for (auto f: lhs.folders)

f->addMsg(&lhs);
for (auto f: rhs.folders)

f->addMsg(&rhs);
}

EXE R C I S E S SE C TI ON 13.4

Exercise 13.33: Why is the parameter to the save and remove members of Message
a Folder&? Why didn’t we define that parameter as Folder? Or const Folder&?

Exercise 13.34: Write the Message class as described in this section.

Exercise 13.35: What would happen if Message used the synthesized versions of the
copy-control members?

Exercise 13.36: Design and implement the corresponding Folder class. That class
should hold a set that points to the Messages in that Folder.

Exercise 13.37: Add members to the Message class to insert or remove a given
Folder* into folders. These members are analogous to Folder’s addMsg and
remMsg operations.

Exercise 13.38: We did not use copy and swap to define the Message assignment
operator. Why do you suppose this is so?

13.5 Classes That Manage Dynamic Memory
Some classes need to allocate a varying amount of storage at run time. Such classes
often can (and if they can, generally should) use a library container to hold their
data. For example, our StrBlob class uses a vector to manage the underlying
storage for its elements.

However, this strategy does not work for every class; some classes need to do
their own allocation. Such classes generally must define their own copy-control
members to manage the memory they allocate.
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As an example, we’ll implement a simplification of the library vector class.
Among the simplifications we’ll make is that our class will not be a template. In-
stead, our class will hold strings. Thus, we’ll call our class StrVec.

StrVec Class Design

Recall that the vector class stores its elements in contiguous storage. To obtain ac-
ceptable performance, vector preallocates enough storage to hold more elements
than are needed (§ 9.4, p. 355). Each vector member that adds elements checks
whether there is space available for another element. If so, the member constructs
an object in the next available spot. If there isn’t space left, then the vector is
reallocated: The vector obtains new space, moves the existing elements into that
space, frees the old space, and adds the new element.

We’ll use a similar strategy in our StrVec class. We’ll use an allocator to
obtain raw memory (§ 12.2.2, p. 481). Because the memory anallocator allocates
is unconstructed, we’ll use the allocator’sconstructmember to create objects
in that space when we need to add an element. Similarly, when we remove an
element, we’ll use the destroy member to destroy the element.

Each StrVec will have three pointers into the space it uses for its elements:

• elements, which points to the first element in the allocated memory

• first_free, which points just after the last actual element

• cap, which points just past the end of the allocated memory

Figure 13.2 illustrates the meaning of these pointers.

Figure 13.2: StrVec Memory Allocation Strategy
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In addition to these pointers, StrVec will have a static data member named
alloc that is an allocator<string>. The alloc member will allocate the
memory used by a StrVec. Our class will also have four utility functions:

• alloc_n_copy will allocate space and copy a given range of elements.

• free will destroy the constructed elements and deallocate the space.

• chk_n_allocwill ensure that there is room to add at least one more element
to the StrVec. If there isn’t room for another element, chk_n_alloc will
call reallocate to get more space.

• reallocate will reallocate the StrVec when it runs out of space.

Although our focus is on the implementation, we’ll also define a few members
from vector’s interface.
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StrVec Class Definition

Having sketched the implementation, we can now define our StrVec class:

// simplified implementation of the memory allocation strategy for a vector-like class
class StrVec {
public:

StrVec(): // the allocator member is default initialized
elements(nullptr), first_free(nullptr), cap(nullptr) { }

StrVec(const StrVec&); // copy constructor
StrVec &operator=(const StrVec&); // copy assignment
~StrVec(); // destructor
void push_back(const std::string&); // copy the element
size_t size() const { return first_free - elements; }
size_t capacity() const { return cap - elements; }
std::string *begin() const { return elements; }
std::string *end() const { return first_free; }
// . . .

private:
static std::allocator<std::string> alloc; // allocates the elements
void chk_n_alloc() // used by functions that add elements to a StrVec

{ if (size() == capacity()) reallocate(); }

// utilities used by the copy constructor, assignment operator, and destructor
std::pair<std::string*, std::string*> alloc_n_copy

(const std::string*, const std::string*);
void free(); // destroy the elements and free the space
void reallocate(); // get more space and copy the existing elements
std::string *elements; // pointer to the first element in the array
std::string *first_free; // pointer to the first free element in the array
std::string *cap; // pointer to one past the end of the array

};

// alloc must be defined in the StrVec implmentation file
allocator<string> StrVec::alloc;

The class body defines several of its members:

• The default constructor (implicitly) default initializes alloc and (explicitly)
initializes the pointers to nullptr, indicating that there are no elements.

• The size member returns the number of elements actually in use, which is
equal to first_free - elements.

• The capacitymember returns the number of elements that the StrVec can
hold, which is equal to cap - elements.

• The chk_n_alloc causes the StrVec to be reallocated when there is no
room to add another element, which happens when cap == first_free.

• The begin and end members return pointers to the first (i.e., elements)
and one past the last constructed element (i.e., first_free), respectively.
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Using construct

The push_back function calls chk_n_alloc to ensure that there is room for an
element. When chk_n_alloc returns, push_back knows that there is room for
the new element. It asks its alloc member to construct a new last element:

void StrVec::push_back(const string& s)
{

chk_n_alloc(); // ensure that there is room for another element
// construct a copy of s in the element to which first_free points
alloc.construct(first_free++, s);

}

When we use an allocator, we must remember that the memory is unconstructed
(§ 12.2.2, p. 482). To use this raw memory we must call construct, which will
construct an object in that memory. The first argument to construct must be a
pointer to unconstructed space allocated by a call to allocate. The remaining
arguments determine which constructor to use to construct the object that will go
in that space. In this case, there is only one additional argument. That argument
has type string, so this call uses the string copy constructor.

It is worth noting that the call to construct also increments first_free to
indicate that a new element has been constructed. It uses the postfix increment
(§ 4.5, p. 147), so this call constructs an object in the current value of first_free
and increments first_free to point to the next, unconstructed element.

The alloc_n_copy Member

The alloc_n_copy member is called when we copy or assign a StrVec. Our
StrVec class, like vector, will have valuelike behavior (§ 13.2.1, p. 511); when
we copy or assign a StrVec, we have to allocate independent memory and copy
the elements from the original to the new StrVec.

The alloc_n_copy member will allocate enough storage to hold its given
range of elements, and will copy those elements into the newly allocated space.
This function returns a pair (§ 11.2.3, p. 426) of pointers, pointing to the begin-
ning of the new space and just past the last element it copied:

pair<string*, string*>
StrVec::alloc_n_copy(const string *b, const string *e)
{

// allocate space to hold as many elements as are in the range
auto data = alloc.allocate(e - b);

// initialize and return a pair constructed from data and
// the value returned by uninitialized_copy
return {data, uninitialized_copy(b, e, data)};

}

alloc_n_copy calculates how much space to allocate by subtracting the pointer
to the first element from the pointer one past the last. Having allocated memory,
the function next has to construct copies of the given elements in that space.

It does the copy in the return statement, which list initializes the return value
(§ 6.3.2, p. 226). The first member of the returned pair points to the start of the
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allocated memory; the second is the value returned from uninitialized_copy
(§ 12.2.2, p. 483). That value will be pointer positioned one element past the last
constructed element.

The free Member

The free member must destroy the elements and then deallocate the space this
StrVec allocated. The for loop calls the allocator member destroy in re-
verse order, starting with the last constructed element and finishing with the first:

void StrVec::free()
{

// may not pass deallocate a 0 pointer; if elements is 0, there’s no work to do
if (elements) {

// destroy the old elements in reverse order
for (auto p = first_free; p != elements; /* empty */)

alloc.destroy(--p);
alloc.deallocate(elements, cap - elements);

}
}

The destroy function runs the string destructor. The string destructor frees
whatever storage was allocated by the strings themselves.

Once the elements have been destroyed, we free the space that this StrVec
allocated by calling deallocate. The pointer we pass to deallocate must be
one that was previously generated by a call to allocate. Therefore, we first check
that elements is not null before calling deallocate.

Copy-Control Members

Given our alloc_n_copy and free members, the copy-control members of our
class are straightforward. The copy constructor calls alloc_n_copy:

StrVec::StrVec(const StrVec &s)
{

// call alloc_n_copy to allocate exactly as many elements as in s
auto newdata = alloc_n_copy(s.begin(), s.end());
elements = newdata.first;
first_free = cap = newdata.second;

}

and assigns the results from that call to the data members. The return value from
alloc_n_copy is a pair of pointers. The first pointer points to the first con-
structed element and the second points just past the last constructed element. Be-
cause alloc_n_copy allocates space for exactly as many elements as it is given,
cap also points just past the last constructed element.

The destructor calls free:

StrVec::~StrVec() { free(); }

The copy-assignment operator calls alloc_n_copy before freeing its existing el-
ements. By doing so it protects against self-assignment:
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StrVec &StrVec::operator=(const StrVec &rhs)
{

// call alloc_n_copy to allocate exactly as many elements as in rhs
auto data = alloc_n_copy(rhs.begin(), rhs.end());
free();
elements = data.first;
first_free = cap = data.second;
return *this;

}

Like the copy constructor, the copy-assignment operator uses the values returned
from alloc_n_copy to initialize its pointers.

Moving, Not Copying, Elements during Reallocation

Before we write the reallocate member, we should think a bit about what it
must do. This function will

• Allocate memory for a new, larger array of strings

• Construct the first part of that space to hold the existing elements

• Destroy the elements in the existing memory and deallocate that memory

Looking at this list of steps, we can see that reallocating a StrVec entails copy-
ing each string from the old StrVec memory to the new. Although we don’t
know the details of how string is implemented, we do know that strings have
valuelike behavior. When we copy a string, the new string and the original
string are independent from each other. Changes made to the original don’t
affect the copy, and vice versa.

Because strings act like values, we can conclude that each stringmust have
its own copy of the characters that make up that string. Copying a string
must allocate memory for those characters, and destroying a string must free
the memory used by that string.

Copying a string copies the data because ordinarily after we copy a string,
there are two users of that string. However, when reallocate copies the
strings in a StrVec, there will be only one user of these strings after the copy.
As soon as we copy the elements from the old space to the new, we will immedi-
ately destroy the original strings.

Copying the data in these strings is unnecessary. Our StrVec’s performance
will be much better if we can avoid the overhead of allocating and deallocating the
strings themselves each time we reallocate.

Move Constructors and std::move

We can avoid copying the strings by using two facilities introduced by the new
library. First, several of the library classes, including string, define so-called
“move constructors.” The details of how the string move constructor works—
like any other detail about the implementation—are not disclosed. However, we
do know that move constructors typically operate by “moving” resources from
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the given object to the object being constructed. We also know that the library
guarantees that the “moved-from” string remains in a valid, destructible state.
For string, we can imagine that each string has a pointer to an array of char.
Presumably the stringmove constructor copies the pointer rather than allocating
space for and copying the characters themselves.

The second facility we’ll use is a library function named move, which is defined
in the utility header. For now, there are two important points to know about
move. First, for reasons we’ll explain in § 13.6.1 (p. 532), when reallocate con-
structs the strings in the new memory it must call move to signal that it wants
to use the string move constructor. If it omits the call to move the string the
copy constructor will be used. Second, for reasons we’ll cover in § 18.2.3 (p. 798),
we usually do not provide a using declaration (§ 3.1, p. 82) for move. When we
use move, we call std::move, not move.

The reallocate Member

Using this information, we can now write our reallocatemember. We’ll start by
calling allocate to allocate new space. We’ll double the capacity of the StrVec
each time we reallocate. If the StrVec is empty, we allocate room for one element:

void StrVec::reallocate()
{

// we’ll allocate space for twice as many elements as the current size
auto newcapacity = size() ? 2 * size() : 1;

// allocate new memory
auto newdata = alloc.allocate(newcapacity);

// move the data from the old memory to the new
auto dest = newdata; // points to the next free position in the new array
auto elem = elements; // points to the next element in the old array
for (size_t i = 0; i != size(); ++i)

alloc.construct(dest++, std::move(*elem++));
free(); // free the old space once we’ve moved the elements

// update our data structure to point to the new elements
elements = newdata;
first_free = dest;
cap = elements + newcapacity;

}

The for loop iterates through the existing elements and constructs a corre-
sponding element in the new space. We use dest to point to the memory in which
to construct the new string, and use elem to point to an element in the origi-
nal array. We use postfix increment to move the dest (and elem) pointers one
element at a time through these two arrays.

The second argument in the call to construct (i.e., the one that determines
which constructor to use (§ 12.2.2, p. 482)) is the value returned by move. Calling
move returns a result that causes construct to use the string move construc-
tor. Because we’re using the move constructor, the memory managed by those
strings will not be copied. Instead, each string we construct will take over
ownership of the memory from the string to which elem points.
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After moving the elements, we call free to destroy the old elements and free
the memory that this StrVec was using before the call to reallocate. The
strings themselves no longer manage the memory to which they had pointed;
responsibility for their data has been moved to the elements in the new StrVec
memory. We don’t know what value the strings in the old StrVec memory
have, but we are guaranteed that it is safe to run the string destructor on these
objects.

What remains is to update the pointers to address the newly allocated and ini-
tialized array. The first_free and cap pointers are set to denote one past the
last constructed element and one past the end of the allocated space, respectively.

EXE R C I S E S SE C TI ON 13.5

Exercise 13.39: Write your own version of StrVec, including versions of reserve,
capacity (§ 9.4, p. 356), and resize (§ 9.3.5, p. 352).

Exercise 13.40: Add a constructor that takes an initializer_list<string> to
your StrVec class.

Exercise 13.41: Why did we use postfix increment in the call to construct inside
push_back? What would happen if it used the prefix increment?

Exercise 13.42: Test your StrVec class by using it in place of the vector<string>
in your TextQuery and QueryResult classes (§ 12.3, p. 484).

Exercise 13.43: Rewrite the free member to use for_each and a lambda (§ 10.3.2,
p. 388) in place of the for loop to destroy the elements. Which implementation do
you prefer, and why?

Exercise 13.44: Write a class named String that is a simplified version of the library
string class. Your class should have at least a default constructor and a constructor
that takes a pointer to a C-style string. Use an allocator to allocate memory that
your String class uses.

13.6 Moving Objects
One of the major features in the new standard is the ability to move rather than
copy an object. As we saw in § 13.1.1 (p. 497), copies are made in many circum-
stances. In some of these circumstances, an object is immediately destroyed after
it is copied. In those cases, moving, rather than copying, the object can provide a
significant performance boost.

As we’ve just seen, our StrVec class is a good example of this kind of super-
fluous copy. During reallocation, there is no need to copy—rather than move—the
elements from the old memory to the new. A second reason to move rather than
copy occurs in classes such as the IO or unique_ptr classes. These classes have a
resource (such as a pointer or an IO buffer) that may not be shared. Hence, objects
of these types can’t be copied but can be moved.
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Under earlier versions of the language, there was no direct way to move an
object. We had to make a copy even if there was no need for the copy. If the objects
are large, or if the objects themselves require memory allocation (e.g., strings),
making a needless copy can be expensive. Similarly, in previous versions of the
library, classes stored in a container had to be copyable. Under the new standard,
we can use containers on types that cannot be copied so long as they can be moved.

The library containers, string, and shared_ptr classes support
move as well as copy. The IO and unique_ptr classes can be moved
but not copied.

13.6.1 Rvalue References
To support move operations, the new standard introduced a new kind of reference,
an rvalue reference. An rvalue reference is a reference that must be bound to an
rvalue. An rvalue reference is obtained by using && rather than &. As we’ll see,
rvalue references have the important property that they may be bound only to an
object that is about to be destroyed. As a result, we are free to “move” resources
from an rvalue reference to another object.

Recall that lvalue and rvalue are properties of an expression (§ 4.1.1, p. 135).
Some expressions yield or require lvalues; others yield or require rvalues. Gener-
ally speaking, an lvalue expression refers to an object’s identity whereas an rvalue
expression refers to an object’s value.

Like any reference, an rvalue reference is just another name for an object. As we
know, we cannot bind regular references—which we’ll refer to as lvalue references
when we need to distinguish them from rvalue references—to expressions that re-
quire a conversion, to literals, or to expressions that return an rvalue (§ 2.3.1, p. 51).
Rvalue references have the opposite binding properties: We can bind an rvalue
reference to these kinds of expressions, but we cannot directly bind an rvalue ref-
erence to an lvalue:

int i = 42;
int &r = i; // ok: r refers to i
int &&rr = i; // error: cannot bind an rvalue reference to an lvalue

int &r2 = i * 42; // error: i * 42 is an rvalue
const int &r3 = i * 42; // ok: we can bind a reference to const to an rvalue
int &&rr2 = i * 42; // ok: bind rr2 to the result of the multiplication

Functions that return lvalue references, along with the assignment, subscript,
dereference, and prefix increment/decrement operators, are all examples of ex-
pressions that return lvalues. We can bind an lvalue reference to the result of any
of these expressions.

Functions that return a nonreference type, along with the arithmetic, relational,
bitwise, and postfix increment/decrement operators, all yield rvalues. We cannot
bind an lvalue reference to these expressions, but we can bind either an lvalue
reference to const or an rvalue reference to such expressions.
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Lvalues Persist; Rvalues Are Ephemeral

Looking at the list of lvalue and rvalue expressions, it should be clear that lvalues
and rvalues differ from each other in an important manner: Lvalues have persis-
tent state, whereas rvalues are either literals or temporary objects created in the
course of evaluating expressions.

Because rvalue references can only be bound to temporaries, we know that

• The referred-to object is about to be destroyed

• There can be no other users of that object

These facts together mean that code that uses an rvalue reference is free to take
over resources from the object to which the reference refers.

Rvalue references refer to objects that are about to be destroyed. Hence,
we can “steal” state from an object bound to an rvalue reference.

Variables Are Lvalues

Although we rarely think about it this way, a variable is an expression with one
operand and no operator. Like any other expression, a variable expression has the
lvalue/rvalue property. Variable expressions are lvalues. It may be surprising, but
as a consequence, we cannot bind an rvalue reference to a variable defined as an
rvalue reference type:

int &&rr1 = 42; // ok: literals are rvalues
int &&rr2 = rr1; // error: the expression rr1 is an lvalue!

Given our previous observation that rvalues represent ephemeral objects, it should
not be surprising that a variable is an lvalue. After all, a variable persists until it
goes out of scope.

A variable is an lvalue; we cannot directly bind an rvalue reference to a
variable even if that variable was defined as an rvalue reference type.

The Library move Function

Although we cannot directly bind an rvalue reference to an lvalue, we can explic-
itly cast an lvalue to its corresponding rvalue reference type. We can also obtain
an rvalue reference bound to an lvalue by calling a new library function named
move, which is defined in the utility header. The move function uses facilities
that we’ll describe in § 16.2.6 (p. 690) to return an rvalue reference to its given
object.

int &&rr3 = std::move(rr1); // ok

Calling move tells the compiler that we have an lvalue that we want to treat as if
it were an rvalue. It is essential to realize that the call to move promises that we
do not intend to use rr1 again except to assign to it or to destroy it. After a call to
move, we cannot make any assumptions about the value of the moved-from object.
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We can destroy a moved-from object and can assign a new value to it,
but we cannot use the value of a moved-from object.

As we’ve seen, differently from how we use most names from the library, we
do not provide a using declaration (§ 3.1, p. 82) for move (§ 13.5, p. 530). We call
std::move not move. We’ll explain the reasons for this usage in § 18.2.3 (p. 798).

Code that uses move should use std::move, not move. Doing so avoids
potential name collisions.

EXE R C I S E S SE C TI O N 13.6.1

Exercise 13.45: Distinguish between an rvalue reference and an lvalue reference.

Exercise 13.46: Which kind of reference can be bound to the following initializers?

int f();
vector<int> vi(100);
int? r1 = f();
int? r2 = vi[0];
int? r3 = r1;
int? r4 = vi[0] * f();

Exercise 13.47: Give the copy constructor and copy-assignment operator in your
String class from exercise 13.44 in § 13.5 (p. 531) a statement that prints a message
each time the function is executed.

Exercise 13.48: Define a vector<String> and call push_back several times on that
vector. Run your program and see how often Strings are copied.

13.6.2 Move Constructor and Move Assignment
Like the string class (and other library classes), our own classes can benefit from
being able to be moved as well as copied. To enable move operations for our own
types, we define a move constructor and a move-assignment operator. These mem-
bers are similar to the corresponding copy operations, but they “steal” resources
from their given object rather than copy them.

Like the copy constructor, the move constructor has an initial parameter that is
a reference to the class type. Differently from the copy constructor, the reference
parameter in the move constructor is an rvalue reference. As in the copy construc-
tor, any additional parameters must all have default arguments.

In addition to moving resources, the move constructor must ensure that the
moved-from object is left in a state such that destroying that object will be harm-
less. In particular, once its resources are moved, the original object must no longer
point to those moved resources—responsibility for those resources has been as-
sumed by the newly created object.
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As an example, we’ll define the StrVec move constructor to move rather than
copy the elements from one StrVec to another:

StrVec::StrVec(StrVec &&s) noexcept // move won’t throw any exceptions
// member initializers take over the resources in s
: elements(s.elements), first_free(s.first_free), cap(s.cap)

{
// leave s in a state in which it is safe to run the destructor
s.elements = s.first_free = s.cap = nullptr;

}

We’ll explain the use of noexcept (which signals that our constructor does not
throw any exceptions) shortly, but let’s first look at what this constructor does.

Unlike the copy constructor, the move constructor does not allocate any new
memory; it takes over the memory in the given StrVec. Having taken over the
memory from its argument, the constructor body sets the pointers in the given
object to nullptr. After an object is moved from, that object continues to ex-
ist. Eventually, the moved-from object will be destroyed, meaning that the de-
structor will be run on that object. The StrVec destructor calls deallocate
on first_free. If we neglected to change s.first_free, then destroying the
moved-from object would delete the memory we just moved.

Move Operations, Library Containers, and Exceptions

Because a move operation executes by “stealing” resources, it ordinarily does not
itself allocate any resources. As a result, move operations ordinarily will not throw
any exceptions. When we write a move operation that cannot throw, we should
inform the library of that fact. As we’ll see, unless the library knows that our
move constructor won’t throw, it will do extra work to cater to the possibliity that
moving an object of our class type might throw.

One way inform the library is to specify noexcept on our constructor. We’ll
cover noexcept, which was introduced by the new standard, in more detail in
§ 18.1.4 (p. 779). For now what’s important to know is that noexcept is a way for
us to promise that a function does not throw any exceptions. We specifynoexcept
on a function after its parameter list. In a constructor, noexcept appears between
the parameter list and the : that begins the constructor initializer list:

class StrVec {
public:

StrVec(StrVec&&) noexcept; // move constructor
// other members as before

};
StrVec::StrVec(StrVec &&s) noexcept : /* member initializers */
{ /* constructor body */ }

We must specify noexcept on both the declaration in the class header and on the
definition if that definition appears outside the class.

Move constructors and move assignment operators that cannot throw
exceptions should be marked as noexcept.
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Understanding why noexcept is needed can help deepen our understanding
of how the library interacts with objects of the types we write. We need to indi-
cate that a move operation doesn’t throw because of two interrelated facts: First,
although move operations usually don’t throw exceptions, they are permitted to
do so. Second, the library containers provide guarantees as to what they do if
an exception happens. As one example, vector guarantees that if an exception
happens when we call push_back, the vector itself will be left unchanged.

Now let’s think about what happens inside push_back. Like the correspond-
ing StrVec operation (§ 13.5, p. 527), push_back on a vectormight require that
the vector be reallocated. When a vector is reallocated, it moves the elements
from its old space to new memory, just as we did in reallocate (§ 13.5, p. 530).

As we’ve just seen, moving an object generally changes the value of the moved-
from object. If reallocation uses a move constructor and that constructor throws an
exception after moving some but not all of the elements, there would be a problem.
The moved-from elements in the old space would have been changed, and the
unconstructed elements in the new space would not yet exist. In this case, vector
would be unable to meet its requirement that the vector is left unchanged.

On the other hand, if vector uses the copy constructor and an exception hap-
pens, it can easily meet this requirement. In this case, while the elements are being
constructed in the new memory, the old elements remain unchanged. If an excep-
tion happens, vector can free the space it allocated (but could not successfully
construct) and return. The original vector elements still exist.

To avoid this potential problem, vector must use a copy constructor instead
of a move constructor during reallocation unless it knows that the element type’s
move constructor cannot throw an exception. If we want objects of our type to
be moved rather than copied in circumstances such as vector reallocation, we
must explicity tell the library that our move constructor is safe to use. We do so by
marking the move constructor (and move-assignment operator) noexcept.

Move-Assignment Operator

The move-assignment operator does the same work as the destructor and the move
constructor. As with the move constructor, if our move-assignment operator won’t
throw any exceptions, we should make it noexcept. Like a copy-assignment op-
erator, a move-assignment operator must guard against self-assignment:

StrVec &StrVec::operator=(StrVec &&rhs) noexcept
{

// direct test for self-assignment
if (this != &rhs) {

free(); // free existing elements
elements = rhs.elements; // take over resources from rhs
first_free = rhs.first_free;
cap = rhs.cap;
// leave rhs in a destructible state
rhs.elements = rhs.first_free = rhs.cap = nullptr;

}
return *this;

}
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In this case we check directly whether the this pointer and the address of rhs are
the same. If they are, the right- and left-hand operands refer to the same object and
there is no work to do. Otherwise, we free the memory that the left-hand operand
had used, and then take over the memory from the given object. As in the move
constructor, we set the pointers in rhs to nullptr.

It may seem surprising that we bother to check for self-assignment. After all,
move assignment requires an rvalue for the right-hand operand. We do the check
because that rvalue could be the result of calling move. As in any other assignment
operator, it is crucial that we not free the left-hand resources before using those
(possibly same) resources from the right-hand operand.

A Moved-from Object Must Be Destructible

Moving from an object does not destroy that object: Sometime after the move op-
eration completes, the moved-from object will be destroyed. Therefore, when we
write a move operation, we must ensure that the moved-from object is in a state in
which the destructor can be run. Our StrVec move operations meet this require-
ment by setting the pointer members of the moved-from object to nullptr.

In addition to leaving the moved-from object in a state that is safe to destroy,
move operations must guarantee that the object remains valid. In general, a valid
object is one that can safely be given a new value or used in other ways that do
not depend on its current value. On the other hand, move operations have no
requirements as to the value that remains in the moved-from object. As a result,
our programs should never depend on the value of a moved-from object.

For example, when we move from a library string or container object, we
know that the moved-from object remains valid. As a result, we can run operations
such as as empty or size on moved-from objects. However, we don’t know what
result we’ll get. We might expect a moved-from object to be empty, but that is not
guaranteed.

Our StrVec move operations leave the moved-from object in the same state as
a default-initialized object. Therefore, all the operations of StrVec will continue
to run the same way as they do for any other default-initialized StrVec. Other
classes, with more complicated internal structure, may behave differently.

After a move operation, the “moved-from” object must remain a valid,
destructible object but users may make no assumptions about its value.

The Synthesized Move Operations

As it does for the copy constructor and copy-assignment operator, the compiler
will synthesize the move constructor and move-assignment operator. However,
the conditions under which it synthesizes a move operation are quite different
from those in which it synthesizes a copy operation.

Recall that if we do not declare our own copy constructor or copy-assignment
operator the compiler always synthesizes these operations (§ 13.1.1, p. 497 and
§ 13.1.2, p. 500). The copy operations are defined either to memberwise copy or
assign the object or they are defined as deleted functions.
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Differently from the copy operations, for some classes the compiler does not
synthesize the move operations at all. In particular, if a class defines its own copy
constructor, copy-assignment operator, or destructor, the move constructor and
move-assignment operator are not synthesized. As a result, some classes do not
have a move constructor or a move-assignment operator. As we’ll see on page 540,
when a class doesn’t have a move operation, the corresponding copy operation is
used in place of move through normal function matching.

The compiler will synthesize a move constructor or a move-assignment op-
erator only if the class doesn’t define any of its own copy-control members and if
every nonstatic data member of the class can be moved. The compiler can move
members of built-in type. It can also move members of a class type if the member’s
class has the corresponding move operation:

// the compiler will synthesize the move operations for X and hasX
struct X {

int i; // built-in types can be moved
std::string s; // string defines its own move operations

};
struct hasX {

X mem; // X has synthesized move operations
};
X x, x2 = std::move(x); // uses the synthesized move constructor
hasX hx, hx2 = std::move(hx); // uses the synthesized move constructor

The compiler synthesizes the move constructor and move assignment
only if a class does not define any of its own copy-control members and
only if all the data members can be moved constructed and move as-
signed, respectively.

Unlike the copy operations, a move operation is never implicitly defined as a
deleted function. However, if we explicitly ask the compiler to generate a move
operation by using = default (§ 7.1.4, p. 264), and the compiler is unable to move
all the members, then the move operation will be defined as deleted. With one
important exception, the rules for when a synthesized move operation is defined
as deleted are analogous to those for the copy operations (§ 13.1.6, p. 508):

• Unlike the copy constructor, the move constructor is defined as deleted if the
class has a member that defines its own copy constructor but does not also
define a move constructor, or if the class has a member that doesn’t define
its own copy operations and for which the compiler is unable to synthesize a
move constructor. Similarly for move-assignment.

• The move constructor or move-assignment operator is defined as deleted if
the class has a member whose own move constructor or move-assignment
operator is deleted or inaccessible.

• Like the copy constructor, the move constructor is defined as deleted if the
destructor is deleted or inaccessible.

• Like the copy-assignment operator, the move-assignment operator is defined
as deleted if the class has a const or reference member.
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For example, assuming Y is a class that defines its own copy constructor but does
not also define its own move constructor:

// assume Y is a class that defines its own copy constructor but not a move constructor
struct hasY {

hasY() = default;
hasY(hasY&&) = default;
Y mem; // hasY will have a deleted move constructor

};
hasY hy, hy2 = std::move(hy); // error: move constructor is deleted

The compiler can copy objects of type Y but cannot move them. Class hasY ex-
plicitly requested a move constructor, which the compiler is unable to generate.
Hence, hasY will get a deleted move constructor. Had hasY omitted the decla-
ration of its move constructor, then the compiler would not synthesize the hasY
move constructor at all. The move operations are not synthesized if they would
otherwise be defined as deleted.

There is one final interaction between move operations and the synthesized
copy-control members: Whether a class defines its own move operations has an
impact on how the copy operations are synthesized. If the class defines either a
move constructor and/or a move-assignment operator, then the synthesized copy
constructor and copy-assignment operator for that class will be defined as deleted.

Classes that define a move constructor or move-assignment operator
must also define their own copy operations. Otherwise, those members
are deleted by default.

Rvalues Are Moved, Lvalues Are Copied . . .

When a class has both a move constructor and a copy constructor, the compiler
uses ordinary function matching to determine which constructor to use (§ 6.4,
p. 233). Similarly for assignment. For example, in our StrVec class the copy
versions take a reference to const StrVec. As a result, they can be used on any
type that can be converted to StrVec. The move versions take a StrVec&& and
can be used only when the argument is a (nonconst) rvalue:

StrVec v1, v2;
v1 = v2; // v2 is an lvalue; copy assignment

StrVec getVec(istream &); // getVec returns an rvalue
v2 = getVec(cin); // getVec(cin) is an rvalue; move assignment

In the first assignment, we pass v2 to the assignment operator. The type of v2 is
StrVec and the expression, v2, is an lvalue. The move version of assignment is
not viable (§ 6.6, p. 243), because we cannot implicitly bind an rvalue reference to
an lvalue. Hence, this assignment uses the copy-assignment operator.

In the second assignment, we assign from the result of a call to getVec. That
expression is an rvalue. In this case, both assignment operators are viable—we
can bind the result of getVec to either operator’s parameter. Calling the copy-
assignment operator requires a conversion to const, whereas StrVec&& is an
exact match. Hence, the second assignment uses the move-assignment operator.
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. . . But Rvalues Are Copied If There Is No Move Constructor

What if a class has a copy constructor but does not define a move constructor?
In this case, the compiler will not synthesize the move constructor, which means
the class has a copy constructor but no move constructor. If a class has no move
constructor, function matching ensures that objects of that type are copied, even if
we attempt to move them by calling move:

class Foo {
public:

Foo() = default;
Foo(const Foo&); // copy constructor
// other members, but Foo does not define a move constructor

};
Foo x;
Foo y(x); // copy constructor; x is an lvalue
Foo z(std::move(x)); // copy constructor, because there is no move constructor

The call to move(x) in the initialization of z returns a Foo&& bound to x. The copy
constructor for Foo is viable because we can convert a Foo&& to a const Foo&.
Thus, the initialization of z uses the copy constructor for Foo.

It is worth noting that using the copy constructor in place of a move construc-
tor is almost surely safe (and similarly for the assignment operators). Ordinarily,
the copy constructor will meet the requirements of the corresponding move con-
structor: It will copy the given object and leave that original object in a valid state.
Indeed, the copy constructor won’t even change the value of the original object.

If a class has a usable copy constructor and no move constructor, ob-
jects will be “moved” by the copy constructor. Similarly for the copy-
assignment operator and move-assignment.

Copy-and-Swap Assignment Operators and Move

The version of our HasPtr class that defined a copy-and-swap assignment op-
erator (§ 13.3, p. 518) is a good illustration of the interaction between function
matching and move operations. If we add a move constructor to this class, it will
effectively get a move assignment operator as well:

class HasPtr {
public:

// added move constructor
HasPtr(HasPtr &&p) noexcept : ps(p.ps), i(p.i) {p.ps = 0;}
// assignment operator is both the move- and copy-assignment operator
HasPtr& operator=(HasPtr rhs)

{ swap(*this, rhs); return *this; }
// other members as in § 13.2.1 (p. 511)

};

In this version of the class, we’ve added a move constructor that takes over the
values from its given argument. The constructor body sets the pointer member of
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the given HasPtr to zero to ensure that it is safe to destroy the moved-from object.
Nothing this function does can throw an exception so we mark it as noexcept
(§ 13.6.2, p. 535).

Now let’s look at the assignment operator. That operator has a nonreference
parameter, which means the parameter is copy initialized (§ 13.1.1, p. 497). De-
pending on the type of the argument, copy initialization uses either the copy con-
structor or the move constructor; lvalues are copied and rvalues are moved. As a
result, this single assignment operator acts as both the copy-assignment and move-
assignment operator.

For example, assuming both hp and hp2 are HasPtr objects:

hp = hp2; // hp2 is an lvalue; copy constructor used to copy hp2
hp = std::move(hp2); // move constructor moves hp2

In the first assignment, the right-hand operand is an lvalue, so the move construc-
tor is not viable. The copy constructor will be used to initialize rhs. The copy
constructor will allocate a new string and copy the string to which hp2 points.

In the second assignment, we invoke std::move to bind an rvalue reference
to hp2. In this case, both the copy constructor and the move constructor are viable.
However, because the argument is an rvalue reference, it is an exact match for the
move constructor. The move constructor copies the pointer from hp2. It does not
allocate any memory.

Regardless of whether the copy or move constructor was used, the body of the
assignment operator swaps the state of the two operands. Swapping a HasPtr
exchanges the pointer (and int) members of the two objects. After the swap, rhs
will hold a pointer to the string that had been owned by the left-hand side. That
string will be destroyed when rhs goes out of scope.

ADVICE: UPDATING THE RULE OF THREE

All five copy-control members should be thought of as a unit: Ordinarily, if a class
defines any of these operations, it usually should define them all. As we’ve seen, some
classes must define the copy constructor, copy-assignment operator, and destructor to
work correctly (§ 13.1.4, p. 504). Such classes typically have a resource that the copy
members must copy. Ordinarily, copying a resource entails some amount of overhead.
Classes that define the move constructor and move-assignment operator can avoid this
overhead in those circumstances where a copy isn’t necessary.

Move Operations for the Message Class

Classes that define their own copy constructor and copy-assignment operator gen-
erally also benefit by defining the move operations. For example, our Message
and Folder classes (§ 13.4, p. 519) should define move operations. By defining
move operations, the Message class can use the string and set move opera-
tions to avoid the overhead of copying the contents and folders members.

However, in addition to moving the folders member, we must also update
each Folder that points to the original Message. We must remove pointers to the
old Message and add a pointer to the new one.
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Both the move constructor and move-assignment operator need to update the
Folder pointers, so we’ll start by defining an operation to do this common work:

// move the Folder pointers from m to this Message
void Message::move_Folders(Message *m)
{

folders = std::move(m->folders); // uses set move assignment
for (auto f : folders) { // for each Folder

f->remMsg(m); // remove the old Message from the Folder
f->addMsg(this); // add this Message to that Folder

}
m->folders.clear(); // ensure that destroying m is harmless

}

This function begins by moving the folders set. By calling move, we use the
set move assignment rather than its copy assignment. Had we omitted the call to
move, the code would still work, but the copy is unnecessary. The function then
iterates through those Folders, removing the pointer to the original Message and
adding a pointer to the new Message.

It is worth noting that inserting an element to a setmight throw an exception—
adding an element to a container requires memory to be allocated, which means
that a bad_alloc exception might be thrown (§ 12.1.2, p. 460). As a result, unlike
our HasPtr and StrVec move operations, the Message move constructor and
move-assignment operators might throw exceptions. We will not mark them as
noexcept (§ 13.6.2, p. 535).

The function ends by calling clear on m.folders. After the move, we know
that m.folders is valid but have no idea what its contents are. Because the
Message destructor iterates through folders, we want to be certain that the set
is empty.

The Message move constructor calls move to move the contents and default
initializes its folders member:

Message::Message(Message &&m): contents(std::move(m.contents))
{

move_Folders(&m); // moves folders and updates the Folder pointers
}

In the body of the constructor, we call move_Folders to remove the pointers to m
and insert pointers to this Message.

The move-assignment operator does a direct check for self-assignment:

Message& Message::operator=(Message &&rhs)
{

if (this != &rhs) { // direct check for self-assignment
remove_from_Folders();
contents = std::move(rhs.contents); // move assignment
move_Folders(&rhs); // reset the Folders to point to this Message

}
return *this;

}

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 13.6 Moving Objects 543

As with any assignment operator, the move-assignment operator must destroy the
old state of the left-hand operand. In this case, destroying the left-hand operand
requires that we remove pointers to this Message from the existing folders,
which we do in the call to remove_from_Folders. Having removed itself from
its Folders, we call move to move the contents from rhs to this object. What
remains is to call move_Messages to update the Folder pointers.

Move Iterators

The reallocate member of StrVec (§ 13.5, p. 530) used a for loop to call
construct to copy the elements from the old memory to the new. As an alterna-
tive to writing that loop, it would be easier if we could calluninitialized_copy
to construct the newly allocated space. However, uninitialized_copy does
what it says: It copies the elements. There is no analogous library function to
“move” objects into unconstructed memory.

Instead, the new library defines a move iterator adaptor (§ 10.4, p. 401). A
move iterator adapts its given iterator by changing the behavior of the iterator’s
dereference operator. Ordinarily, an iterator dereference operator returns an lvalue
reference to the element. Unlike other iterators, the dereference operator of a move
iterator yields an rvalue reference.

We transform an ordinary iterator to a move iterator by calling the library
make_move_iterator function. This function takes an iterator and returns a
move iterator.

All of the original iterator’s other operations work as usual. Because these
iterators support normal iterator operations, we can pass a pair of move iterators to
an algorithm. In particular, we can pass move iterators to uninitialized_copy:

void StrVec::reallocate()
{

// allocate space for twice as many elements as the current size
auto newcapacity = size() ? 2 * size() : 1;
auto first = alloc.allocate(newcapacity);

// move the elements
auto last = uninitialized_copy(make_move_iterator(begin()),

make_move_iterator(end()),
first);

free(); // free the old space
elements = first; // update the pointers
first_free = last;
cap = elements + newcapacity;

}

uninitialized_copy calls construct on each element in the input sequence
to “copy” that element into the destination. That algorithm uses the iterator deref-
erence operator to fetch elements from the input sequence. Because we passed
move iterators, the dereference operator yields an rvalue reference, which means
construct will use the move constructor to construct the elements.

It is worth noting that standard library makes no guarantees about which al-
gorithms can be used with move iterators and which cannot. Because moving an
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object can obliterate the source, you should pass move iterators to algorithms only
when you are confident that the algorithm does not access an element after it has
assigned to that element or passed that element to a user-defined function.

ADVICE: DON’T BE TOO QUICK TO MOVE

Because a moved-from object has indeterminate state, calling std::move on an object
is a dangerous operation. When we call move, we must be absolutely certain that there
can be no other users of the moved-from object.

Judiciously used inside class code, move can offer significant performance bene-
fits. Casually used in ordinary user code (as opposed to class implementation code),
moving an object is more likely to lead to mysterious and hard-to-find bugs than to
any improvement in the performance of the application.

Outside of class implementation code such as move constructors or move-
assignment operators, use std::move only when you are certain that you
need to do a move and that the move is guaranteed to be safe.

EXE R C I S E S SE C TI O N 13.6.2

Exercise 13.49: Add a move constructor and move-assignment operator to your
StrVec, String, and Message classes.

Exercise 13.50: Put print statements in the move operations in your String class and
rerun the program from exercise 13.48 in § 13.6.1 (p. 534) that used a vector<String>
to see when the copies are avoided.

Exercise 13.51: Although unique_ptrs cannot be copied, in § 12.1.5 (p. 471) we
wrote a clone function that returned a unique_ptr by value. Explain why that func-
tion is legal and how it works.

Exercise 13.52: Explain in detail what happens in the assignments of the HasPtr ob-
jects on page 541. In particular, describe step by step what happens to values of hp,
hp2, and of the rhs parameter in the HasPtr assignment operator.

Exercise 13.53: As a matter of low-level efficiency, the HasPtr assignment operator
is not ideal. Explain why. Implement a copy-assignment and move-assignment oper-
ator for HasPtr and compare the operations executed in your new move-assignment
operator versus the copy-and-swap version.

Exercise 13.54: What would happen if we defined a HasPtr move-assignment oper-
ator but did not change the copy-and-swap operator? Write code to test your answer.

13.6.3 Rvalue References and Member Functions
Member functions other than constructors and assignment can benefit from pro-
viding both copy and move versions. Such move-enabled members typically use
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the same parameter pattern as the copy/move constructor and the assignment
operators—one version takes an lvalue reference to const, and the second takes
an rvalue reference to nonconst.

For example, the library containers that define push_back provide two ver-
sions: one that has an rvalue reference parameter and the other a const lvalue
reference. Assuming X is the element type, these containers define:

void push_back(const X&); // copy: binds to any kind of X
void push_back(X&&); // move: binds only to modifiable rvalues of type X

We can pass any object that can be converted to type X to the first version of
push_back. This version copies data from its parameter. We can pass only an
rvalue that is not const to the second version. This version is an exact match (and
a better match) for nonconst rvalues and will be run when we pass a modifiable
rvalue (§ 13.6.2, p. 539). This version is free to steal resources from its parameter.

Ordinarily, there is no need to define versions of the operation that take a
const X&& or a (plain) X&. Usually, we pass an rvalue reference when we want
to “steal” from the argument. In order to do so, the argument must not be const.
Similarly, copying from an object should not change the object being copied. As a
result, there is usually no need to define a version that take a (plain) X& parameter.

Overloaded functions that distinguish between moving and copying a
parameter typically have one version that takes a const T& and one
that takes a T&&.

As a more concrete example, we’ll give our StrVec class a second version of
push_back:

class StrVec {
public:

void push_back(const std::string&); // copy the element
void push_back(std::string&&); // move the element
// other members as before

};
// unchanged from the original version in § 13.5 (p. 527)
void StrVec::push_back(const string& s)
{

chk_n_alloc(); // ensure that there is room for another element
// construct a copy of s in the element to which first_free points
alloc.construct(first_free++, s);

}
void StrVec::push_back(string &&s)
{

chk_n_alloc(); // reallocates the StrVec if necessary
alloc.construct(first_free++, std::move(s));

}

These members are nearly identical. The difference is that the rvalue reference ver-
sion of push_back calls move to pass its parameter to construct. As we’ve seen,
the construct function uses the type of its second and subsequent arguments to
determine which constructor to use. Because move returns an rvalue reference, the
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type of the argument to construct is string&&. Therefore, the string move
constructor will be used to construct a new last element.

When we call push_back the type of the argument determines whether the
new element is copied or moved into the container:

StrVec vec; // empty StrVec
string s = "some string or another";
vec.push_back(s); // calls push_back(const string&)
vec.push_back("done"); // calls push_back(string&&)

These calls differ as to whether the argument is an lvalue (s) or an rvalue (the
temporary string created from "done"). The calls are resolved accordingly.

Rvalue and Lvalue Reference Member Functions

Ordinarily, we can call a member function on an object, regardless of whether that
object is an lvalue or an rvalue. For example:

string s1 = "a value", s2 = "another";
auto n = (s1 + s2).find(’a’);

Here, we called the findmember (§ 9.5.3, p. 364) on the string rvalue that results
from adding two strings. Sometimes such usage can be surprising:

s1 + s2 = "wow!";

Here we assign to the rvalue result of concatentating these strings.
Prior to the new standard, there was no way to prevent such usage. In order to

maintain backward compatability, the library classes continue to allow assignment
to rvalues, However, we might want to prevent such usage in our own classes. In
this case, we’d like to force the left-hand operand (i.e., the object to which this
points) to be an lvalue.

We indicate the lvalue/rvalue property of this in the same way that we define
const member functions (§ 7.1.2, p. 258); we place a reference qualifier after the
parameter list:

class Foo {
public:

Foo &operator=(const Foo&) &; // may assign only to modifiable lvalues
// other members of Foo

};

Foo &Foo::operator=(const Foo &rhs) &
{

// do whatever is needed to assign rhs to this object
return *this;

}

The reference qualifier can be either & or &&, indicating that this may point to
an rvalue or lvalue, respectively. Like the const qualifier, a reference qualifier
may appear only on a (nonstatic) member function and must appear in both the
declaration and definition of the function.

We may run a function qualified by & only on an lvalue and may run a function
qualified by && only on an rvalue:
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Foo &retFoo(); // returns a reference; a call to retFoo is an lvalue
Foo retVal(); // returns by value; a call to retVal is an rvalue
Foo i, j; // i and j are lvalues
i = j; // ok: i is an lvalue
retFoo() = j; // ok: retFoo() returns an lvalue
retVal() = j; // error: retVal() returns an rvalue
i = retVal(); // ok: we can pass an rvalue as the right-hand operand to assignment

A function can be both const and reference qualified. In such cases, the refer-
ence qualifier must follow the const qualifier:

class Foo {
public:

Foo someMem() & const; // error: const qualifier must come first
Foo anotherMem() const &; // ok: const qualifier comes first

};

Overloading and Reference Functions

Just as we can overload a member function based on whether it is const (§ 7.3.2,
p. 276), we can also overload a function based on its reference qualifier. Moreover,
we may overload a function by its reference qualifier and by whether it is a const
member. As an example, we’ll give Foo a vector member and a function named
sorted that returns a copy of the Foo object in which the vector is sorted:

class Foo {
public:

Foo sorted() &&; // may run on modifiable rvalues
Foo sorted() const &; // may run on any kind of Foo
// other members of Foo

private:
vector<int> data;

};
// this object is an rvalue, so we can sort in place
Foo Foo::sorted() &&
{

sort(data.begin(), data.end());
return *this;

}
// this object is either const or it is an lvalue; either way we can’t sort in place
Foo Foo::sorted() const & {

Foo ret(*this); // make a copy
sort(ret.data.begin(), ret.data.end()); // sort the copy
return ret; // return the copy

}

When we run sorted on an rvalue, it is safe to sort the data member directly.
The object is an rvalue, which means it has no other users, so we can change the
object itself. When we run sorted on a const rvalue or on an lvalue, we can’t
change this object, so we copy data before sorting it.

Overload resolution uses the lvalue/rvalue property of the object that calls
sorted to determine which version is used:
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retVal().sorted(); // retVal() is an rvalue, calls Foo::sorted() &&
retFoo().sorted(); // retFoo() is an lvalue, calls Foo::sorted() const &

When we define const memeber functions, we can define two versions that
differ only in that one is const qualified and the other is not. There is no similar
default for reference qualified functions. When we define two or more members
that have the same name and the same parameter list, we must provide a reference
qualifier on all or none of those functions:

class Foo {
public:

Foo sorted() &&;
Foo sorted() const; // error: must have reference qualifier
// Comp is type alias for the function type (see § 6.7 (p. 249))
// that can be used to compare int values
using Comp = bool(const int&, const int&);
Foo sorted(Comp*); // ok: different parameter list
Foo sorted(Comp*) const; // ok: neither version is reference qualified

};

Here the declaration of the const version of sorted that has no parameters is
an error. There is a second version of sorted that has no parameters and that
function has a reference qualifier, so the const version of that function must have
a reference qualifier as well. On the other hand, the versions of sorted that take a
pointer to a comparison operation are fine, because neither function has a qualifier.

If a member function has a reference qualifier, all the versions of that
member with the same parameter list must have reference qualifiers.

EXE R C I S E S SE C TI O N 13.6.3

Exercise 13.55: Add an rvalue reference version of push_back to your StrBlob.

Exercise 13.56: What would happen if we defined sorted as:

Foo Foo::sorted() const & {
Foo ret(*this);
return ret.sorted();

}

Exercise 13.57: What if we defined sorted as:

Foo Foo::sorted() const & { return Foo(*this).sorted(); }

Exercise 13.58: Write versions of class Foo with print statements in their sorted
functions to test your answers to the previous two exercises.
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CH A P T E R SU M M A R Y
Each class controls what happens when we copy, move, assign, or destroy ob-
jects of its type. Special member functions—the copy constructor, move construc-
tor, copy-assignment operator, move-assignment operator, and destructor—define
these operations. The move constructor and move-assignment operator take a
(usually nonconst) rvalue reference; the copy versions take a (usually const)
ordinary lvalue reference.

If a class declares none of these operations, the compiler will define them auto-
matically. If not defined as deleted, these operations memberwise initialize, move,
assign, or destroy the object: Taking each nonstatic data member in turn, the
synthesized operation does whatever is appropriate to the member’s type to move,
copy, assign, or destroy that member.

Classes that allocate memory or other resources almost always require that the
class define the copy-control members to manage the allocated resource. If a class
needs a destructor, then it almost surely needs to define the move and copy con-
structors and the move- and copy-assignment operators as well.

DEFINED TERMS

copy and swap Technique for writing as-
signment operators by copying the right-
hand operand followed by a call to swap to
exchange the copy with the left-hand oper-
and.

copy-assignment operator Version of the
assignment operator that takes an object of
the same type as its type. Ordinarily, the
copy-assignment operator has a parameter
that is a reference to const and returns a
reference to its object. The compiler syn-
thesizes the copy-assignment operator if the
class does not explicitly provide one.

copy constructor Constructor that initial-
izes a new object as a copy of another object
of the same type. The copy constructor is
applied implicitly to pass objects to or from
a function by value. If we do not provide
the copy constructor, the compiler synthe-
sizes one for us.

copy control Special members that control
what happens when objects of class type are
copied, moved, assigned, and destroyed.
The compiler synthesizes appropriate defi-
nitions for these operations if the class does
not otherwise declare them.

copy initialization Form of initialization
used when we use = to supply an initializer
for a newly created object. Also used when
we pass or return an object by value and
when we initialize an array or an aggregate
class. Copy initialization uses the copy con-
structor or the move constructor, depending
on whether the initializer is an lvalue or an
rvalue.

deleted function Function that may not be
used. We delete a function by specifying
= delete on its declaration. A common use
of deleted functions is to tell the compiler
not to synthesize the copy and/or move op-
erations for a class.

destructor Special member function that
cleans up an object when the object goes
out of scope or is deleted. The compiler
automatically destroys each data member.
Members of class type are destroyed by in-
voking their destructor; no work is done
when destroying members of built-in or
compound type. In particular, the object
pointed to by a pointer member is not
deleted by the destructor.

lvalue reference Reference that can bind
to an lvalue.
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memberwise copy/assign How the syn-
thesized copy and move constructors and
the copy- and move-assignment opera-
tors work. Taking each nonstatic data
member in turn, the synthesized copy or
move constructor initializes each member
by copying or moving the corresponding
member from the given object; the copy- or
move-assignment operators copy-assign or
move-assign each member from the right-
hand object to the left. Members of built-
in or compound type are initialized or as-
signed directly. Members of class type are
initialized or assigned by using the mem-
ber’s corresponding copy/move construc-
tor or copy-/move-assignment operator.

move Library function used to bind an
rvalue reference to an lvalue. Calling move
implicitly promises that we will not use the
moved-from object except to destroy it or
assign a new value to it.

move-assignment operator Version of
the assignment operator that takes an
rvalue reference to its type. Typically,
a move-assignment operator moves data
from the right-hand operand to the left. Af-
ter the assignment, it must be safe to run
the destructor on the right-hand operand.

move constructor Constructor that takes
an rvalue reference to its type. Typically, a
move constructor moves data from its pa-
rameter into the newly created object. After
the move, it must be safe to run the destruc-
tor on the given argument.

move iterator Iterator adaptor that gener-
ates an iterator that, when dereferenced,
yields an rvalue reference.

overloaded operator Function that rede-
fines the meaning of an operator when ap-
plied to operand(s) of class type. This chap-
ter showed how to define the assignment
operator; Chapter 14 covers overloaded op-
erators in more detail.

reference count Programming technique
often used in copy-control members. A ref-
erence count keeps track of how many ob-
jects share state. Constructors (other than
copy/move constructors) set the reference
count to 1. Each time a new copy is made
the count is incremented. When an ob-
ject is destroyed, the count is decremented.
The assignment operator and the destruc-
tor check whether the decremented refer-
ence count has gone to zero and, if so, they
destroy the object.

reference qualifier Symbol used to indi-
cate that a nonstatic member function
can be called on an lvalue or an rvalue. The
qualifier, & or &&, follows the parameter list
or the const qualifier if there is one. A
function qualified by & may be called only
on lvalues; a function qualified by && may
be called only on rvalues.

rvalue reference Reference to an object
that is about to be destroyed.

synthesized assignment operator A ver-
sion of the copy- or move-assignment oper-
ator created (synthesized) by the compiler
for classes that do not explicitly define as-
signment operators. Unless it is defined
as deleted, a synthesized assignment oper-
ator memberwise assigns (moves) the right-
hand operand to the left.

synthesized copy/move constructor A
version of the copy or move constructor that
is generated by the compiler for classes that
do not explicitly define the corresponding
constructor. Unless it is defined as deleted,
a synthesized copy or move constructor
memberwise initializes the new object by
copying or moving members from the given
object, respectively.

synthesized destructor Version of the de-
structor created (synthesized) by the com-
piler for classes that do not explicitly de-
fine one. The synthesized destructor has an
empty function body.
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In Chapter 4, we saw that C++ defines a large number of operators
and automatic conversions among the built-in types. These facilities
allow programmers to write a rich set of mixed-type expressions.

C++ lets us define what the operators mean when applied to ob-
jects of class type. It also lets us define conversions for class types.
Class-type conversions are used like the built-in conversions to im-
plicitly convert an object of one type to another type when needed.
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Operator overloading lets us define the meaning of an operator when ap-
plied to operand(s) of a class type. Judicious use of operator overloading can make
our programs easier to write and easier to read. As an example, because our origi-
nal Sales_item class type (§ 1.5.1, p. 20) defined the input, output, and addition
operators, we can print the sum of two Sales_items as

cout << item1 + item2; // print the sum of two Sales_items

In contrast, because our Sales_data class (§ 7.1, p. 254) does not yet have over-
loaded operators, code to print their sum is more verbose and, hence, less clear:

print(cout, add(data1, data2)); // print the sum of two Sales_datas

14.1 Basic Concepts
Overloaded operators are functions with special names: the keyword operator
followed by the symbol for the operator being defined. Like any other function, an
overloaded operator has a return type, a parameter list, and a body.

An overloaded operator function has the same number of parameters as the
operator has operands. A unary operator has one parameter; a binary operator
has two. In a binary operator, the left-hand operand is passed to the first parameter
and the right-hand operand to the second. Except for the overloaded function-call
operator, operator(), an overloaded operator may not have default arguments
(§ 6.5.1, p. 236).

If an operator function is a member function, the first (left-hand) operand is
bound to the implicit this pointer (§ 7.1.2, p. 257). Because the first operand
is implicitly bound to this, a member operator function has one less (explicit)
parameter than the operator has operands.

When an overloaded operator is a member function, this is bound to
the left-hand operand. Member operator functions have one less (ex-
plicit) parameter than the number of operands.

An operator function must either be a member of a class or have at least one
parameter of class type:

// error: cannot redefine the built-in operator for ints
int operator+(int, int);

This restriction means that we cannot change the meaning of an operator when
applied to operands of built-in type.

We can overload most, but not all, of the operators. Table 14.1 shows whether
or not an operator may be overloaded. We’ll cover overloading new and delete
in § 19.1.1 (p. 820).

We can overload only existing operators and cannot invent new operator sym-
bols. For example, we cannot define operator** to provide exponentiation.

Four symbols (+, -, *, and &) serve as both unary and binary operators. Either
or both of these operators can be overloaded. The number of parameters deter-
mines which operator is being defined.
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An overloaded operator has the same precedence and associativity (§ 4.1.2,
p. 136) as the corresponding built-in operator. Regardless of the operand types

x == y + z;

is always equivalent to x == (y + z).

Table 14.1: Operators

Operators That May Be Overloaded
+ - * / % ^
& | ~ ! , =
< > <= >= ++ --
<< >> == != && ||
+= -= /= %= ^= &=
|= *= <<= >>= [] ()
-> ->* new new [] delete delete []

Operators That Cannot Be Overloaded
:: .* . ?:

Calling an Overloaded Operator Function Directly

Ordinarily, we “call” an overloaded operator function indirectly by using the op-
erator on arguments of the appropriate type. However, we can also call an over-
loaded operator function directly in the same way that we call an ordinary func-
tion. We name the function and pass an appropriate number of arguments of the
appropriate type:

// equivalent calls to a nonmember operator function
data1 + data2; // normal expression
operator+(data1, data2); // equivalent function call

These calls are equivalent: Both call the nonmember function operator+, passing
data1 as the first argument and data2 as the second.

We call a member operator function explicitly in the same way that we call
any other member function. We name an object (or pointer) on which to run the
function and use the dot (or arrow) operator to fetch the function we wish to call:

data1 += data2; // expression-based ‘‘call’’
data1.operator+=(data2); // equivalent call to a member operator function

Each of these statements calls the member function operator+=, binding this
to the address of data1 and passing data2 as an argument.

Some Operators Shouldn’t Be Overloaded

Recall that a few operators guarantee the order in which operands are evaluated.
Because using an overloaded operator is really a function call, these guarantees
do not apply to overloaded operators. In particular, the operand-evaluation guar-
antees of the logical AND, logical OR (§ 4.3, p. 141), and comma (§ 4.10, p. 157)
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operators are not preserved. Moreover, overloaded versions of && or || operators
do not preserve short-circuit evaluation properties of the built-in operators. Both
operands are always evaluated.

Because the overloaded versions of these operators do not preserve order of
evaluation and/or short-circuit evaluation, it is usually a bad idea to overload
them. Users are likely to be surprised when the evaluation guarantees they are
accustomed to are not honored for code that happens to use an overloaded ver-
sion of one of these operators.

Another reason not to overload comma, which also applies to the address-of
operator, is that unlike most operators, the language defines what the comma and
address-of operators mean when applied to objects of class type. Because these
operators have built-in meaning, they ordinarily should not be overloaded. Users
of the class will be surprised if these operators behave differently from their normal
meanings.

Ordinarily, the comma, address-of, logical AND, and logical OR opera-
tors should not be overloaded.

Use Definitions That Are Consistent with the Built-in Meaning

When you design a class, you should always think first about what operations
the class will provide. Only after you know what operations are needed should
you think about whether to define each operation as an ordinary function or as an
overloaded operator. Those operations with a logical mapping to an operator are
good candidates for defining as overloaded operators:

• If the class does IO, define the shift operators to be consistent with how IO is
done for the built-in types.

• If the class has an operation to test for equality, define operator==. If the
class has operator==, it should usually have operator!= as well.

• If the class has a single, natural ordering operation, define operator<. If the
class has operator<, it should probably have all of the relational operators.

• The return type of an overloaded operator usually should be compatible with
the return from the built-in version of the operator: The logical and relational
operators should return bool, the arithmetic operators should return a value
of the class type, and assignment and compound assignment should return
a reference to the left-hand operand.

Assignment and Compound Assignment Operators

Assignment operators should behave analogously to the synthesized operators:
After an assignment, the values in the left-hand and right-hand operands should
have the same value, and the operator should return a reference to its left-hand
operand. Overloaded assignment should generalize the built-in meaning of as-
signment, not circumvent it.
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CAUTION: USE OPERATOR OVERLOADING JUDICIOUSLY

Each operator has an associated meaning from its use on the built-in types. Binary +,
for example, is strongly identified with addition. Mapping binary + to an analogous
operation for a class type can provide a convenient notational shorthand. For exam-
ple, the library string type, following a convention common to many programming
languages, uses + to represent concatenation—“adding” one string to the other.

Operator overloading is most useful when there is a logical mapping of a built-in
operator to an operation on our type. Using overloaded operators rather than invent-
ing named operations can make our programs more natural and intuitive. Overuse or
outright abuse of operator overloading can make our classes incomprehensible.

Obvious abuses of operator overloading rarely happen in practice. As an example,
no responsible programmer would define operator+ to perform subtraction. More
common, but still inadvisable, are uses that contort an operator’s “normal” meaning to
force a fit to a given type. Operators should be used only for operations that are likely
to be unambiguous to users. An operator has an ambiguous meaning if it plausibly
has more than one interpretation.

If a class has an arithmetic (§ 4.2, p. 139) or bitwise (§ 4.8, p. 152) operator,
then it is usually a good idea to provide the corresponding compound-assignment
operator as well. Needless to say, the += operator should be defined to behave the
same way the built-in operators do: it should behave as + followed by =.

Choosing Member or Nonmember Implementation

When we define an overloaded operator, we must decide whether to make the
operator a class member or an ordinary nonmember function. In some cases, there
is no choice—some operators are required to be members; in other cases, we may
not be able to define the operator appropriately if it is a member.

The following guidelines can be of help in deciding whether to make an oper-
ator a member or an ordinary nonmember function:

• The assignment (=), subscript ([]), call (()), and member access arrow (->)
operators must be defined as members.

• The compound-assignment operators ordinarily ought to be members. How-
ever, unlike assignment, they are not required to be members.

• Operators that change the state of their object or that are closely tied to their
given type—such as increment, decrement, and dereference—usually should
be members.

• Symmetric operators—those that might convert either operand, such as the
arithmetic, equality, relational, and bitwise operators—usually should be de-
fined as ordinary nonmember functions.

Programmers expect to be able to use symmetric operators in expressions with
mixed types. For example, we can add an int and a double. The addition is sym-
metric because we can use either type as the left-hand or the right-hand operand.
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If we want to provide similar mixed-type expressions involving class objects, then
the operator must be defined as a nonmember function.

When we define an operator as a member function, then the left-hand operand
must be an object of the class of which that operator is a member. For example:

string s = "world";
string t = s + "!"; // ok: we can add a const char* to a string
string u = "hi" + s; // would be an error if + were a member of string

If operator+ were a member of the string class, the first addition would be
equivalent to s.operator+("!"). Likewise, "hi" + s would be equivalent to
"hi".operator+(s). However, the type of "hi" is const char*, and that is a
built-in type; it does not even have member functions.

Because string defines + as an ordinary nonmember function, "hi" + s is
equivalent to operator+("hi", s). As with any function call, either of the ar-
guments can be converted to the type of the parameter. The only requirements are
that at least one of the operands has a class type, and that both operands can be
converted (unambiguously) to string.

EXE R C I S E S SE C TI ON 14.1

Exercise 14.1: In what ways does an overloaded operator differ from a built-in opera-
tor? In what ways are overloaded operators the same as the built-in operators?

Exercise 14.2: Write declarations for the overloaded input, output, addition, and
compound-assignment operators for Sales_data.

Exercise 14.3: Both string and vector define an overloaded == that can be used to
compare objects of those types. Assuming svec1 and svec2 are vectors that hold
strings, identify which version of == is applied in each of the following expressions:

(a) "cobble" == "stone" (b) svec1[0] == svec2[0]
(c) svec1 == svec2 (d) "svec1[0] == "stone"

Exercise 14.4: Explain how to decide whether the following should be class members:

(a) % (b) %= (c) ++ (d) -> (e) << (f) && (g) == (h) ()

Exercise 14.5: In exercise 7.40 from § 7.5.1 (p. 291) you wrote a sketch of one of the
following classes. Decide what, if any, overloaded operators your class should provide.

(a) Book (b) Date (c) Employee
(d) Vehicle (e) Object (f) Tree

14.2 Input and Output Operators
As we’ve seen, the IO library uses >> and << for input and output, respectively.
The IO library itself defines versions of these operators to read and write the built-
in types. Classes that support IO ordinarily define versions of these operators for
objects of the class type.
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14.2.1 Overloading the Output Operator <<
Ordinarily, the first parameter of an output operator is a reference to a nonconst
ostream object. The ostream is nonconst because writing to the stream changes
its state. The parameter is a reference because we cannot copy an ostream object.

The second parameter ordinarily should be a reference to const of the class
type we want to print. The parameter is a reference to avoid copying the argument.
It can be const because (ordinarily) printing an object does not change that object.

To be consistent with other output operators, operator<< normally returns
its ostream parameter.

The Sales_data Output Operator

As an example, we’ll write the Sales_data output operator:

ostream &operator<<(ostream &os, const Sales_data &item)
{

os << item.isbn() << " " << item.units_sold << " "
<< item.revenue << " " << item.avg_price();

return os;
}

Except for its name, this function is identical to our earlier print function (§ 7.1.3,
p. 261). Printing a Sales_data entails printing its three data elements and the
computed average sales price. Each element is separated by a space. After printing
the values, the operator returns a reference to the ostream it just wrote.

Output Operators Usually Do Minimal Formatting

The output operators for the built-in types do little if any formatting. In particular,
they do not print newlines. Users expect class output operators to behave simi-
larly. If the operator does print a newline, then users would be unable to print
descriptive text along with the object on the same line. An output operator that
does minimal formatting lets users control the details of their output.

Generally, output operators should print the contents of the object,
with minimal formatting. They should not print a newline.

IO Operators Must Be Nonmember Functions

Input and output operators that conform to the conventions of the iostream li-
brary must be ordinary nonmember functions. These operators cannot be mem-
bers of our own class. If they were, then the left-hand operand would have to be
an object of our class type:

Sales_data data;
data << cout; // if operator<< is a member of Sales_data

If these operators are members of any class, they would have to be members of
istream or ostream. However, those classes are part of the standard library,
and we cannot add members to a class in the library.
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Thus, if we want to define the IO operators for our types, we must define them
as nonmember functions. Of course, IO operators usually need to read or write
the nonpublic data members. As a consequence, IO operators usually must be
declared as friends (§ 7.2.1, p. 269).

EXE R C I S E S SE C TI O N 14.2.1

Exercise 14.6: Define an output operator for your Sales_data class.

Exercise 14.7: Define an output operator for you String class you wrote for the ex-
ercises in § 13.5 (p. 531).

Exercise 14.8: Define an output operator for the class you chose in exercise 7.40 from
§ 7.5.1 (p. 291).

14.2.2 Overloading the Input Operator >>
Ordinarily the first parameter of an input operator is a reference to the stream from
which it is to read, and the second parameter is a reference to the (nonconst)
object into which to read. The operator usually returns a reference to its given
stream. The second parameter must be nonconst because the purpose of an input
operator is to read data into this object.

The Sales_data Input Operator

As an example, we’ll write the Sales_data input operator:

istream &operator>>(istream &is, Sales_data &item)
{

double price; // no need to initialize; we’ll read into price before we use it
is >> item.bookNo >> item.units_sold >> price;
if (is) // check that the inputs succeeded

item.revenue = item.units_sold * price;
else

item = Sales_data(); // input failed: give the object the default state
return is;

}

Except for the if statement, this definition is similar to our earlier read function
(§ 7.1.3, p. 261). The if checks whether the reads were successful. If an IO error
occurs, the operator resets its given object to the empty Sales_data. That way,
the object is guaranteed to be in a consistent state.

Input operators must deal with the possibility that the input might fail;
output operators generally don’t bother.
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Errors during Input

The kinds of errors that might happen in an input operator include the following:

• A read operation might fail because the stream contains data of an incorrect
type. For example, after reading bookNo, the input operator assumes that
the next two items will be numeric data. If nonnumeric data is input, that
read and any subsequent use of the stream will fail.

• Any of the reads could hit end-of-file or some other error on the input stream.

Rather than checking each read, we check once after reading all the data and before
using those data:

if (is) // check that the inputs succeeded
item.revenue = item.units_sold * price;

else
item = Sales_data(); // input failed: give the object the default state

If any of the read operations fails, price will have an undefined value. Therefore,
before using price, we check that the input stream is still valid. If it is, we do
the calculation and store the result in revenue. If there was an error, we do not
worry about which input failed. Instead, we reset the entire object to the empty
Sales_data by assigning a new, default-initialized Sales_data object to item.
After this assignment, item will have an empty string for its bookNo member,
and its revenue and units_sold members will be zero.

Putting the object into a valid state is especially important if the object might
have been partially changed before the error occurred. For example, in this input
operator, we might encounter an error after successfully reading a new bookNo.
An error after reading bookNo would mean that the units_sold and revenue
members of the old object were unchanged. The effect would be to associate a
different bookNo with those data.

By leaving the object in a valid state, we (somewhat) protect a user that ignores
the possibility of an input error. The object will be in a usable state—its members
are all defined. Similarly, the object won’t generate misleading results—its data are
internally consistent.

Input operators should decide what, if anything, to do about error re-
covery.

Indicating Errors

Some input operators need to do additional data verification. For example, our
input operator might check that the bookNo we read is in an appropriate format.
In such cases, the input operator might need to set the stream’s condition state to
indicate failure (§ 8.1.2, p. 312), even though technically speaking the actual IO
was successful. Usually an input operator should set only the failbit. Setting
eofbit would imply that the file was exhausted, and setting badbit would indi-
cate that the stream was corrupted. These errors are best left to the IO library itself
to indicate.
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EXE R C I S E S SE C TI O N 14.2.2

Exercise 14.9: Define an input operator for your Sales_data class.

Exercise 14.10: Describe the behavior of the Sales_data input operator if given the
following input:

(a) 0-201-99999-9 10 24.95 (b) 10 24.95 0-210-99999-9

Exercise 14.11: What, if anything, is wrong with the following Sales_data input op-
erator? What would happen if we gave this operator the data in the previous exercise?

istream& operator>>(istream& in, Sales_data& s)
{

double price;
in >> s.bookNo >> s.units_sold >> price;
s.revenue = s.units_sold * price;
return in;

}

Exercise 14.12: Define an input operator for the class you used in exercise 7.40 from
§ 7.5.1 (p. 291). Be sure the operator handles input errors.

14.3 Arithmetic and Relational Operators
Ordinarily, we define the arithmetic and relational operators as nonmember func-
tions in order to allow conversions for either the left- or right-hand operand (§ 14.1,
p. 555). These operators shouldn’t need to change the state of either operand, so
the parameters are ordinarily references to const.

An arithmetic operator usually generates a new value that is the result of a
computation on its two operands. That value is distinct from either operand and is
calculated in a local variable. The operation returns a copy of this local as its result.
Classes that define an arithmetic operator generally define the corresponding com-
pound assignment operator as well. When a class has both operators, it is usually
more efficient to define the arithmetic operator to use compound assignment:

// assumes that both objects refer to the same book
Sales_data
operator+(const Sales_data &lhs, const Sales_data &rhs)
{

Sales_data sum = lhs; // copy data members from lhs into sum
sum += rhs; // add rhs into sum
return sum;

}

This definition is essentially identical to our original add function (§ 7.1.3,
p. 261). We copy lhs into the local variable sum. We then use the Sales_data
compound-assignment operator (which we’ll define on page 564) to add the values
from rhs into sum. We end the function by returning a copy of sum.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 14.3 Arithmetic and Relational Operators 561

Classes that define both an arithmetic operator and the related com-
pound assignment ordinarily ought to implement the arithmetic oper-
ator by using the compound assignment.

EXE R C I S E S SE C TI ON 14.3

Exercise 14.13: Which other arithmetic operators (Table 4.1 (p. 139)), if any, do you
think Sales_data ought to support? Define any you think the class should include.

Exercise 14.14: Why do you think it is more efficient to define operator+ to call
operator+= rather than the other way around?

Exercise 14.15: Should the class you chose for exercise 7.40 from § 7.5.1 (p. 291) define
any of the arithmetic operators? If so, implement them. If not, explain why not.

14.3.1 Equality Operators
Ordinarily, classes in C++ define the equality operator to test whether two objects
are equivalent. That is, they usually compare every data member and treat two
objects as equal if and only if all the corresponding members are equal. In line
with this design philosophy, our Sales_data equality operator should compare
the bookNo as well as the sales figures:

bool operator==(const Sales_data &lhs, const Sales_data &rhs)
{

return lhs.isbn() == rhs.isbn() &&
lhs.units_sold == rhs.units_sold &&
lhs.revenue == rhs.revenue;

}
bool operator!=(const Sales_data &lhs, const Sales_data &rhs)
{

return !(lhs == rhs);
}

The definition of these functions is trivial. More important are the design princi-
ples that these functions embody:

• If a class has an operation to determine whether two objects are equal, it
should define that function as operator== rather than as a named function:
Users will expect to be able to compare objects using ==; providing ==means
they won’t need to learn and remember a new name for the operation; and it
is easier to use the library containers and algorithms with classes that define
the == operator.

• If a class defines operator==, that operator ordinarily should determine
whether the given objects contain equivalent data.
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• Ordinarily, the equality operator should be transitive, meaning that if a == b
and b == c are both true, then a == c should also be true.

• If a class defines operator==, it should also define operator!=. Users
will expect that if they can use == then they can also use !=, and vice versa.

• One of the equality or inequality operators should delegate the work to the
other. That is, one of these operators should do the real work to compare
objects. The other should call the one that does the real work.

Classes for which there is a logical meaning for equality normally
should define operator==. Classes that define == make it easier for
users to use the class with the library algorithms.

EXE R C I S E S SE C TI O N 14.3.1

Exercise 14.16: Define equality and inequality operators for your StrBlob (§ 12.1.1,
p. 456), StrBlobPtr (§ 12.1.6, p. 474), StrVec (§ 13.5, p. 526), and String (§ 13.5,
p. 531) classes.

Exercise 14.17: Should the class you chose for exercise 7.40 from § 7.5.1 (p. 291) define
the equality operators? If so, implement them. If not, explain why not.

14.3.2 Relational Operators
Classes for which the equality operator is defined also often (but not always) have
relational operators. In particular, because the associative containers and some of
the algorithms use the less-than operator, it can be useful to define an operator<.

Ordinarily the relational operators should

1. Define an ordering relation that is consistent with the requirements for use
as a key to an associative container (§ 11.2.2, p. 424); and

2. Define a relation that is consistent with == if the class has both operators. In
particular, if two objects are !=, then one object should be < the other.

Although we might think our Sales_data class should support the relational
operators, it turns out that it probably should not do so. The reasons are subtle
and are worth understanding.

We might think that we’d define < similarly to compareIsbn (§ 11.2.2, p. 425).
That function compared Sales_data objects by comparing their ISBNs. Although
compareIsbn provides an ordering relation that meets requirment 1, that func-
tion yields results that are inconsistent with our definition of ==. As a result, it
does not meet requirement 2.

The Sales_data == operator treats two transactions with the same ISBN as
unequal if they have different revenue or units_sold members. If we defined
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the < operator to compare only the ISBN member, then two objects with the same
ISBN but different units_sold or revenue would compare as unequal, but nei-
ther object would be less than the other. Ordinarily, if we have two objects, neither
of which is less than the other, then we expect that those objects are equal.

We might think that we should, therefore, define operator< to compare each
data element in turn. We could define operator< to compare objects with equal
isbns by looking next at the units_sold and then at the revenue members.

However, there is nothing essential about this ordering. Depending on how
we plan to use the class, we might want to define the order based first on either
revenue or units_sold. We might want those objects with fewer units_sold
to be “less than” those with more. Or we might want to consider those with smaller
revenue “less than” those with more.

For Sales_data, there is no single logical definition of <. Thus, it is better for
this class not to define < at all.

If a single logical definition for < exists, classes usually should define
the < operator. However, if the class also has ==, define < only if the
definitions of < and == yield consistent results.

EXE R C I S E S SE C TI O N 14.3.2

Exercise 14.18: Define relational operators for your StrBlob, StrBlobPtr, StrVec,
and String classes.

Exercise 14.19: Should the class you chose for exercise 7.40 from § 7.5.1 (p. 291) define
the relational operators? If so, implement them. If not, explain why not.

14.4 Assignment Operators
In addition to the copy- and move-assignment operators that assign one object of
the class type to another object of the same type (§ 13.1.2, p. 500, and § 13.6.2,
p. 536), a class can define additional assignment operators that allow other types
as the right-hand operand.

As one example, in addition to the copy- and move-assignment operators, the
library vector class defines a third assignment operator that takes a braced list of
elements (§ 9.2.5, p. 337). We can use this operator as follows:

vector<string> v;
v = {"a", "an", "the"};

We can add this operator to our StrVec class (§ 13.5, p. 526) as well:

class StrVec {
public:

StrVec &operator=(std::initializer_list<std::string>);
// other members as in § 13.5 (p. 526)

};
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To be consistent with assignment for the built-in types (and with the copy- and
move-assignment operators we already defined), our new assignment operator
will return a reference to its left-hand operand:

StrVec &StrVec::operator=(initializer_list<string> il)
{

// alloc_n_copy allocates space and copies elements from the given range
auto data = alloc_n_copy(il.begin(), il.end());
free(); // destroy the elements in this object and free the space
elements = data.first; // update data members to point to the new space
first_free = cap = data.second;
return *this;

}

As with the copy- and move-assignment operators, other overloaded assignment
operators have to free the existing elements and create new ones. Unlike the copy-
and move-assignment operators, this operator does not need to check for self-
assignment. The parameter is an initializer_list<string> (§ 6.2.6, p. 220),
which means that il cannot be the same object as the one denoted by this.

Assignment operators can be overloaded. Assignment operators, re-
gardless of parameter type, must be defined as member functions.

Compound-Assignment Operators

Compound assignment operators are not required to be members. However, we
prefer to define all assignments, including compound assignments, in the class.
For consistency with the built-in compound assignment, these operators should
return a reference to their left-hand operand. For example, here is the definition of
the Sales_data compound-assignment operator:

// member binary operator: left-hand operand is bound to the implicit this pointer
// assumes that both objects refer to the same book
Sales_data& Sales_data::operator+=(const Sales_data &rhs)
{

units_sold += rhs.units_sold;
revenue += rhs.revenue;
return *this;

}

Assignment operators must, and ordinarily compound-assignment op-
erators should, be defined as members. These operators should return
a reference to the left-hand operand.

14.5 Subscript Operator
Classes that represent containers from which elements can be retrieved by position
often define the subscript operator, operator[].
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EXE R C I S E S SE C TI ON 14.4

Exercise 14.20: Define the addition and compound-assignment operators for your
Sales_data class.

Exercise 14.21: Write the Sales_data operators so that + does the actual addition
and += calls +. Discuss the disadvantages of this approach compared to the way these
operators were defined in § 14.3 (p. 560) and § 14.4 (p. 564).

Exercise 14.22: Define a version of the assignment operator that can assign a string
representing an ISBN to a Sales_data.

Exercise 14.23: Define an initializer_list assignment operator for your version
of the StrVec class.

Exercise 14.24: Decide whether the class you used in exercise 7.40 from § 7.5.1 (p. 291)
needs a copy- and move-assignment operator. If so, define those operators.

Exercise 14.25: Implement any other assignment operators your class should define.
Explain which types should be used as operands and why.

The subscript operator must be a member function.

To be compatible with the ordinary meaning of subscript, the subscript op-
erator usually returns a reference to the element that is fetched. By returning a
reference, subscript can be used on either side of an assignment. Consequently, it
is also usually a good idea to define both const and nonconst versions of this
operator. When applied to a const object, subscript should return a reference to
const so that it is not possible to assign to the returned object.

If a class has a subscript operator, it usually should define two versions:
one that returns a plain reference and the other that is a constmember
and returns a reference to const.

As an example, we’ll define subscript for StrVec (§ 13.5, p. 526):

class StrVec {
public:

std::string& operator[](std::size_t n)
{ return elements[n]; }

const std::string& operator[](std::size_t n) const
{ return elements[n]; }

// other members as in § 13.5 (p. 526)
private:

std::string *elements; // pointer to the first element in the array
};

We can use these operators similarly to how we subscript a vector or array.
Because subscript returns a reference to an element, if the StrVec is nonconst,
we can assign to that element; if we subscript a const object, we can’t:
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// assume svec is a StrVec
const StrVec cvec = svec; // copy elements from svec into cvec
// if svec has any elements, run the string empty function on the first one
if (svec.size() && svec[0].empty()) {

svec[0] = "zero"; // ok: subscript returns a reference to a string
cvec[0] = "Zip"; // error: subscripting cvec returns a reference to const

}

EXE R C I S E S SE C TI ON 14.5

Exercise 14.26: Define subscript operators for your StrVec, String, StrBlob, and
StrBlobPtr classes.

14.6 Increment and Decrement Operators
The increment (++) and decrement (--) operators are most often implemented for
iterator classes. These operators let the class move between the elements of a se-
quence. There is no language requirement that these operators be members of the
class. However, because these operators change the state of the object on which
they operate, our preference is to make them members.

For the built-in types, there are both prefix and postfix versions of the incre-
ment and decrement operators. Not surprisingly, we can define both the prefix
and postfix instances of these operators for our own classes as well. We’ll look at
the prefix versions first and then implement the postfix ones.

Classes that define increment or decrement operators should define
both the prefix and postfix versions. These operators usually should
be defined as members.

Defining Prefix Increment/Decrement Operators

To illustrate the increment and decrement operators, we’ll define these operators
for our StrBlobPtr class (§ 12.1.6, p. 474):

class StrBlobPtr {
public:

// increment and decrement
StrBlobPtr& operator++(); // prefix operators
StrBlobPtr& operator--();

// other members as before
};

To be consistent with the built-in operators, the prefix operators should
return a reference to the incremented or decremented object.
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The increment and decrement operators work similarly to each other—they
call check to verify that the StrBlobPtr is still valid. If so, check also verifies
that its given index is valid. If check doesn’t throw an exception, these operators
return a reference to this object.

In the case of increment, we pass the current value of curr to check. So long
as that value is less than the size of the underlying vector, check will return. If
curr is already at the end of the vector, check will throw:

// prefix: return a reference to the incremented/decremented object
StrBlobPtr& StrBlobPtr::operator++()
{

// if curr already points past the end of the container, can’t increment it
check(curr, "increment past end of StrBlobPtr");
++curr; // advance the current state
return *this;

}

StrBlobPtr& StrBlobPtr::operator--()
{

// if curr is zero, decrementing it will yield an invalid subscript
--curr; // move the current state back one element
check(curr, "decrement past begin of StrBlobPtr");
return *this;

}

The decrement operator decrements curr before calling check. That way, if curr
(which is an unsigned number) is already zero, the value that we pass to check
will be a large positive value representing an invalid subscript (§ 2.1.2, p. 36).

Differentiating Prefix and Postfix Operators

There is one problem with defining both the prefix and postfix operators: Normal
overloading cannot distinguish between these operators. The prefix and postfix
versions use the same symbol, meaning that the overloaded versions of these oper-
ators have the same name. They also have the same number and type of operands.

To solve this problem, the postfix versions take an extra (unused) parameter of
type int. When we use a postfix operator, the compiler supplies 0 as the argument
for this parameter. Although the postfix function can use this extra parameter,
it usually should not. That parameter is not needed for the work normally per-
formed by a postfix operator. Its sole purpose is to distinguish a postfix function
from the prefix version.

We can now add the postfix operators to StrBlobPtr:

class StrBlobPtr {
public:

// increment and decrement
StrBlobPtr operator++(int); // postfix operators
StrBlobPtr operator--(int);
// other members as before

};
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To be consistent with the built-in operators, the postfix operators
should return the old (unincremented or undecremented) value. That
value is returned as a value, not a reference.

The postfix versions have to remember the current state of the object before incre-
menting the object:

// postfix: increment/decrement the object but return the unchanged value
StrBlobPtr StrBlobPtr::operator++(int)
{

// no check needed here; the call to prefix increment will do the check
StrBlobPtr ret = *this; // save the current value
++*this; // advance one element; prefix ++ checks the increment
return ret; // return the saved state

}

StrBlobPtr StrBlobPtr::operator--(int)
{

// no check needed here; the call to prefix decrement will do the check
StrBlobPtr ret = *this; // save the current value
--*this; // move backward one element; prefix -- checks the decrement
return ret; // return the saved state

}

Each of our operators calls its own prefix version to do the actual work. For exam-
ple, the postfix increment operator executes

++*this

This expression calls the prefix increment operator. That operator checks that the
increment is safe and either throws an exception or increments curr. Assuming
check doesn’t throw an exception, the postfix functions return the stored copy
in ret. Thus, after the return, the object itself has been advanced, but the value
returned reflects the original, unincremented value.

The int parameter is not used, so we do not give it a name.

Calling the Postfix Operators Explicitly

As we saw on page 553, we can explicitly call an overloaded operator as an alter-
native to using it as an operator in an expression. If we want to call the postfix
version using a function call, then we must pass a value for the integer argument:

StrBlobPtr p(a1); // p points to the vector inside a1
p.operator++(0); // call postfix operator++
p.operator++(); // call prefix operator++

The value passed usually is ignored but is necessary in order to tell the compiler
to use the postfix version.
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EXE R C I S E S SE C TI ON 14.6

Exercise 14.27: Add increment and decrement operators to your StrBlobPtr class.

Exercise 14.28: Define addition and subtraction for StrBlobPtr so that these opera-
tors implement pointer arithmetic (§ 3.5.3, p. 119).

Exercise 14.29: We did not define a const version of the increment and decrement
operators. Why not?

14.7 Member Access Operators
The dereference (*) and arrow (->) operators are often used in classes that rep-
resent iterators and in smart pointer classes (§ 12.1, p. 450). We can logically add
these operators to our StrBlobPtr class as well:

class StrBlobPtr {
public:

std::string& operator*() const
{ auto p = check(curr, "dereference past end");

return (*p)[curr]; // (*p) is the vector to which this object points
}
std::string* operator->() const
{ // delegate the real work to the dereference operator
return & this->operator*();

}
// other members as before

};

The dereference operator checks that curr is still in range and, if so, returns a
reference to the element denoted by curr. The arrow operator avoids doing any
work of its own by calling the dereference operator and returning the address of
the element returned by that operator.

Operator arrow must be a member. The dereference operator is not re-
quired to be a member but usually should be a member as well.

It is worth noting that we’ve defined these operators as const members. Un-
like the increment and decrment operators, fetching an element doesn’t change the
state of a StrBlobPtr. Also note that these operators return a reference or pointer
to nonconst string. They do so because we know that a StrBlobPtr can only
be bound to a nonconst StrBlob (§ 12.1.6, p. 474).

We can use these operators the same way that we’ve used the corresponding
operations on pointers or vector iterators:

StrBlob a1 = {"hi", "bye", "now"};
StrBlobPtr p(a1); // p points to the vector inside a1
*p = "okay"; // assigns to the first element in a1
cout << p->size() << endl; // prints 4, the size of the first element in a1
cout << (*p).size() << endl; // equivalent to p->size()
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Constraints on the Return from Operator Arrow

As with most of the other operators (although it would be a bad idea to do so), we
can define operator* to do whatever processing we like. That is, we can define
operator* to return a fixed value, say, 42, or print the contents of the object to
which it is applied, or whatever. The same is not true for overloaded arrow. The
arrow operator never loses its fundamental meaning of member access. When
we overload arrow, we change the object from which arrow fetches the specified
member. We cannot change the fact that arrow fetches a member.

When we write point->mem, point must be a pointer to a class object or it
must be an object of a class with an overloaded operator->. Depending on the
type of point, writing point->mem is equivalent to

(*point).mem; // point is a built-in pointer type
point.operator()->mem; // point is an object of class type

Otherwise the code is in error. That is, point->mem executes as follows:

1. If point is a pointer, then the built-in arrow operator is applied, which
means this expression is a synonym for (*point).mem. The pointer is
dereferenced and the indicated member is fetched from the resulting object.
If the type pointed to by point does not have a member named mem, then
the code is in error.

2. If point is an object of a class that defines operator->, then the result
of point.operator->() is used to fetch mem. If that result is a pointer,
then step 1 is executed on that pointer. If the result is an object that itself
has an overloaded operator->(), then this step is repeated on that object.
This process continues until either a pointer to an object with the indicated
member is returned or some other value is returned, in which case the code
is in error.

The overloaded arrow operator must return either a pointer to a class
type or an object of a class type that defines its own operator arrow.

EXE R C I S E S SE C TI ON 14.7

Exercise 14.30: Add dereference and arrow operators to your StrBlobPtr class and
to the ConstStrBlobPtr class that you defined in exercise 12.22 from § 12.1.6 (p. 476).
Note that the operators in constStrBlobPtr must return const references because
the data member in constStrBlobPtr points to a const vector.

Exercise 14.31: Our StrBlobPtr class does not define the copy constructor, assign-
ment operator, or a destructor. Why is that okay?

Exercise 14.32: Define a class that holds a pointer to a StrBlobPtr. Define the over-
loaded arrow operator for that class.
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14.8 Function-Call Operator
Classes that overload the call operator allow objects of its type to be used as if they
were a function. Because such classes can also store state, they can be more flexible
than ordinary functions.

As a simple example, the following struct, named absInt, has a call opera-
tor that returns the absolute value of its argument:

struct absInt {
int operator()(int val) const {

return val < 0 ? -val : val;
}

};

This class defines a single operation: the function-call operator. That operator takes
an argument of type int and returns the argument’s absolute value.

We use the call operator by applying an argument list to an absInt object in a
way that looks like a function call:

int i = -42;
absInt absObj; // object that has a function-call operator
int ui = absObj(i); // passes i to absObj.operator()

Even though absObj is an object, not a function, we can “call” this object. Calling
an object runs its overloaded call operator. In this case, that operator takes an int
value and returns its absolute value.

The function-call operator must be a member function. A class may
define multiple versions of the call operator, each of which must differ
as to the number or types of their parameters.

Objects of classes that define the call operator are referred to as function ob-
jects. Such objects “act like functions” because we can call them.

Function-Object Classes with State

Like any other class, a function-object class can have additional members aside
from operator(). Function-object classes often contain data members that are
used to customize the operations in the call operator.

As an example, we’ll define a class that prints a string argument. By default,
our class will write to cout and will print a space following each string. We’ll
also let users of our class provide a different stream on which to write and provide
a different separator. We can define this class as follows:

class PrintString {
public:

PrintString(ostream &o = cout, char c = ’ ’):
os(o), sep(c) { }

void operator()(const string &s) const { os << s << sep; }
private:

ostream &os; // stream on which to write
char sep; // character to print after each output

};
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Our class has a constructor that takes a reference to an output stream and a charac-
ter to use as the separator. It uses cout and a space as default arguments (§ 6.5.1,
p. 236) for these parameters. The body of the function-call operator uses these
members when it prints the given string.

When we define PrintString objects, we can use the defaults or supply our
own values for the separator or output stream:

PrintString printer; // uses the defaults; prints to cout
printer(s); // prints s followed by a space on cout

PrintString errors(cerr, ’\n’);
errors(s); // prints s followed by a newline on cerr

Function objects are most often used as arguments to the generic algorithms.
For example, we can use the library for_each algorithm (§ 10.3.2, p. 391) and our
PrintString class to print the contents of a container:

for_each(vs.begin(), vs.end(), PrintString(cerr, ’\n’));

The third argument to for_each is a temporary object of type PrintString that
we initialize from cerr and a newline character. The call to for_each will print
each element in vs to cerr followed by a newline.

EXE R C I S E S SE C TI ON 14.8

Exercise 14.33: How many operands may an overloaded function-call operator take?

Exercise 14.34: Define a function-object class to perform an if-then-else operation: The
call operator for this class should take three parameters. It should test its first parame-
ter and if that test succeeds, it should return its second parameter; otherwise, it should
return its third parameter.

Exercise 14.35: Write a class like PrintString that reads a line of input from an
istream and returns a string representing what was read. If the read fails, return
the empty string.

Exercise 14.36: Use the class from the previous exercise to read the standard input,
storing each line as an element in a vector.

Exercise 14.37: Write a class that tests whether two values are equal. Use that object
and the library algorithms to write a program to replace all instances of a given value
in a sequence.

14.8.1 Lambdas Are Function Objects
In the previous section, we used a PrintString object as an argument in a call
to for_each. This usage is similar to the programs we wrote in § 10.3.2 (p. 388)
that used lambda expressions. When we write a lambda, the compiler translates
that expression into an unnamed object of an unnamed class (§ 10.3.3, p. 392). The
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classes generated from a lambda contain an overloaded function-call operator. For
example, the lambda that we passed as the last argument to stable_sort:

// sort words by size, but maintain alphabetical order for words of the same size
stable_sort(words.begin(), words.end(),

[](const string &a, const string &b)
{ return a.size() < b.size();});

acts like an unnamed object of a class that would look something like

class ShorterString {
public:

bool operator()(const string &s1, const string &s2) const
{ return s1.size() < s2.size(); }

};

The generated class has a single member, which is a function-call operator that
takes two strings and compares their lengths. The parameter list and function
body are the same as the lambda. As we saw in § 10.3.3 (p. 395), by default, lamb-
das may not change their captured variables. As a result, by default, the function-
call operator in a class generated from a lambda is a const member function. If
the lambda is declared as mutable, then the call operator is not const.

We can rewrite the call to stable_sort to use this class instead of the lambda
expression:

stable_sort(words.begin(), words.end(), ShorterString());

The third argument is a newly constructed ShorterString object. The code in
stable_sort will “call” this object each time it compares two strings. When
the object is called, it will execute the body of its call operator, returning true if
the first string’s size is less than the second’s.

Classes Representing Lambdas with Captures

As we’ve seen, when a lambda captures a variable by reference, it is up to the
program to ensure that the variable to which the reference refers exists when the
lambda is executed (§ 10.3.3, p. 393). Therefore, the compiler is permitted to use the
reference directly without storing that reference as a data member in the generated
class.

In contrast, variables that are captured by value are copied into the lambda
(§ 10.3.3, p. 392). As a result, classes generated from lambdas that capture vari-
ables by value have data members corresponding to each such variable. These
classes also have a constructor to initialize these data members from the value of
the captured variables. As an example, in § 10.3.2 (p. 390), the lambda that we used
to find the first string whose length was greater than or equal to a given bound:

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(),

[sz](const string &a)

would generate a class that looks something like
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class SizeComp {
SizeComp(size_t n): sz(n) { } // parameter for each captured variable
// call operator with the same return type, parameters, and body as the lambda
bool operator()(const string &s) const

{ return s.size() >= sz; }
private:

size_t sz; // a data member for each variable captured by value
};

Unlike our ShorterString class, this class has a data member and a constructor
to initialize that member. This synthesized class does not have a default construc-
tor; to use this class, we must pass an argument:

// get an iterator to the first element whose size() is >= sz
auto wc = find_if(words.begin(), words.end(), SizeComp(sz));

Classes generated from a lambda expression have a deleted default constructor,
deleted assignment operators, and a default destructor. Whether the class has a
defaulted or deleted copy/move constructor depends in the usual ways on the
types of the captured data members (§ 13.1.6, p. 508, and § 13.6.2, p. 537).

EXE R C I S E S SE C TI O N 14.8.1

Exercise 14.38: Write a class that tests whether the length of a given string matches
a given bound. Use that object to write a program to report how many words in an
input file are of sizes 1 through 10 inclusive.

Exercise 14.39: Revise the previous program to report the count of words that are sizes
1 through 9 and 10 or more.

Exercise 14.40: Rewrite the biggies function from § 10.3.2 (p. 391) to use function-
object classes in place of lambdas.

Exercise 14.41: Why do you suppose the new standard added lambdas? Explain
when you would use a lambda and when you would write a class instead.

14.8.2 Library-Defined Function Objects
The standard library defines a set of classes that represent the arithmetic, relational,
and logical operators. Each class defines a call operator that applies the named
operation. For example, the plus class has a function-call operator that applies +
to a pair of operands; the modulus class defines a call operator that applies the
binary % operator; the equal_to class applies ==; and so on.

These classes are templates to which we supply a single type. That type speci-
fies the parameter type for the call operator. For example, plus<string> applies
the string addition operator to string objects; for plus<int> the operands are
ints; plus<Sales_data> applies + to Sales_datas; and so on:
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plus<int> intAdd; // function object that can add two int values
negate<int> intNegate; // function object that can negate an int value

// uses intAdd::operator(int, int) to add 10 and 20
int sum = intAdd(10, 20); // equivalent to sum = 30
sum = intNegate(intAdd(10, 20)); // equivalent to sum = -30
// uses intNegate::operator(int) to generate -10 as the second parameter
// to intAdd::operator(int, int)
sum = intAdd(10, intNegate(10)); // sum = 0

These types, listed in Table 14.2, are defined in the functional header.

Table 14.2: Library Function Objects

Arithmetic Relational Logical
plus<Type> equal_to<Type> logical_and<Type>
minus<Type> not_equal_to<Type> logical_or<Type>
multiplies<Type> greater<Type> logical_not<Type>
divides<Type> greater_equal<Type>
modulus<Type> less<Type>
negate<Type> less_equal<Type>

Using a Library Function Object with the Algorithms

The function-object classes that represent operators are often used to override the
default operator used by an algorithm. As we’ve seen, by default, the sorting algo-
rithms use operator<, which ordinarily sorts the sequence into ascending order.
To sort into descending order, we can pass an object of type greater. That class
generates a call operator that invokes the greater-than operator of the underlying
element type. For example, if svec is a vector<string>,

// passes a temporary function object that applies the < operator to two strings
sort(svec.begin(), svec.end(), greater<string>());

sorts the vector in descending order. The third argument is an unnamed object of
type greater<string>. When sort compares elements, rather than applying
the < operator for the element type, it will call the given greater function object.
That object applies > to the string elements.

One important aspect of these library function objects is that the library guaran-
tees that they will work for pointers. Recall that comparing two unrelated pointers
is undefined (§ 3.5.3, p. 120). However, we might want to sort a vector of point-
ers based on their addresses in memory. Although it would be undefined for us to
do so directly, we can do so through one of the library function objects:

vector<string *> nameTable; // vector of pointers
// error: the pointers in nameTable are unrelated, so < is undefined
sort(nameTable.begin(), nameTable.end(),

[](string *a, string *b) { return a < b; });
// ok: library guarantees that less on pointer types is well defined
sort(nameTable.begin(), nameTable.end(), less<string*>());
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It is also worth noting that the associative containers use less<key_type> to
order their elements. As a result, we can define a set of pointers or use a pointer
as the key in a map without specifying less directly.

EXE R C I S E S SE C TI O N 14.8.2

Exercise 14.42: Using library function objects and adaptors, define an expression to

(a) Count the number of values that are greater than 1024
(b) Find the first string that is not equal to pooh
(c) Multiply all values by 2

Exercise 14.43: Using library function objects, determine whether a given int value
is divisible by any element in a container of ints.

14.8.3 Callable Objects and function
C++ has several kinds of callable objects: functions and pointers to functions, lamb-
das (§ 10.3.2, p. 388), objects created by bind (§ 10.3.4, p. 397), and classes that
overload the function-call operator.

Like any other object, a callable object has a type. For example, each lambda
has its own unique (unnamed) class type. Function and function-pointer types
vary by their return type and argument types, and so on.

However, two callable objects with different types may share the same call sig-
nature. The call signature specifies the type returned by a call to the object and the
argument type(s) that must be passed in the call. A call signature corresponds to a
function type. For example:

int(int, int)

is a function type that takes two ints and returns an int.

Different Types Can Have the Same Call Signature

Sometimes we want to treat several callable objects that share a call signature as
if they had the same type. For example, consider the following different types of
callable objects:

// ordinary function
int add(int i, int j) { return i + j; }

// lambda, which generates an unnamed function-object class
auto mod = [](int i, int j) { return i % j; };

// function-object class
struct divide {

int operator()(int denominator, int divisor) {
return denominator / divisor;

}
};
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Each of these callables applies an arithmetic operation to its parameters. Even
though each has a distinct type, they all share the same call signature:

int(int, int)

We might want to use these callables to build a simple desk calculator. To do so,
we’d want to define a function table to store “pointers” to these callables. When
the program needs to execute a particular operation, it will look in the table to find
which function to call.

In C++, function tables are easy to implement using a map. In this case, we’ll
use a string corresponding to an operator symbol as the key; the value will be
the function that implements that operator. When we want to evaluate a given
operator, we’ll index the map with that operator and call the resulting element.

If all our functions were freestanding functions, and assuming we were han-
dling only binary operators for type int, we could define the map as

// maps an operator to a pointer to a function taking two ints and returning an int
map<string, int(*)(int,int)> binops;

We could put a pointer to add into binops as follows:

// ok: add is a pointer to function of the appropriate type
binops.insert({"+", add}); // {"+", add} is a pair § 11.2.3 (p. 426)

However, we can’t store mod or an object of type divide in binops:

binops.insert({"%", mod}); // error: mod is not a pointer to function

The problem is that mod is a lambda, and each lambda has its own class type. That
type does not match the type of the values stored in binops.

The Library function Type

We can solve this problem using a new library type named function that is de-
fined in the functional header; Table 14.3 (p. 579) lists the operations defined by
function.

function is a template. As with other templates we’ve used, we must specify
additional information when we create a function type. In this case, that infor-
mation is the call signature of the objects that this particular function type can
represent. As with other templates, we specify the type inside angle brackets:

function<int(int, int)>

Here we’ve declared a function type that can represent callable objects that re-
turn an int result and have two int parameters. We can use that type to represent
any of our desk calculator types:

function<int(int, int)> f1 = add; // function pointer
function<int(int, int)> f2 = divide(); // object of a function-object class
function<int(int, int)> f3 = [](int i, int j) // lambda

{ return i * j; };
cout << f1(4,2) << endl; // prints 6
cout << f2(4,2) << endl; // prints 2
cout << f3(4,2) << endl; // prints 8
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We can now redefine our map using this function type:

// table of callable objects corresponding to each binary operator
// all the callables must take two ints and return an int
// an element can be a function pointer, function object, or lambda
map<string, function<int(int, int)>> binops;

We can add each of our callable objects, be they function pointers, lambdas, or
function objects, to this map:

map<string, function<int(int, int)>> binops = {
{"+", add}, // function pointer
{"-", std::minus<int>()}, // library function object
{"/", divide()}, // user-defined function object
{"*", [](int i, int j) { return i * j; }}, // unnamed lambda
{"%", mod} }; // named lambda object

Our map has five elements. Although the underlying callable objects all have dif-
ferent types from one another, we can store each of these distinct types in the com-
mon function<int(int, int)> type.

As usual, when we index a map, we get a reference to the associated value.
When we index binops, we get a reference to an object of type function. The
function type overloads the call operator. That call operator takes its own argu-
ments and passes them along to its stored callable object:

binops["+"](10, 5); // calls add(10, 5)
binops["-"](10, 5); // uses the call operator of the minus<int> object
binops["/"](10, 5); // uses the call operator of the divide object
binops["*"](10, 5); // calls the lambda function object
binops["%"](10, 5); // calls the lambda function object

Here we call each of the operations stored in binops. In the first call, the ele-
ment we get back holds a function pointer that points to our add function. Calling
binops["+"](10, 5) uses that pointer to call add, passing it the values 10 and
5. In the next call, binops["-"], returns a function that stores an object of type
std::minus<int>. We call that object’s call operator, and so on.

Overloaded Functions and function

We cannot (directly) store the name of an overloaded function in an object of type
function:

int add(int i, int j) { return i + j; }
Sales_data add(const Sales_data&, const Sales_data&);
map<string, function<int(int, int)>> binops;
binops.insert( {"+", add} ); // error: which add?

One way to resolve the ambiguity is to store a function pointer (§ 6.7, p. 247) in-
stead of the name of the function:

int (*fp)(int,int) = add; // pointer to the version of add that takes two ints
binops.insert( {"+", fp} ); // ok: fp points to the right version of add
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Table 14.3: Operations on function

function<T> f; f is a null function object that can store callable objects
with a call signature that is equivalent to the function type T
(i.e., T is retType(args)).

function<T> f(nullptr); Explicitly construct a null function.
function<T> f(obj); Stores a copy of the callable object obj in f.
f Use f as a condition; true if f holds a callable object;

false otherwise.
f(args) Calls the object in f passing args.
Types defined as members of function<T>
result_type The type returned by this function type’s callable object.

argument_type
first_argument_type
second_argument_type

Types defined when T has exactly one or two arguments.
If T has one argument, argument_type is a synonym for
that type. If T has two arguments, first_argument_type
and second_argument_type are synonyms for those ar-
gument types.

Alternatively, we can use a lambda to disambiguate:

// ok: use a lambda to disambiguate which version of add we want to use
binops.insert( {"+", [](int a, int b) {return add(a, b);} } );

The call inside the lambda body passes two ints. That call can match only the
version of add that takes two ints, and so that is the function that is called when
the lambda is executed.

The function class in the new library is not related to classes named
unary_function and binary_function that were part of earlier
versions of the library. These classes have been deprecated by the more
general bind function (§ 10.3.4, p. 401).

EXE R C I S E S SE C TI O N 14.8.3

Exercise 14.44: Write your own version of a simple desk calculator that can handle
binary operations.

14.9 Overloading, Conversions, and Operators
In § 7.5.4 (p. 294) we saw that a nonexplicit constructor that can be called with
one argument defines an implicit conversion. Such constructors convert an object
from the argument’s type to the class type. We can also define conversions from
the class type. We define a conversion from a class type by defining a conversion

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

580 Overloaded Operations and Conversions

operator. Converting constructors and conversion operators define class-type con-
versions. Such conversions are also referred to as user-defined conversions.

14.9.1 Conversion Operators
A conversion operator is a special kind of member function that converts a value
of a class type to a value of some other type. A conversion function typically has
the general form

operator type() const;

where type represents a type. Conversion operators can be defined for any type
(other than void) that can be a function return type (§ 6.1, p. 204). Conversions to
an array or a function type are not permitted. Conversions to pointer types—both
data and function pointers—and to reference types are allowed.

Conversion operators have no explicitly stated return type and no parameters,
and they must be defined as member functions. Conversion operations ordinarily
should not change the object they are converting. As a result, conversion operators
usually should be defined as const members.

A conversion function must be a member function, may not specify a re-
turn type, and must have an empty parameter list. The function usually
should be const.

Defining a Class with a Conversion Operator

As an example, we’ll define a small class that represents an integer in the range of
0 to 255:

class SmallInt {
public:

SmallInt(int i = 0): val(i)
{

if (i < 0 || i > 255)
throw std::out_of_range("Bad SmallInt value");

}
operator int() const { return val; }

private:
std::size_t val;

};

Our SmallInt class defines conversions to and from its type. The constructor con-
verts values of arithmetic type to a SmallInt. The conversion operator converts
SmallInt objects to int:

SmallInt si;
si = 4; // implicitly converts 4 to SmallInt then calls SmallInt::operator=
si + 3; // implicitly converts si to int followed by integer addition
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Although the compiler will apply only one user-defined conversion at a time
(§ 4.11.2, p. 162), an implicit user-defined conversion can be preceded or followed
by a standard (built-in) conversion (§ 4.11.1, p. 159). As a result, we can pass any
arithmetic type to the SmallInt constructor. Similarly, we can use the converion
operator to convert a SmallInt to an int and then convert the resulting int
value to another arithmetic type:

// the double argument is converted to int using the built-in conversion
SmallInt si = 3.14; // calls the SmallInt(int) constructor

// the SmallInt conversion operator converts si to int;
si + 3.14; // that int is converted to double using the built-in conversion

Because conversion operators are implicitly applied, there is no way to pass argu-
ments to these functions. Hence, conversion operators may not be defined to take
parameters. Although a conversion function does not specify a return type, each
conversion function must return a value of its corresponding type:

class SmallInt;
operator int(SmallInt&); // error: nonmember
class SmallInt {
public:

int operator int() const; // error: return type
operator int(int = 0) const; // error: parameter list
operator int*() const { return 42; } // error: 42 is not a pointer

};

CAUTION: AVOID OVERUSE OF CONVERSION FUNCTIONS

As with using overloaded operators, judicious use of conversion operators can greatly
simplify the job of a class designer and make using a class easier. However, some
conversions can be misleading. Conversion operators are misleading when there is
no obvious single mapping between the class type and the conversion type.

For example, consider a class that represents a Date. We might think it would be a
good idea to provide a conversion from Date to int. However, what value should the
conversion function return? The function might return a decimal representation of
the year, month, and day. For example, July 30, 1989 might be represented as the int
value 19800730. Alternatively, the conversion operator might return an int represent-
ing the number of days that have elapsed since some epoch point, such as January 1,
1970. Both these conversions have the desirable property that later dates correspond
to larger integers, and so either might be useful.

The problem is that there is no single one-to-one mapping between an object of
type Date and a value of type int. In such cases, it is better not to define the con-
version operator. Instead, the class ought to define one or more ordinary members to
extract the information in these various forms.

Conversion Operators Can Yield Suprising Results

In practice, classes rarely provide conversion operators. Too often users are more
likely to be surprised if a conversion happens automatically than to be helped by
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the existence of the conversion. However, there is one important exception to this
rule of thumb: It is not uncommon for classes to define conversions to bool.

Under earlier versions of the standard, classes that wanted to define a conver-
sion to bool faced a problem: Because bool is an arithmetic type, a class-type
object that is converted to bool can be used in any context where an arithmetic
type is expected. Such conversions can happen in surprising ways. In particular,
if istream had a conversion to bool, the following code would compile:

int i = 42;
cin << i; // this code would be legal if the conversion to bool were not explicit!

This program attempts to use the output operator on an input stream. There is no
<< defined for istream, so the code is almost surely in error. However, this code
could use the bool conversion operator to convert cin to bool. The resulting
bool value would then be promoted to int and used as the left-hand operand to
the built-in version of the left-shift operator. The promoted bool value (either 1 or
0) would be shifted left 42 positions.

explicit Conversion Operators

To prevent such problems, the new standard introduced explicit conversion
operators:

class SmallInt {
public:

// the compiler won’t automatically apply this conversion
explicit operator int() const { return val; }
// other members as before

};

As with an explicit constructor (§ 7.5.4, p. 296), the compiler won’t (generally)
use an explicit conversion operator for implicit conversions:

SmallInt si = 3; // ok: the SmallInt constructor is not explicit
si + 3; // error: implicit is conversion required, but operator int is explicit
static_cast<int>(si) + 3; // ok: explicitly request the conversion

If the conversion operator is explicit, we can still do the conversion. However,
with one exception, we must do so explicitly through a cast.

The exception is that the compiler will apply an explicit conversion to an
expression used as a condition. That is, an explicit conversion will be used
implicitly to convert an expression used as

• The condition of an if, while, or do statement

• The condition expression in a for statement header

• An operand to the logical NOT (!), OR (||), or AND (&&) operators

• The condition expression in a conditional (?:) operator
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Conversion to bool

In earlier versions of the library, the IO types defined a conversion to void*. They
did so to avoid the kinds of problems illustrated above. Under the new standard,
the IO library instead defines an explicit conversion to bool.

Whenever we use a stream object in a condition, we use the operator bool
that is defined for the IO types. For example,

while (std::cin >> value)

The condition in the while executes the input operator, which reads into value
and returns cin. To evaluate the condition, cin is implicitly converted by the
istream operator bool conversion function. That function returns true if the
condition state of cin is good (§ 8.1.2, p. 312), and false otherwise.

Conversion to bool is usually intended for use in conditions. As a
result, operator bool ordinarily should be defined as explicit.

EXE R C I S E S SE C TI O N 14.9.1

Exercise 14.45: Write conversion operators to convert a Sales_data to string and
to double. What values do you think these operators should return?

Exercise 14.46: Explain whether defining these Sales_data conversion operators is
a good idea and whether they should be explicit.

Exercise 14.47: Explain the difference between these two conversion operators:

struct Integral {
operator const int();
operator int() const;

};

Exercise 14.48: Determine whether the class you used in exercise 7.40 from § 7.5.1
(p. 291) should have a conversion to bool. If so, explain why, and explain whether the
operator should be explicit. If not, explain why not.

Exercise 14.49: Regardless of whether it is a good idea to do so, define a conversion
to bool for the class from the previous exercise.

14.9.2 Avoiding Ambiguous Conversions
If a class has one or more conversions, it is important to ensure that there is only
one way to convert from the class type to the target type. If there is more than one
way to perform a conversion, it will be hard to write unambiguous code.

There are two ways that multiple conversion paths can occur. The first happens
when two classes provide mutual conversions. For example, mutual conversions
exist when a class A defines a converting constructor that takes an object of class B
and B itself defines a conversion operator to type A.
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The second way to generate multiple conversion paths is to define multiple
conversions from or to types that are themselves related by conversions. The most
obvious instance is the built-in arithmetic types. A given class ordinarily ought to
define at most one conversion to or from an arithmetic type.

Ordinarily, it is a bad idea to define classes with mutual conversions or
to define conversions to or from two arithmetic types.

Argument Matching and Mutual Conversions

In the following example, we’ve defined two ways to obtain an A from a B: either
by using B’s conversion operator or by using the A constructor that takes a B:

// usually a bad idea to have mutual conversions between two class types
struct B;
struct A {

A() = default;
A(const B&); // converts a B to an A
// other members

};
struct B {

operator A() const; // also converts a B to an A
// other members

};

A f(const A&);
B b;
A a = f(b); // error ambiguous: f(B::operator A())

// or f(A::A(const B&))

Because there are two ways to obtain an A from a B, the compiler doesn’t know
which conversion to run; the call to f is ambiguous. This call can use the A con-
structor that takes a B, or it can use the B conversion operator that converts a B to
an A. Because these two functions are equally good, the call is in error.

If we want to make this call, we have to explicitly call the conversion operator
or the constructor:

A a1 = f(b.operator A()); // ok: use B’s conversion operator
A a2 = f(A(b)); // ok: use A’s constructor

Note that we can’t resolve the ambiguity by using a cast—the cast itself would
have the same ambiguity.

Ambiguities and Multiple Conversions to Built-in Types

Ambiguities also occur when a class defines multiple conversions to (or from)
types that are themselves related by conversions. The easiest case to illustrate—
and one that is particularly problematic—is when a class defines constructors from
or conversions to more than one arithmetic type.

For example, the following class has converting constructors from two different
arithmetic types, and conversion operators to two different arithmetic types:
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struct A {
A(int = 0); // usually a bad idea to have two
A(double); // conversions from arithmetic types

operator int() const; // usually a bad idea to have two
operator double() const; // conversions to arithmetic types
// other members

};

void f2(long double);
A a;
f2(a); // error ambiguous: f(A::operator int())

// or f(A::operator double())

long lg;
A a2(lg); // error ambiguous: A::A(int) or A::A(double)

In the call to f2, neither conversion is an exact match to long double. However,
either conversion can be used, followed by a standard conversion to get to long
double. Hence, neither conversion is better than the other; the call is ambiguous.

We encounter the same problem when we try to initialize a2 from a long. Nei-
ther constructor is an exact match for long. Each would require that the argument
be converted before using the constructor:

• Standard long to double conversion followed by A(double)

• Standard long to int conversion followed by A(int)

These conversion sequences are indistinguishable, so the call is ambiguous.
The call to f2, and the initialization of a2, are ambiguous because the standard

conversions that were needed had the same rank (§ 6.6.1, p. 245). When a user-
defined conversion is used, the rank of the standard conversion, if any, is used to
select the best match:

short s = 42;
// promoting short to int is better than converting short to double
A a3(s); // uses A::A(int)

In this case, promoting a short to an int is preferred to converting the short
to a double. Hence a3 is constructed using the A::A(int) constructor, which is
run on the (promoted) value of s.

When two user-defined conversions are used, the rank of the standard
conversion, if any, preceding or following the conversion function is used
to select the best match.

Overloaded Functions and Converting Constructors

Choosing among multiple conversions is further complicated when we call an
overloaded function. If two or more conversions provide a viable match, then
the conversions are considered equally good.

As one example, ambiguity problems can arise when overloaded functions take
parameters that differ by class types that define the same converting constructors:
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CAUTION: CONVERSIONS AND OPERATORS

Correctly designing the overloaded operators, conversion constructors, and conver-
sion functions for a class requires some care. In particular, ambiguities are easy to
generate if a class defines both conversion operators and overloaded operators. A few
rules of thumb can be helpful:

• Don’t define mutually converting classes—if class Foo has a constructor that
takes an object of class Bar, do not give Bar a conversion operator to type Foo.

• Avoid conversions to the built-in arithmetic types. In particular, if you do define
a conversion to an arithmetic type, then

– Do not define overloaded versions of the operators that take arithmetic
types. If users need to use these operators, the conversion operation will
convert objects of your type, and then the built-in operators can be used.

– Do not define a conversion to more than one arithmetic type. Let the stan-
dard conversions provide conversions to the other arithmetic types.

The easiest rule of all: With the exception of an explicit conversion to bool, avoid
defining conversion functions and limit nonexplicit constructors to those that are
“obviously right.”

struct C {
C(int);
// other members

};

struct D {
D(int);
// other members

};

void manip(const C&);
void manip(const D&);
manip(10); // error ambiguous: manip(C(10)) or manip(D(10))

Here both C and D have constructors that take an int. Either constructor can be
used to match a version of manip. Hence, the call is ambiguous: It could mean
convert the int to C and call the first version of manip, or it could mean convert
the int to D and call the second version.

The caller can disambiguate by explicitly constructing the correct type:

manip(C(10)); // ok: calls manip(const C&)

Needing to use a constructor or a cast to convert an argument in a call to
an overloaded function frequently is a sign of bad design.

Overloaded Functions and User-Defined Conversion

In a call to an overloaded function, if two (or more) user-defined conversions pro-
vide a viable match, the conversions are considered equally good. The rank of
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any standard conversions that might or might not be required is not considered.
Whether a built-in conversion is also needed is considered only if the overload set
can be matched using the same conversion function.

For example, our call to manip would be ambiguous even if one of the classes
defined a constructor that required a standard conversion for the argument:

struct E {
E(double);
// other members

};

void manip2(const C&);
void manip2(const E&);
// error ambiguous: two different user-defined conversions could be used
manip2(10); // manip2(C(10) or manip2(E(double(10)))

In this case, C has a conversion from int and E has a conversion from double.
For the call manip2(10), both manip2 functions are viable:

• manip2(const C&) is viable because C has a converting constructor that
takes an int. That constructor is an exact match for the argument.

• manip2(const E&) is viable because E has a converting constructor that
takes a double and we can use a standard conversion to convert the int
argument in order to use that converting constructor.

Because calls to the overloaded functions require different user-defined conversions
from one another, this call is ambiguous. In particular, even though one of the calls
requires a standard conversion and the other is an exact match, the compiler will
still flag this call as an error.

In a call to an overloaded function, the rank of an additional stan-
dard conversion (if any) matters only if the viable functions require the
same user-defined conversion. If different user-defined conversions are
needed, then the call is ambiguous.

14.9.3 Function Matching and Overloaded Operators
Overloaded operators are overloaded functions. Normal function matching (§ 6.4,
p. 233) is used to determine which operator—built-in or overloaded—to apply to
a given expression. However, when an operator function is used in an expression,
the set of candidate functions is broader than when we call a function using the
call operator. If a has a class type, the expression a sym b might be

a.operatorsym(b); // a has operatorsym as a member function
operatorsym(a, b);// operatorsym is an ordinary function

Unlike ordinary function calls, we cannot use the form of the call to distinquish
whether we’re calling a nonmember or a member function.
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EXE R C I S E S SE C TI O N 14.9.2

Exercise 14.50: Show the possible class-type conversion sequences for the initializa-
tions of ex1 and ex2. Explain whether the initializations are legal or not.

struct LongDouble {
LongDouble(double = 0.0);
operator double();
operator float();

};
LongDouble ldObj;
int ex1 = ldObj;
float ex2 = ldObj;

Exercise 14.51: Show the conversion sequences (if any) needed to call each version of
calc and explain why the best viable function is selected.

void calc(int);
void calc(LongDouble);
double dval;
calc(dval); // which calc?

When we use an overloaded operator with an operand of class type, the can-
didate functions include ordinary nonmember versions of that operator, as well as
the built-in versions of the operator. Moreover, if the left-hand operand has class
type, the overloaded versions of the operator, if any, defined by that class are also
included.

When we call a named function, member and nonmember functions with the
same name do not overload one another. There is no overloading because the syn-
tax we use to call a named function distinguishes between member and nonmem-
ber functions. When a call is through an object of a class type (or through a refer-
ence or pointer to such an object), then only the member functions of that class are
considered. When we use an overloaded operator in an expression, there is noth-
ing to indicate whether we’re using a member or nonmember function. Therefore,
both member and nonmember versions must be considered.

The set of candidate functions for an operator used in an expression can
contain both nonmember and member functions.

As an example, we’ll define an addition operator for our SmallInt class:

class SmallInt {
friend
SmallInt operator+(const SmallInt&, const SmallInt&);

public:
SmallInt(int = 0); // conversion from int
operator int() const { return val; } // conversion to int

private:
std::size_t val;

};

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 14.9 Overloading, Conversions, and Operators 589

We can use this class to add two SmallInts, but we will run into ambiguity prob-
lems if we attempt to perform mixed-mode arithmetic:

SmallInt s1, s2;
SmallInt s3 = s1 + s2; // uses overloaded operator+
int i = s3 + 0; // error: ambiguous

The first addition uses the overloaded version of + that takes two SmallInt val-
ues. The second addition is ambiguous, because we can convert 0 to a SmallInt
and use the SmallInt version of +, or convert s3 to int and use the built-in
addition operator on ints.

Providing both conversion functions to an arithmetic type and over-
loaded operators for the same class type may lead to ambiguities be-
tween the overloaded operators and the built-in operators.

EXE R C I S E S SE C TI O N 14.9.3

Exercise 14.52: Which operator+, if any, is selected for each of the addition expres-
sions? List the candidate functions, the viable functions, and the type conversions on
the arguments for each viable function:

struct LongDouble {
// member operator+ for illustration purposes; + is usually a nonmember
LongDouble operator+(const SmallInt&);
// other members as in § 14.9.2 (p. 587)

};
LongDouble operator+(LongDouble&, double);
SmallInt si;
LongDouble ld;
ld = si + ld;
ld = ld + si;

Exercise 14.53: Given the definition of SmallInt on page 588, determine whether
the following addition expression is legal. If so, what addition operator is used? If not,
how might you change the code to make it legal?

SmallInt s1;
double d = s1 + 3.14;
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CH A P T E R SU M M A R Y
An overloaded operator must either be a member of a class or have at least one
operand of class type. Overloaded operators have the same number of operands,
associativity, and precedence as the corresponding operator when applied to the
built-in types. When an operator is defined as a member, its implicit this pointer
is bound to the first operand. The assignment, subscript, function-call, and arrow
operators must be class members.

Objects of classes that overload the function-call operator, operator(), are
known as “function objects.” Such objects are often used in combination with
the standard algorithms. Lambda expressions are succinct ways to define simple
function-object classes.

A class can define conversions to or from its type that are used automatically.
Nonexplicit constructors that can be called with a single argument define con-
versions from the parameter type to the class type; nonexplicit conversion op-
erators define conversions from the class type to other types.

DEFINED TERMS

call signature Represents the interface of a
callable object. A call signature includes the
return type and a comma-separated list of
argument types enclosed in parentheses.

class-type conversion Conversions to or
from class types are defined by construc-
tors and conversion operators, respectively.
Nonexplicit constructors that take a sin-
gle argument define a conversion from the
argument type to the class type. Conversion
operators define conversions from the class
type to the specified type.

conversion operator A member function
that defines a conversions from the class
type to another type. A conversion oper-
ator must be a member of the class from
which it converts and is usually a const
member. These operators have no return
type and take no parameters. They return
a value convertible to the type of the con-
version operator. That is, operator int
returns an int, operator string returns
a string, and so on.

explicit conversion operator Conversion

operator preceeded by the explicit key-
word. Such operators are used for implicit
conversions only in conditions.

function object Object of a class that de-
fines an overloaded call operator. Function
objects can be used where functions are nor-
mally expected.

function table Container, often a map or
a vector, that holds values that can be
called.

function template Library template that
can represent any callable type.

overloaded operator Function that rede-
fines the meaning of one of the built-in oper-
ators. Overloaded operator functions have
the name operator followed by the sym-
bol being defined. Overloaded operators
must have at least one operand of class type.
Overloaded operators have the same prece-
dence, associativity and number of oper-
ands as their built-in counterparts.

user-defined conversion A synonym for
class-type conversion.
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Object-oriented programming is based on three fundamental con-
cepts: data abstraction, which we covered in Chapter 7, and inheri-
tance and dynamic binding, which we’ll cover in this chapter.

Inheritance and dynamic binding affect how we write our pro-
grams in two ways: They make it easier to define new classes that
are similar, but not identical, to other classes, and they make it eas-
ier for us to write programs that can ignore the details of how those
similar types differ.
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Many applications include concepts that are related to but slightly different
from one another. For example, our bookstore might offer different pricing strate-
gies for different books. Some books might be sold only at a given price. Others
might be sold subject to a discount. We might give a discount to purchasers who
buy a specified number of copies of the book. Or we might give a discount for only
the first few copies purchased but charge full price for any bought beyond a given
limit, and so on. Object-oriented programming (OOP) is a good match to this kind
of application.

15.1 OOP: An Overview
The key ideas in object-oriented programming are data abstraction, inheritance,
and dynamic binding. Using data abstraction, we can define classes that separate
interface from implementation (Chapter 7). Through inheritance, we can define
classes that model the relationships among similar types. Through dynamic bind-
ing, we can use objects of these types while ignoring the details of how they differ.

Inheritance

Classes related by inheritance form a hierarchy. Typically there is a base class at
the root of the hierarchy, from which the other classes inherit, directly or indirectly.
These inheriting classes are known as derived classes. The base class defines those
members that are common to the types in the hierarchy. Each derived class defines
those members that are specific to the derived class itself.

To model our different kinds of pricing strategies, we’ll define a class named
Quote, which will be the base class of our hierarchy. A Quote object will rep-
resent undiscounted books. From Quote we will inherit a second class, named
Bulk_quote, to represent books that can be sold with a quantity discount.

These classes will have the following two member functions:

• isbn(), which will return the ISBN. This operation does not depend on the
specifics of the inherited class(es); it will be defined only in class Quote.

• net_price(size_t), which will return the price for purchasing a speci-
fied number of copies of a book. This operation is type specific; both Quote
and Bulk_quote will define their own version of this function.

In C++, a base class distinguishes functions that are type dependent from those
that it expects its derived classes to inherit without change. The base class defines
as virtual those functions it expects its derived classes to define for themselves.
Using this knowledge, we can start to write our Quote class:

class Quote {
public:

std::string isbn() const;
virtual double net_price(std::size_t n) const;

};
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A derived class must specify the class(es) from which it intends to inherit. It does
so in a class derivation list, which is a colon followed by a comma-separated list
of base classes each of which may have an optional access specifier:

class Bulk_quote : public Quote { // Bulk_quote inherits from Quote
public:

double net_price(std::size_t) const override;
};

Because Bulk_quote uses public in its derivation list, we can use objects of type
Bulk_quote as if they were Quote objects.

A derived class must include in its own class body a declaration of all the
virtual functions it intends to define for itself. A derived class may include the
virtual keyword on these functions but is not required to do so. For reasons
we’ll explain in § 15.3 (p. 606), the new standard lets a derived class explicitly note
that it intends a member function to override a virtual that it inherits. It does so
by specifying override after its parameter list.

Dynamic Binding

Through dynamic binding, we can use the same code to process objects of either
type Quote or Bulk_quote interchangeably. For example, the following function
prints the total price for purchasing the given number of copies of a given book:

// calculate and print the price for the given number of copies, applying any discounts
double print_total(ostream &os,

const Quote &item, size_t n)
{

// depending on the type of the object bound to the item parameter
// calls either Quote::net_price or Bulk_quote::net_price
double ret = item.net_price(n);
os << "ISBN: " << item.isbn() // calls Quote::isbn

<< " # sold: " << n << " total due: " << ret << endl;
return ret;

}

This function is pretty simple—it prints the results of calling isbn and net_price
on its parameter and returns the value calculated by the call to net_price.

Nevertheless, there are two interesting things about this function: For reasons
we’ll explain in § 15.2.3 (p. 601), because the item parameter is a reference to
Quote, we can call this function on either a Quote object or a Bulk_quote object.
And, for reasons we’ll explain in § 15.2.1 (p. 594), because net_price is a virtual
function, and because print_total calls net_price through a reference, the
version of net_price that is run will depend on the type of the object that we
pass to print_total:

// basic has type Quote; bulk has type Bulk_quote
print_total(cout, basic, 20); // calls Quote version of net_price
print_total(cout, bulk, 20); // calls Bulk_quote version of net_price

The first call passes a Quote object to print_total. When print_total calls
net_price, the Quote version will be run. In the next call, the argument is a
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Bulk_quote, so the Bulk_quote version of net_price (which applies a dis-
count) will be run. Because the decision as to which version to run depends on
the type of the argument, that decision can’t be made until run time. Therefore,
dynamic binding is sometimes known as run-time binding.

In C++, dynamic binding happens when a virtual function is called
through a reference (or a pointer) to a base class.

15.2 Defining Base and Derived Classes
In many, but not all, ways base and derived classes are defined like other classes
we have already seen. In this section, we’ll cover the basic features used to define
classes related by inheritance.

15.2.1 Defining a Base Class
We’ll start by completing the definition of our Quote class:

class Quote {
public:

Quote() = default; // = default see § 7.1.4 (p. 264)
Quote(const std::string &book, double sales_price):

bookNo(book), price(sales_price) { }
std::string isbn() const { return bookNo; }
// returns the total sales price for the specified number of items
// derived classes will override and apply different discount algorithms
virtual double net_price(std::size_t n) const

{ return n * price; }
virtual ~Quote() = default; // dynamic binding for the destructor

private:
std::string bookNo; // ISBN number of this item

protected:
double price = 0.0; // normal, undiscounted price

};

The new parts in this class are the use of virtual on the net_price function
and the destructor, and the protected access specifier. We’ll explain virtual de-
structors in § 15.7.1 (p. 622), but for now it is worth noting that classes used as the
root of an inheritance hierarchy almost always define a virtual destructor.

Base classes ordinarily should define a virtual destructor. Virtual de-
structors are needed even if they do no work.

Member Functions and Inheritance

Derived classes inherit the members of their base class. However, a derived class
needs to be able to provide its own definition for operations, such as net_price,
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that are type dependent. In such cases, the derived class needs to override the
definition it inherits from the base class, by providing its own definition.

In C++, a base class must distinguish the functions it expects its derived classes
to override from those that it expects its derived classes to inherit without change.
The base class defines as virtual those functions it expects its derived classes to
override. When we call a virtual function through a pointer or reference, the call will
be dynamically bound. Depending on the type of the object to which the reference
or pointer is bound, the version in the base class or in one of its derived classes will
be executed.

A base class specifies that a member function should be dynamically bound by
preceding its declaration with the keyword virtual. Any nonstatic member
function (§ 7.6, p. 300), other than a constructor, may be virtual. The virtual
keyword appears only on the declaration inside the class and may not be used
on a function definition that appears outside the class body. A function that is
declared as virtual in the base class is implicitly virtual in the derived classes
as well. We’ll have more to say about virtual functions in § 15.3 (p. 603).

Member functions that are not declared as virtual are resolved at compile
time, not run time. For the isbn member, this is exactly the behavior we want.
The isbn function does not depend on the details of a derived type. It behaves
identically when run on a Quote or Bulk_quote object. There will be only one
version of the isbn function in our inheritance hierarchy. Thus, there is no ques-
tion as to which function to run when we call isbn().

Access Control and Inheritance

A derived class inherits the members defined in its base class. However, the mem-
ber functions in a derived class may not necessarily access the members that are
inherited from the base class. Like any other code that uses the base class, a de-
rived class may access the publicmembers of its base class but may not access the
private members. However, sometimes a base class has members that it wants
to let its derived classes use while still prohibiting access to those same members
by other users. We specify such members after a protected access specifier.

Our Quote class expects its derived classes to define their own net_price
function. To do so, those classes need access to the price member. As a result,
Quote defines that member as protected. Derived classes are expected to access
bookNo in the same way as ordinary users—by calling the isbn function. Hence,
the bookNo member is private and is inaccessible to classes that inherit from
Quote. We’ll have more to say about protected members in § 15.5 (p. 611).

EXE R C I S E S SE C TI O N 15.2.1

Exercise 15.1: What is a virtual member?

Exercise 15.2: How does the protected access specifier differ from private?

Exercise 15.3: Define your own versions of the Quote class and the print_total
function.
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15.2.2 Defining a Derived Class
A derived class must specify from which class(es) it inherits. It does so in its class
derivation list, which is a colon followed by a comma-separated list of names of
previously defined classes. Each base class name may be preceded by an optional
access specifier, which is one of public, protected, or private.

A derived class must declare each inherited member function it intends to over-
ride. Therefore, our Bulk_quote class must include a net_price member:

class Bulk_quote : public Quote { // Bulk_quote inherits from Quote
Bulk_quote() = default;
Bulk_quote(const std::string&, double, std::size_t, double);

// overrides the base version in order to implement the bulk purchase discount policy
double net_price(std::size_t) const override;

private:
std::size_t min_qty = 0; // minimum purchase for the discount to apply
double discount = 0.0; // fractional discount to apply

};

Our Bulk_quote class inherits the isbn function and the bookNo and price
data members of its Quote base class. It defines its own version of net_price
and has two additional data members, min_qty and discount. These mem-
bers specify the minimum quantity and the discount to apply once that number of
copies are purchased.

We’ll have more to say about the access specifier used in a derivation list in
§ 15.5 (p. 612). For now, what’s useful to know is that the access specifier deter-
mines whether users of a derived class are allowed to know that the derived class
inherits from its base class.

When the derivation is public, the publicmembers of the base class become
part of the interface of the derived class as well. In addition, we can bind an object
of a publicly derived type to a pointer or reference to the base type. Because we
used public in the derivation list, the interface to Bulk_quote implicitly con-
tains the isbn function, and we may use a Bulk_quote object where a pointer or
reference to Quote is expected.

Most classes inherit directly from only one base class. This form of inheritance,
known as “single inheritance,” forms the topic of this chapter. § 18.3 (p. 802) will
cover classes that have derivation lists with more than one base class.

Virtual Functions in the Derived Class

Derived classes frequently, but not always, override the virtual functions that they
inherit. If a derived class does not override a virtual from its base, then, like any
other member, the derived class inherits the version defined in its base class.

A derived class may include the virtual keyword on the functions it over-
rides, but it is not required to do so. For reasons we’ll explain in § 15.3 (p. 606), the
new standard lets a derived class explicitly note that it intends a member function
to override a virtual that it inherits. It does so by specifying override after the
parameter list, or after the const or reference qualifier(s) if the member is a const
(§ 7.1.2, p. 258) or reference (§ 13.6.3, p. 546) function.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 15.2 Defining Base and Derived Classes 597

Derived-Class Objects and the Derived-to-Base Conversion

A derived object contains multiple parts: a subobject containing the (nonstatic)
members defined in the derived class itself, plus subobjects corresponding to each
base class from which the derived class inherits. Thus, a Bulk_quote object will
contain four data elements: the bookNo and price data members that it inherits
from Quote, and the min_qty and discount members, which are defined by
Bulk_quote.

Although the standard does not specify how derived objects are laid out in
memory, we can think of a Bulk_quote object as consisting of two parts as repre-
sented in Figure 15.1.

Figure 15.1: Conceptual Structure of a Bulk_quote Object

Bulk_quote object

members inherited
from Quote

bookNo

price

members defined
by Bulk_quote

min_qty

discount

The base and derived parts of an object are not guaranteed to be stored contiguously.
Figure 15.1 is a conceptual, not physical, representation of how classes work.

Because a derived object contains subparts corresponding to its base class(es),
we can use an object of a derived type as if it were an object of its base type(s). In
particular, we can bind a base-class reference or pointer to the base-class part of a
derived object.

Quote item; // object of base type
Bulk_quote bulk; // object of derived type
Quote *p = &item; // p points to a Quote object
p = &bulk; // p points to the Quote part of bulk
Quote &r = bulk; // r bound to the Quote part of bulk

This conversion is often referred to as the derived-to-base conversion. As with any
other conversion, the compiler will apply the derived-to-base conversion implic-
itly (§ 4.11, p. 159).

The fact that the derived-to-base conversion is implicit means that we can use
an object of derived type or a reference to a derived type when a reference to the
base type is required. Similarly, we can use a pointer to a derived type where a
pointer to the base type is required.

The fact that a derived object contains subobjects for its base classes is
key to how inheritance works.
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Derived-Class Constructors

Although a derived object contains members that it inherits from its base, it cannot
directly initialize those members. Like any other code that creates an object of the
base-class type, a derived class must use a base-class constructor to initialize its
base-class part.

Each class controls how its members are initialized.

The base-class part of an object is initialized, along with the data members of
the derived class, during the initialization phase of the constructor (§ 7.5.1, p. 288).
Analogously to how we initialize a member, a derived-class constructor uses its
constructor initializer list to pass arguments to a base-class constructor. For exam-
ple, the Bulk_quote constructor with four parameters:

Bulk_quote(const std::string& book, double p,
std::size_t qty, double disc) :
Quote(book, p), min_qty(qty), discount(disc) { }

// as before
};

passes its first two parameters (representing the ISBN and price) to the Quote con-
structor. That Quote constructor initializes the Bulk_quote’s base-class part (i.e.,
the bookNo and price members). When the (empty) Quote constructor body
completes, the base-class part of the object being constructed will have been initial-
ized. Next the direct members, min_qty and discount, are initialized. Finally,
the (empty) function body of the Bulk_quote constructor is run.

As with a data member, unless we say otherwise, the base part of a derived
object is default initialized. To use a different base-class constructor, we provide
a constructor initializer using the name of the base class, followed (as usual) by a
parenthesized list of arguments. Those arguments are used to select which base-
class constructor to use to initialize the base-class part of the derived object.

The base class is initialized first, and then the members of the derived
class are initialized in the order in which they are declared in the class.

Using Members of the Base Class from the Derived Class

A derived class may access the public and protectedmembers of its base class:

// if the specified number of items are purchased, use the discounted price
double Bulk_quote::net_price(size_t cnt) const
{

if (cnt >= min_qty)
return cnt * (1 - discount) * price;

else
return cnt * price;

}
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This function generates a discounted price: If the given quantity is more than
min_qty, we apply the discount (which was stored as a fraction) to the price.

We’ll have more to say about scope in § 15.6 (p. 617), but for now it’s worth
knowing that the scope of a derived class is nested inside the scope of its base
class. As a result, there is no distinction between how a member of the derived
class uses members defined in its own class (e.g., min_qty and discount) and
how it uses members defined in its base (e.g., price).

KEY CONCEPT: RESPECTING THE BASE-CLASS INTERFACE

It is essential to understand that each class defines its own interface. Interactions with
an object of a class-type should use the interface of that class, even if that object is the
base-class part of a derived object.

As a result, derived-class constructors may not directly initialize the members of
its base class. The constructor body of a derived constructor can assign values to its
public or protected base-class members. Although it can assign to those members,
it generally should not do so. Like any other user of the base class, a derived class
should respect the interface of its base class by using a constructor to initialize its
inherited members.

Inheritance and static Members

If a base class defines a staticmember (§ 7.6, p. 300), there is only one such mem-
ber defined for the entire hierarchy. Regardless of the number of classes derived
from a base class, there exists a single instance of each static member.

class Base {
public:

static void statmem();
};

class Derived : public Base {
void f(const Derived&);

};

static members obey normal access control. If the member is private in the
base class, then derived classes have no access to it. Assuming the member is
accessible, we can use a static member through either the base or derived:

void Derived::f(const Derived &derived_obj)
{

Base::statmem(); // ok: Base defines statmem
Derived::statmem(); // ok: Derived inherits statmem

// ok: derived objects can be used to access static from base
derived_obj.statmem(); // accessed through a Derived object
statmem(); // accessed through this object

}
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Declarations of Derived Classes

A derived class is declared like any other class (§ 7.3.3, p. 278). The declaration
contains the class name but does not include its derivation list:

class Bulk_quote : public Quote; // error: derivation list can’t appear here
class Bulk_quote; // ok: right way to declare a derived class

The purpose of a declaration is to make known that a name exists and what kind
of entity it denotes, for example, a class, function, or variable. The derivation list,
and all other details of the definition, must appear together in the class body.

Classes Used as a Base Class

A class must be defined, not just declared, before we can use it as a base class:

class Quote; // declared but not defined
// error: Quote must be defined
class Bulk_quote : public Quote { ... };

The reason for this restriction should be easy to see: Each derived class contains,
and may use, the members it inherits from its base class. To use those members,
the derived class must know what they are. One implication of this rule is that it
is impossible to derive a class from itself.

A base class can itself be a derived class:

class Base { /* . . . */ };
class D1: public Base { /* . . . */ };
class D2: public D1 { /* . . . */ };

In this hierarchy, Base is a direct base to D1 and an indirect base to D2. A direct
base class is named in the derivation list. An indirect base is one that a derived
class inherits through its direct base class.

Each class inherits all the members of its direct base class. The most derived
class inherits the members of its direct base. The members in the direct base in-
clude those it inherits from its base class, and so on up the inheritance chain. Effec-
tively, the most derived object contains a subobject for its direct base and for each
of its indirect bases.

Preventing Inheritance

Sometimes we define a class that we don’t want others to inherit from. Or we
might define a class for which we don’t want to think about whether it is appro-
priate as a base class. Under the new standard, we can prevent a class from being
used as a base by following the class name with final:

class NoDerived final { /* */ }; // NoDerived can’t be a base class
class Base { /* */ };

// Last is final; we cannot inherit from Last
class Last final : Base { /* */ }; // Last can’t be a base class

class Bad : NoDerived { /* */ }; // error: NoDerived is final
class Bad2 : Last { /* */ }; // error: Last is final
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EXE R C I S E S SE C TI O N 15.2.2

Exercise 15.4: Which of the following declarations, if any, are incorrect? Explain why.

class Base { ... };
(a) class Derived : public Derived { ... };
(b) class Derived : private Base { ... };
(c) class Derived : public Base;

Exercise 15.5: Define your own version of the Bulk_quote class.

Exercise 15.6: Test your print_total function from the exercises in § 15.2.1 (p. 595)
by passing both Quote and Bulk_quote objects o that function.

Exercise 15.7: Define a class that implements a limited discount strategy, which ap-
plies a discount to books purchased up to a given limit. If the number of copies exceeds
that limit, the normal price applies to those purchased beyond the limit.

15.2.3 Conversions and Inheritance

Understanding conversions between base and derived classes is essen-
tial to understanding how object-oriented programming works in C++.

Ordinarily, we can bind a reference or a pointer only to an object that has the same
type as the corresponding reference or pointer (§ 2.3.1, p. 51, and § 2.3.2, p. 52) or
to a type that involves an acceptable const conversion (§ 4.11.2, p. 162). Classes
related by inheritance are an important exception: We can bind a pointer or ref-
erence to a base-class type to an object of a type derived from that base class. For
example, we can use a Quote& to refer to a Bulk_quote object, and we can assign
the address of a Bulk_quote object to a Quote*.

The fact that we can bind a reference (or pointer) to a base-class type to a de-
rived object has a crucially important implication: When we use a reference (or
pointer) to a base-class type, we don’t know the actual type of the object to which
the pointer or reference is bound. That object can be an object of the base class or
it can be an object of a derived class.

Like built-in pointers, the smart pointer classes (§ 12.1, p. 450) support
the derived-to-base conversion—we can store a pointer to a derived ob-
ject in a smart pointer to the base type.

Static Type and Dynamic Type

When we use types related by inheritance, we often need to distinguish between
the static type of a variable or other expression and the dynamic type of the object
that expression represents. The static type of an expression is always known at
compile time—it is the type with which a variable is declared or that an expression
yields. The dynamic type is the type of the object in memory that the variable or
expression represents. The dynamic type may not be known until run time.
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For example, when print_total calls net_price (§ 15.1, p. 593):

double ret = item.net_price(n);

we know that the static type of item is Quote&. The dynamic type depends on the
type of the argument to which item is bound. That type cannot be known until
a call is executed at run time. If we pass a Bulk_quote object to print_total,
then the static type of item will differ from its dynamic type. As we’ve seen, the
static type of item is Quote&, but in this case the dynamic type is Bulk_quote.

The dynamic type of an expression that is neither a reference nor a pointer is
always the same as that expression’s static type. For example, a variable of type
Quote is always a Quote object; there is nothing we can do that will change the
type of the object to which that variable corresponds.

It is crucial to understand that the static type of a pointer or reference to
a base class may differ from its dynamic type.

There Is No Implicit Conversion from Base to Derived . . .

The conversion from derived to base exists because every derived object contains a
base-class part to which a pointer or reference of the base-class type can be bound.
There is no similar guarantee for base-class objects. A base-class object can exist
either as an independent object or as part of a derived object. A base object that
is not part of a derived object has only the members defined by the base class; it
doesn’t have the members defined by the derived class.

Because a base object might or might not be part of a derived object, there is no
automatic conversion from the base class to its derived class(s):

Quote base;

Bulk_quote* bulkP = &base; // error: can’t convert base to derived
Bulk_quote& bulkRef = base; // error: can’t convert base to derived

If these assignments were legal, we might attempt to use bulkP or bulkRef to
use members that do not exist in base.

What is sometimes a bit surprising is that we cannot convert from base to de-
rived even when a base pointer or reference is bound to a derived object:

Bulk_quote bulk;

Quote *itemP = &bulk; // ok: dynamic type is Bulk_quote
Bulk_quote *bulkP = itemP; // error: can’t convert base to derived

The compiler has no way to know (at compile time) that a specific conversion will
be safe at run time. The compiler looks only at the static types of the pointer or
reference to determine whether a conversion is legal. If the base class has one or
more virtual functions, we can use a dynamic_cast (which we’ll cover in § 19.2.1
(p. 825)) to request a conversion that is checked at run time. Alternatively, in those
cases when we know that the conversion from base to derived is safe, we can use a
static_cast (§ 4.11.3, p. 162) to override the compiler.
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. . . and No Conversion between Objects

The automatic derived-to-base conversion applies only for conversions to a ref-
erence or pointer type. There is no such conversion from a derived-class type to
the base-class type. Nevertheless, it is often possible to convert an object of a de-
rived class to its base-class type. However, such conversions may not behave as
we might want.

Remember that when we initialize or assign an object of a class type, we are
actually calling a function. When we initialize, we’re calling a constructor (§ 13.1.1,
p. 496, and § 13.6.2, p. 534); when we assign, we’re calling an assignment operator
(§ 13.1.2, p. 500, and § 13.6.2, p. 536). These members normally have a parameter
that is a reference to the const version of the class type.

Because these members take references, the derived-to-base conversion lets us
pass a derived object to a base-class copy/move operation. These operations are
not virtual. When we pass a derived object to a base-class constructor, the con-
structor that is run is defined in the base class. That constructor knows only about
the members of the base class itself. Similarly, if we assign a derived object to a
base object, the assignment operator that is run is the one defined in the base class.
That operator also knows only about the members of the base class itself.

For example, our bookstore classes use the synthesized versions of copy and
assignment (§ 13.1.1, p. 497, and § 13.1.2, p. 500). We’ll have more to say about
copy control and inheritance in § 15.7.2 (p. 623), but for now what’s useful to know
is that the synthesized versions memberwise copy or assign the data members of
the class the same way as for any other class:

Bulk_quote bulk; // object of derived type
Quote item(bulk); // uses the Quote::Quote(const Quote&) constructor
item = bulk; // calls Quote::operator=(const Quote&)

When item is constructed, the Quote copy constructor is run. That constructor
knows only about the bookNo and pricemembers. It copies those members from
the Quote part of bulk and ignores the members that are part of the Bulk_quote
portion of bulk. Similarly for the assignment of bulk to item; only the Quote
part of bulk is assigned to item.

Because the Bulk_quote part is ignored, we say that the Bulk_quote portion
of bulk is sliced down.

When we initialize or assign an object of a base type from an object of
a derived type, only the base-class part of the derived object is copied,
moved, or assigned. The derived part of the object is ignored.

15.3 Virtual Functions
As we’ve seen, in C++ dynamic binding happens when a virtual member function
is called through a reference or a pointer to a base-class type (§ 15.1, p. 593). Be-
cause we don’t know which version of a function is called until run time, virtual
functions must always be defined. Ordinarily, if we do not use a function, we don’t
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EXE R C I S E S SE C TI O N 15.2.3

Exercise 15.8: Define static type and dynamic type.

Exercise 15.9: When is it possible for an expression’s static type to differ from its dy-
namic type? Give three examples in which the static and dynamic type differ.

Exercise 15.10: Recalling the discussion from § 8.1 (p. 311), explain how the program
on page 317 that passed an ifstream to the Sales_data read function works.

KEY CONCEPT: CONVERSIONS AMONG TYPES RELATED BY INHERITANCE

There are three things that are important to understand about conversions among
classes related by inheritance:

• The conversion from derived to base applies only to pointer or reference types.

• There is no implicit conversion from the base-class type to the derived type.

• Like any member, the derived-to-base conversion may be inaccessible due to
access controls. We’ll cover accessibility in § 15.5 (p. 613).

Although the automatic conversion applies only to pointers and references, most
classes in an inheritance hierarchy (implicitly or explicitly) define the copy-control
members (Chapter 13). As a result, we can often copy, move, or assign an object of
derived type to a base-type object. However, copying, moving, or assigning a derived-
type object to a base-type object copies, moves, or assigns only the members in the
base-class part of the object.

need to supply a definition for that function (§ 6.1.2, p. 206). However, we must de-
fine every virtual function, regardless of whether it is used, because the compiler
has no way to determine whether a virtual function is used.

Calls to Virtual Functions May Be Resolved at Run Time

When a virtual function is called through a reference or pointer, the compiler gen-
erates code to decide at run time which function to call. The function that is called
is the one that corresponds to the dynamic type of the object bound to that pointer
or reference.

As an example, consider our print_total function from § 15.1 (p. 593). That
function calls net_price on its parameter named item, which has type Quote&.
Because item is a reference, and because net_price is virtual, the version of
net_price that is called depends at run time on the actual (dynamic) type of the
argument bound to item:

Quote base("0-201-82470-1", 50);
print_total(cout, base, 10); // calls Quote::net_price

Bulk_quote derived("0-201-82470-1", 50, 5, .19);
print_total(cout, derived, 10); // calls Bulk_quote::net_price

In the first call, item is bound to an object of type Quote. As a result, when
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print_total calls net_price, the version defined by Quote is run. In the sec-
ond call, item is bound to a Bulk_quote object. In this call, print_total calls
the Bulk_quote version of net_price.

It is crucial to understand that dynamic binding happens only when a virtual
function is called through a pointer or a reference.

base = derived; // copies the Quote part of derived into base
base.net_price(20); // calls Quote::net_price

When we call a virtual function on an expression that has a plain—nonreference
and nonpointer—type, that call is bound at compile time. For example, when we
call net_price on base, there is no question as to which version of net_price
to run. We can change the value (i.e., the contents) of the object that base rep-
resents, but there is no way to change the type of that object. Hence, this call is
resolved, at compile time, to the Quote version of net_price.

KEY CONCEPT: POLYMORPHISM IN C++

The key idea behind OOP is polymorphism. Polymorphism is derived from a Greek
word meaning “many forms.” We speak of types related by inheritance as polymor-
phic types, because we can use the “many forms” of these types while ignoring the
differences among them. The fact that the static and dynamic types of references and
pointers can differ is the cornerstone of how C++ supports polymorphism.

When we call a function defined in a base class through a reference or pointer to the
base class, we do not know the type of the object on which that member is executed.
The object can be a base-class object or an object of a derived class. If the function is
virtual, then the decision as to which function to run is delayed until run time. The
version of the virtual function that is run is the one defined by the type of the object
to which the reference is bound or to which the pointer points.

On the other hand, calls to nonvirtual functions are bound at compile time. Simi-
larly, calls to any function (virtual or not) on an object are also bound at compile time.
The type of an object is fixed and unvarying—there is nothing we can do to make
the dynamic type of an object differ from its static type. Therefore, calls made on an
object are bound at compile time to the version defined by the type of the object.

Virtuals are resolved at run time only if the call is made through a reference
or pointer. Only in these cases is it possible for an object’s dynamic type
to differ from its static type.

Virtual Functions in a Derived Class

When a derived class overrides a virtual function, it may, but is not required to,
repeat the virtual keyword. Once a function is declared as virtual, it remains
virtual in all the derived classes.

A derived-class function that overrides an inherited virtual function must have
exactly the same parameter type(s) as the base-class function that it overrides.

With one exception, the return type of a virtual in the derived class also must
match the return type of the function from the base class. The exception applies to
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virtuals that return a reference (or pointer) to types that are themselves related by
inheritance. That is, if D is derived from B, then a base class virtual can return a B*
and the version in the derived can return a D*. However, such return types require
that the derived-to-base conversion from D to B is accessible. § 15.5 (p. 613) covers
how to determine whether a base class is accessible. We’ll see an example of this
kind of virtual function in § 15.8.1 (p. 633).

A function that is virtual in a base class is implicitly virtual in its
derived classes. When a derived class overrides a virtual, the parame-
ters in the base and derived classes must match exactly.

The final and override Specifiers

As we’ll see in § 15.6 (p. 620), it is legal for a derived class to define a function
with the same name as a virtual in its base class but with a different parameter
list. The compiler considers such a function to be independent from the base-class
function. In such cases, the derived version does not override the version in the
base class. In practice, such declarations often are a mistake—the class author
intended to override a virtual from the base class but made a mistake in specifying
the parameter list.

Finding such bugs can be surprisingly hard. Under the new standard we can
specify override on a virtual function in a derived class. Doing so makes our in-
tention clear and (more importantly) enlists the compiler in finding such problems
for us. The compiler will reject a program if a function marked override does
not override an existing virtual function:

struct B {
virtual void f1(int) const;
virtual void f2();
void f3();

};

struct D1 : B {
void f1(int) const override; // ok: f1 matches f1 in the base
void f2(int) override; // error: B has no f2(int) function
void f3() override; // error: f3 not virtual
void f4() override; // error: B doesn’t have a function named f4

};

In D1, the override specifier on f1 is fine; both the base and derived versions of
f1 are const members that take an int and return void. The version of f1 in D1
properly overrides the virtual that it inherits from B.

The declaration of f2 in D1 does not match the declaration of f2 in B—the
version defined in B takes no arguments and the one defined in D1 takes an int.
Because the declarations don’t match, f2 in D1 doesn’t override f2 from B; it is a
new function that happens to have the same name. Because we said we intended
this declaration to be an override and it isn’t, the compiler will generate an error.

Because only a virtual function can be overridden, the compiler will also reject
f3 in D1. That function is not virtual in B, so there is no function to override.
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Similarly f4 is in error because B doesn’t even have a function named f4.
We can also designate a function as final. Any attempt to override a function

that has been defined as final will be flagged as an error:

struct D2 : B {
// inherits f2() and f3() from B and overrides f1(int)
void f1(int) const final; // subsequent classes can’t override f1(int)

};

struct D3 : D2 {
void f2(); // ok: overrides f2 inherited from the indirect base, B
void f1(int) const; // error: D2 declared f2 as final

};

final and override specifiers appear after the parameter list (including any
const or reference qualifiers) and after a trailing return (§ 6.3.3, p. 229).

Virtual Functions and Default Arguments

Like any other function, a virtual function can have default arguments (§ 6.5.1,
p. 236). If a call uses a default argument, the value that is used is the one defined
by the static type through which the function is called.

That is, when a call is made through a reference or pointer to base, the default
argument(s) will be those defined in the base class. The base-class arguments will
be used even when the derived version of the function is run. In this case, the
derived function will be passed the default arguments defined for the base-class
version of the function. If the derived function relies on being passed different
arguments, the program will not execute as expected.

Virtual functions that have default arguments should use the same ar-
gument values in the base and derived classes.

Circumventing the Virtual Mechanism

In some cases, we want to prevent dynamic binding of a call to a virtual function;
we want to force the call to use a particular version of that virtual. We can use the
scope operator to do so. For example, this code:

// calls the version from the base class regardless of the dynamic type of baseP
double undiscounted = baseP->Quote::net_price(42);

calls the Quote version of net_price regardless of the type of the object to which
baseP actually points. This call will be resolved at compile time.

Ordinarily, only code inside member functions (or friends) should need
to use the scope operator to circumvent the virtual mechanism.

Why might we wish to circumvent the virtual mechanism? The most common
reason is when a derived-class virtual function calls the version from the base class.
In such cases, the base-class version might do work common to all types in the hi-
erarchy. The versions defined in the derived classes would do whatever additional
work is particular to their own type.
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If a derived virtual function that intended to call its base-class version
omits the scope operator, the call will be resolved at run time as a call to
the derived version itself, resulting in an infinite recursion.

EXE R C I S E S SE C TI ON 15.3

Exercise 15.11: Add a virtual debug function to your Quote class hierarchy that dis-
plays the data members of the respective classes.

Exercise 15.12: Is it ever useful to declare a member function as both override and
final? Why or why not?

Exercise 15.13: Given the following classes, explain each print function:

class base {
public:

string name() { return basename; }
virtual void print(ostream &os) { os << basename; }

private:
string basename;

};
class derived : public base {
public:

void print(ostream &os) { print(os); os << " " << i; }
private:

int i;
};

If there is a problem in this code, how would you fix it?

Exercise 15.14: Given the classes from the previous exercise and the following objects,
determine which function is called at run time:

base bobj; base *bp1 = &bobj; base &br1 = bobj;
derived dobj; base *bp2 = &dobj; base &br2 = dobj;
(a) bobj.print(); (b) dobj.print(); (c) bp1->name();
(d) bp2->name(); (e) br1.print(); (f) br2.print();

15.4 Abstract Base Classes
Imagine that we want to extend our bookstore classes to support several discount
strategies. In addition to a bulk discount, we might offer a discount for purchases
up to a certain quantity and then charge the full price thereafter. Or we might offer
a discount for purchases above a certain limit but not for purchases up to that limit.

Each of these discount strategies is the same in that it requires a quantity and
a discount amount. We might support these differing strategies by defining a new
class named Disc_quote to store the quantity and the discount amount. Classes,
such as Bulk_item, that represent a specific discount strategy will inherit from
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Disc_quote. Each of the derived classes will implement its discount strategy by
defining its own version of net_price.

Before we can define our Disc_Quote class, we have to decide what to do
about net_price. Our Disc_quote class doesn’t correspond to any particular
discount strategy; there is no meaning to ascribe to net_price for this class.

We could define Disc_quote without its own version of net_price. In this
case, Disc_quote would inherit net_price from Quote.

However, this design would make it possible for our users to write nonsensical
code. A user could create an object of type Disc_quote by supplying a quan-
tity and a discount rate. Passing that Disc_quote object to a function such as
print_total would use the Quote version of net_price. The calculated price
would not include the discount that was supplied when the object was created.
That state of affairs makes no sense.

Pure Virtual Functions

Thinking about the question in this detail reveals that our problem is not just that
we don’t know how to define net_price. In practice, we’d like to prevent users
from creating Disc_quote objects at all. This class represents the general concept
of a discounted book, not a concrete discount strategy.

We can enforce this design intent—and make it clear that there is no meaning
for net_price—by defining net_price as a pure virtual function. Unlike ordi-
nary virtuals, a pure virtual function does not have to be defined. We specify that
a virtual function is a pure virtual by writing = 0 in place of a function body (i.e.,
just before the semicolon that ends the declaration). The = 0 may appear only on
the declaration of a virtual function in the class body:

// class to hold the discount rate and quantity
// derived classes will implement pricing strategies using these data
class Disc_quote : public Quote {
public:

Disc_quote() = default;
Disc_quote(const std::string& book, double price,

std::size_t qty, double disc):
Quote(book, price),
quantity(qty), discount(disc) { }

double net_price(std::size_t) const = 0;
protected:

std::size_t quantity = 0; // purchase size for the discount to apply
double discount = 0.0; // fractional discount to apply

};

Like our earlier Bulk_item class, Disc_quote defines a default constructor and
a constructor that takes four parameters. Although we cannot define objects of
this type directly, constructors in classes derived from Disc_quote will use the
Disc_quote constructors to construct the Disc_quote part of their objects. The
constructor that has four parameters passes its first two to the Quote constructor
and directly initializes its own members, discount and quantity. The default
constructor default initializes those members.
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It is worth noting that we can provide a definition for a pure virtual. However,
the function body must be defined outside the class. That is, we cannot provide a
function body inside the class for a function that is = 0.

Classes with Pure Virtuals Are Abstract Base Classes

A class containing (or inheriting without overridding) a pure virtual function is
an abstract base class. An abstract base class defines an interface for subsequent
classes to override. We cannot (directly) create objects of a type that is an abstract
base class. Because Disc_quote defines net_price as a pure virtual, we cannot
define objects of type Disc_quote. We can define objects of classes that inherit
from Disc_quote, so long as those classes override net_price:

// Disc_quote declares pure virtual functions, which Bulk_quote will override
Disc_quote discounted; // error: can’t define a Disc_quote object
Bulk_quote bulk; // ok: Bulk_quote has no pure virtual functions

Classes that inherit from Disc_quote must define net_price or those classes
will be abstract as well.

We may not create objects of a type that is an abstract base class.

A Derived Class Constructor Initializes Its Direct Base Class Only

Now we can reimplement Bulk_quote to inherit from Disc_quote rather than
inheriting directly from Quote:

// the discount kicks in when a specified number of copies of the same book are sold
// the discount is expressed as a fraction to use to reduce the normal price
class Bulk_quote : public Disc_quote {
public:

Bulk_quote() = default;
Bulk_quote(const std::string& book, double price,

std::size_t qty, double disc):
Disc_quote(book, price, qty, disc) { }

// overrides the base version to implement the bulk purchase discount policy
double net_price(std::size_t) const override;

};

This version of Bulk_quote has a direct base class, Disc_quote, and an indi-
rect base class, Quote. Each Bulk_quote object has three subobjects: an (empty)
Bulk_quote part, a Disc_quote subobject, and a Quote subobject.

As we’ve seen, each class controls the initialization of objects of its type. There-
fore, even though Bulk_quote has no data members of its own, it provides the
same four-argument constructor as in our original class. Our new constructor
passes its arguments to the Disc_quote constructor. That constructor in turn
runs the Quote constructor. The Quote constructor initializes the bookNo and
price members of bulk. When the Quote constructor ends, the Disc_quote
constructor runs and initializes the quantity and discount members. At this
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point, the Bulk_quote constructor resumes. That constructor has no further ini-
tializations or any other work to do.

KEY CONCEPT: REFACTORING

AddingDisc_quote to the Quote hierarchy is an example of refactoring. Refactoring
involves redesigning a class hierarchy to move operations and/or data from one class
to another. Refactoring is common in object-oriented applications.

It is noteworthy that even though we changed the inheritance hierarchy, code that
uses Bulk_quote or Quote would not need to change. However, when classes are
refactored (or changed in any other way) we must recompile any code that uses those
classes.

EXE R C I S E S SE C TI ON 15.4

Exercise 15.15: Define your own versions of Disc_quote and Bulk_quote.

Exercise 15.16: Rewrite the class representing a limited discount strategy, which you
wrote for the exercises in § 15.2.2 (p. 601), to inherit from Disc_quote.

Exercise 15.17: Try to define an object of type Disc_quote and see what errors you
get from the compiler.

15.5 Access Control and Inheritance
Just as each class controls the initialization of its own members (§ 15.2.2, p. 598),
each class also controls whether its members are accessible to a derived class.

protected Members

As we’ve seen, a class uses protected for those members that it is willing to share
with its derived classes but wants to protect from general access. The protected
specifier can be thought of as a blend of private and public:

• Like private, protected members are inaccessible to users of the class.

• Like public, protected members are accessible to members and friends
of classes derived from this class.

In addition, protected has another important property:

• A derived class member or friend may access the protected members of
the base class only through a derived object. The derived class has no special
access to the protected members of base-class objects.

To understand this last rule, consider the following example:
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class Base {
protected:

int prot_mem; // protected member
};
class Sneaky : public Base {

friend void clobber(Sneaky&); // can access Sneaky::prot_mem
friend void clobber(Base&); // can’t access Base::prot_mem
int j; // j is private by default

};
// ok: clobber can access the private and protected members in Sneaky objects
void clobber(Sneaky &s) { s.j = s.prot_mem = 0; }

// error: clobber can’t access the protected members in Base
void clobber(Base &b) { b.prot_mem = 0; }

If derived classes (and friends) could access protected members in a base-class
object, then our second version of clobber (that takes a Base&) would be legal.
That function is not a friend of Base, yet it would be allowed to change an object of
type Base; we could circumvent the protection provided by protected for any
class simply by defining a new class along the lines of Sneaky.

To prevent such usage, members and friends of a derived class can access the
protectedmembers only in base-class objects that are embedded inside a derived
type object; they have no special access to ordinary objects of the base type.

public, private, and protected Inheritance

Access to a member that a class inherits is controlled by a combination of the access
specifier for that member in the base class, and the access specifier in the derivation
list of the derived class. As an example, consider the following hierarchy:

class Base {
public:

void pub_mem(); // public member
protected:

int prot_mem; // protected member
private:

char priv_mem; // private member
};

struct Pub_Derv : public Base {
// ok: derived classes can access protected members
int f() { return prot_mem; }
// error: private members are inaccessible to derived classes
char g() { return priv_mem; }

};

struct Priv_Derv : private Base {
// private derivation doesn’t affect access in the derived class
int f1() const { return prot_mem; }

};

The derivation access specifier has no effect on whether members (and friends) of
a derived class may access the members of its own direct base class. Access to the
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members of a base class is controlled by the access specifiers in the base class itself.
Both Pub_Derv and Priv_Dervmay access the protectedmember prot_mem.
Neither may access the private member priv_mem.

The purpose of the derivation access specifier is to control the access that users
of the derived class—including other classes derived from the derived class—have
to the members inherited from Base:

Pub_Derv d1; // members inherited from Base are public
Priv_Derv d2; // members inherited from Base are private
d1.pub_mem(); // ok: pub_mem is public in the derived class
d2.pub_mem(); // error: pub_mem is private in the derived class

Both Pub_Derv and Priv_Derv inherit the pub_mem function. When the in-
heritance is public, members retain their access specification. Thus, d1 can call
pub_mem. In Priv_Derv, the members of Base are private; users of that class
may not call pub_mem.

The derivation access specifier used by a derived class also controls access from
classes that inherit from that derived class:

struct Derived_from_Public : public Pub_Derv {
// ok: Base::prot_mem remains protected in Pub_Derv
int use_base() { return prot_mem; }

};

struct Derived_from_Private : public Priv_Derv {
// error: Base::prot_mem is private in Priv_Derv
int use_base() { return prot_mem; }

};

Classes derived from Pub_Derv may access prot_mem from Base because that
member remains a protectedmember in Pub_Derv. In contrast, classes derived
from Priv_Derv have no such access. To them, all the members that Priv_Derv
inherited from Base are private.

Had we defined another class, say, Prot_Derv, that used protected inheri-
tance, the public members of Base would be protected members in that class.
Users of Prot_Derv would have no access to pub_mem, but the members and
friends of Prot_Derv could access that inherited member.

Accessibility of Derived-to-Base Conversion

Whether the derived-to-base conversion (§ 15.2.2, p. 597) is accessible depends on
which code is trying to use the conversion and may depend on the access specifier
used in the derived class’ derivation. Assuming D inherits from B:

• User code may use the derived-to-base conversion only if D inherits publicly
from B. User code may not use the conversion if D inherits from B using either
protected or private.

• Member functions and friends of D can use the conversion to B regardless of
how D inherits from B. The derived-to-base conversion to a direct base class
is always accessible to members and friends of a derived class.
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• Member functions and friends of classes derived from Dmay use the derived-
to-base conversion if D inherits from B using either public or protected.
Such code may not use the conversion if D inherits privately from B.

For any given point in your code, if a public member of the base class
would be accessible, then the derived-to-base conversion is also acces-
sible, and not otherwise.

KEY CONCEPT: CLASS DESIGN AND PROTECTED MEMBERS

In the absence of inheritance, we can think of a class as having two different kinds
of users: ordinary users and implementors. Ordinary users write code that uses ob-
jects of the class type; such code can access only the public (interface) members of
the class. Implementors write the code contained in the members and friends of the
class. The members and friends of the class can access both the public and private
(implementation) sections.

Under inheritance, there is a third kind of user, namely, derived classes. A base
class makes protected those parts of its implementation that it is willing to let its
derived classes use. The protected members remain inaccessible to ordinary user
code; private members remain inaccessible to derived classes and their friends.

Like any other class, a class that is used as a base class makes its interface members
public . A class that is used as a base class may divide its implementation into those
members that are accessible to derived classes and those that remain accessible only
to the base class and its friends. An implementation member should be protected
if it provides an operation or data that a derived class will need to use in its own
implementation. Otherwise, implementation members should be private.

Friendship and Inheritance

Just as friendship is not transitive (§ 7.3.4, p. 279), friendship is also not inherited.
Friends of the base have no special access to members of its derived classes, and
friends of a derived class have no special access to the base class:

class Base {
// added friend declaration; other members as before
friend class Pal; // Pal has no access to classes derived from Base

};
class Pal {
public:

int f(Base b) { return b.prot_mem; } // ok: Pal is a friend of Base
int f2(Sneaky s) { return s.j; } // error: Pal not friend of Sneaky
// access to a base class is controlled by the base class, even inside a derived object
int f3(Sneaky s) { return s.prot_mem; } // ok: Pal is a friend

};

The fact that f3 is legal may seem surprising, but it follows directly from the notion
that each class controls access to its own members. Pal is a friend of Base, so
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Pal can access the members of Base objects. That access includes access to Base
objects that are embedded in an object of a type derived from Base.

When a class makes another class a friend, it is only that class to which friend-
ship is granted. The base classes of, and classes derived from, the friend have no
special access to the befriending class:

// D2 has no access to protected or private members in Base
class D2 : public Pal {
public:

int mem(Base b)
{ return b.prot_mem; } // error: friendship doesn’t inherit

};

Friendship is not inherited; each class controls access to its members.

Exempting Individual Members

Sometimes we need to change the access level of a name that a derived class inher-
its. We can do so by providing a using declaration (§ 3.1, p. 82):

class Base {
public:

std::size_t size() const { return n; }
protected:

std::size_t n;
};

class Derived : private Base { // note: private inheritance
public:

// maintain access levels for members related to the size of the object
using Base::size;

protected:
using Base::n;

};

Because Derived uses private inheritance, the inherited members, size and
n, are (by default) private members of Derived. The using declarations adjust
the accessibility of these members. Users of Derived can access the sizemember,
and classes subsequently derived from Derived can access n.

A using declaration inside a class can name any accessible (e.g., not private)
member of a direct or indirect base class. Access to a name specified in a using
declaration depends on the access specifier preceding the using declaration. That
is, if a using declaration appears in a private part of the class, that name is
accessible to members and friends only. If the declaration is in a public section,
the name is available to all users of the class. If the declaration is in a protected
section, the name is accessible to the members, friends, and derived classes.

A derived class may provide a using declaration only for names it is
permitted to access.
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Default Inheritance Protection Levels

In § 7.2 (p. 268) we saw that classes defined with the struct and class keywords
have different default access specifiers. Similarly, the default derivation specifier
depends on which keyword is used to define a derived class. By default, a derived
class defined with the class keyword has private inheritance; a derived class
defined with struct has public inheritance:

class Base { /* . . . */ };
struct D1 : Base { /* . . . */ }; // public inheritance by default
class D2 : Base { /* . . . */ }; // private inheritance by default

It is a common misconception to think that there are deeper differences be-
tween classes defined using the struct keyword and those defined using class.
The only differences are the default access specifier for members and the default
derivation access specifier. There are no other distinctions.

A privately derived class should specify private explicitly rather
than rely on the default. Being explicit makes it clear that private in-
heritance is intended and not an oversight.

EXE R C I S E S SE C TI ON 15.5

Exercise 15.18: Given the classes from page 612 and page 613, and assuming each
object has the type specified in the comments, determine which of these assignments
are legal. Explain why those that are illegal aren’t allowed:

Base *p = &d1; // d1 has type Pub_Derv
p = &d2; // d2 has type Priv_Derv
p = &d3; // d3 has type Prot_Derv
p = &dd1; // dd1 has type Derived_from_Public
p = &dd2; // dd2 has type Derived_from_Private
p = &dd3; // dd3 has type Derived_from_Protected

Exercise 15.19: Assume that each of the classes from page 612 and page 613 has a
member function of the form:

void memfcn(Base &b) { b = *this; }

For each class, determine whether this function would be legal.

Exercise 15.20: Write code to test your answers to the previous two exercises.

Exercise 15.21: Choose one of the following general abstractions containing a family
of types (or choose one of your own). Organize the types into an inheritance hierarchy:

(a) Graphical file formats (such as gif, tiff, jpeg, bmp)
(b) Geometric primitives (such as box, circle, sphere, cone)
(c) C++ language types (such as class, function, member function)

Exercise 15.22: For the class you chose in the previous exercise, identify some of the
likely virtual functions as well as public and protected members.
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15.6 Class Scope under Inheritance
Each class defines its own scope (§ 7.4, p. 282) within which its members are de-
fined. Under inheritance, the scope of a derived class is nested (§ 2.2.4, p. 48) inside
the scope of its base classes. If a name is unresolved within the scope of the derived
class, the enclosing base-class scopes are searched for a definition of that name.

The fact that the scope of a derived class nests inside the scope of its base classes
can be surprising. After all, the base and derived classes are defined in separate
parts of our program’s text. However, it is this hierarchical nesting of class scopes
that allows the members of a derived class to use members of its base class as if
those members were part of the derived class. For example, when we write

Bulk_quote bulk;
cout << bulk.isbn();

the use of the name isbn is resolved as follows:

• Because we called isbn on an object of type Bulk_quote, the search starts
in the Bulk_quote class. The name isbn is not found in that class.

• Because Bulk_quote is derived from Disc_quote, the Disc_quote class
is searched next. The name is still not found.

• Because Disc_quote is derived from Quote, the Quote class is searched
next. The name isbn is found in that class; the use of isbn is resolved to the
isbn in Quote.

Name Lookup Happens at Compile Time

The static type (§ 15.2.3, p. 601) of an object, reference, or pointer determines which
members of that object are visible. Even when the static and dynamic types might
differ (as can happen when a reference or pointer to a base class is used), the static
type determines what members can be used. As an example, we might add a
member to the Disc_quote class that returns a pair (§ 11.2.3, p. 426) holding the
minimum (or maximum) quantity and the discounted price:

class Disc_quote : public Quote {
public:

std::pair<size_t, double> discount_policy() const
{ return {quantity, discount}; }

// other members as before
};

We can use discount_policy only through an object, pointer, or reference of
type Disc_quote or of a class derived from Disc_quote:

Bulk_quote bulk;
Bulk_quote *bulkP = &bulk; // static and dynamic types are the same
Quote *itemP = &bulk; // static and dynamic types differ

bulkP->discount_policy(); // ok: bulkP has type Bulk_quote*
itemP->discount_policy(); // error: itemP has type Quote*

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

618 Object-Oriented Programming

Even though bulk has a member named discount_policy, that member is not
visible through itemP. The type of itemP is a pointer to Quote, which means that
the search for discount_policy starts in class Quote. The Quote class has no
member named discount_policy, so we cannot call that member on an object,
reference, or pointer of type Quote.

Name Collisions and Inheritance

Like any other scope, a derived class can reuse a name defined in one of its direct
or indirect base classes. As usual, names defined in an inner scope (e.g., a derived
class) hide uses of that name in the outer scope (e.g., a base class) (§ 2.2.4, p. 48):

struct Base {
Base(): mem(0) { }

protected:
int mem;

};

struct Derived : Base {
Derived(int i): mem(i) { } // initializes Derived::mem to i

// Base::mem is default initialized
int get_mem() { return mem; } // returns Derived::mem

protected:
int mem; // hides mem in the base

};

The reference to mem inside get_mem is resolved to the name inside Derived.
Were we to write

Derived d(42);
cout << d.get_mem() << endl; // prints 42

then the output would be 42.

A derived-class member with the same name as a member of the base
class hides direct use of the base-class member.

Using the Scope Operator to Use Hidden Members

We can use a hidden base-class member by using the scope operator:

struct Derived : Base {
int get_base_mem() { return Base::mem; }
// . . .

};

The scope operator overrides the normal lookup and directs the compiler to look
for mem starting in the scope of class Base. If we ran the code above with this
version of Derived, the result of d.get_mem() would be 0.

Aside from overriding inherited virtual functions, a derived class usu-
ally should not reuse names defined in its base class.
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KEY CONCEPT: NAME LOOKUP AND INHERITANCE

Understanding how function calls are resolved is crucial to understanding inheritance
in C++. Given the call p->mem() (or obj.mem()), the following four steps happen:

• First determine the static type of p (or obj). Because we’re calling a member,
that type must be a class type.

• Look for mem in the class that corresponds to the static type of p (or obj). If mem
is not found, look in the direct base class and continue up the chain of classes
until mem is found or the last class is searched. If mem is not found in the class
or its enclosing base classes, then the call will not compile.

• Once mem is found, do normal type checking (§ 6.1, p. 203) to see if this call is
legal given the definition that was found.

• Assuming the call is legal, the compiler generates code, which varies depending
on whether the call is virtual or not:

– If mem is virtual and the call is made through a reference or pointer, then
the compiler generates code to determine at run time which version to run
based on the dynamic type of the object.

– Otherwise, if the function is nonvirtual, or if the call is on an object (not a
reference or pointer), the compiler generates a normal function call.

As Usual, Name Lookup Happens before Type Checking

As we’ve seen, functions declared in an inner scope do not overload functions
declared in an outer scope (§ 6.4.1, p. 234). As a result, functions defined in a
derived class do not overload members defined in its base class(es). As in any other
scope, if a member in a derived class (i.e., in an inner scope) has the same name
as a base-class member (i.e., a name defined in an outer scope), then the derived
member hides the base-class member within the scope of the derived class. The
base member is hidden even if the functions have different parameter lists:

struct Base {
int memfcn();

};

struct Derived : Base {
int memfcn(int); // hides memfcn in the base

};

Derived d; Base b;

b.memfcn(); // calls Base::memfcn
d.memfcn(10); // calls Derived::memfcn
d.memfcn(); // error: memfcn with no arguments is hidden
d.Base::memfcn(); // ok: calls Base::memfcn

The declaration of memfcn in Derived hides the declaration of memfcn in Base.
Not surprisingly, the first call through b, which is a Base object, calls the version
in the base class. Similarly, the second call (through d) calls the one from Derived.
What can be surprising is that the third call, d.memfcn(), is illegal.
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To resolve this call, the compiler looks for the name memfcn in Derived. That
class defines a member named memfcn and the search stops. Once the name is
found, the compiler looks no further. The version of memfcn in Derived expects
an int argument. This call provides no such argument; it is in error.

Virtual Functions and Scope

We can now understand why virtual functions must have the same parameter list
in the base and derived classes (§ 15.3, p. 605). If the base and derived members
took arguments that differed from one another, there would be no way to call the
derived version through a reference or pointer to the base class. For example:

class Base {
public:

virtual int fcn();
};

class D1 : public Base {
public:

// hides fcn in the base; this fcn is not virtual
// D1 inherits the definition of Base::fcn()
int fcn(int); // parameter list differs from fcn in Base
virtual void f2(); // new virtual function that does not exist in Base

};

class D2 : public D1 {
public:

int fcn(int); // nonvirtual function hides D1::fcn(int)
int fcn(); // overrides virtual fcn from Base
void f2(); // overrides virtual f2 from D1

};

The fcn function in D1 does not override the virtual fcn from Base because they
have different parameter lists. Instead, it hides fcn from the base. Effectively, D1
has two functions named fcn: D1 inherits a virtual named fcn from Base and
defines its own, nonvirtual member named fcn that takes an int parameter.

Calling a Hidden Virtual through the Base Class

Given the classes above, let’s look at several different ways to call these functions:

Base bobj; D1 d1obj; D2 d2obj;

Base *bp1 = &bobj, *bp2 = &d1obj, *bp3 = &d2obj;
bp1->fcn(); // virtual call, will call Base::fcn at run time
bp2->fcn(); // virtual call, will call Base::fcn at run time
bp3->fcn(); // virtual call, will call D2::fcn at run time

D1 *d1p = &d1obj; D2 *d2p = &d2obj;
bp2->f2(); // error: Base has no member named f2
d1p->f2(); // virtual call, will call D1::f2() at run time
d2p->f2(); // virtual call, will call D2::f2() at run time

The first three calls are all made through pointers to the base class. Because fcn
is virtual, the compiler generates code to decide at run time which version to call.
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That decision will be based on the actual type of the object to which the pointer is
bound. In the case of bp2, the underlying object is a D1. That class did not override
the fcn function that takes no arguments. Thus, the call through bp2 is resolved
(at run time) to the version defined in Base.

The next three calls are made through pointers with differing types. Each
pointer points to one of the types in this hierarchy. The first call is illegal because
there is no f2() in class Base. The fact that the pointer happens to point to a
derived object is irrelevant.

For completeness, let’s look at calls to the nonvirtual function fcn(int):

Base *p1 = &d2obj; D1 *p2 = &d2obj; D2 *p3 = &d2obj;
p1->fcn(42); // error: Base has no version of fcn that takes an int
p2->fcn(42); // statically bound, calls D1::fcn(int)
p3->fcn(42); // statically bound, calls D2::fcn(int)

In each call the pointer happens to point to an object of type D2. However, the
dynamic type doesn’t matter when we call a nonvirtual function. The version that
is called depends only on the static type of the pointer.

Overriding Overloaded Functions

As with any other function, a member function (virtual or otherwise) can be over-
loaded. A derived class can override zero or more instances of the overloaded
functions it inherits. If a derived class wants to make all the overloaded versions
available through its type, then it must override all of them or none of them.

Sometimes a class needs to override some, but not all, of the functions in an
overloaded set. It would be tedious in such cases to have to override every base-
class version in order to override the ones that the class needs to specialize.

Instead of overriding every base-class version that it inherits, a derived class
can provide a using declaration (§ 15.5, p. 615) for the overloaded member. A
using declaration specifies only a name; it may not specify a parameter list. Thus,
a using declaration for a base-class member function adds all the overloaded in-
stances of that function to the scope of the derived class. Having brought all the
names into its scope, the derived class needs to define only those functions that
truly depend on its type. It can use the inherited definitions for the others.

The normal rules for a using declaration inside a class apply to names of over-
loaded functions (§ 15.5, p. 615); every overloaded instance of the function in the
base class must be accessible to the derived class. The access to the overloaded
versions that are not otherwise redefined by the derived class will be the access in
effect at the point of the using declaration.

EXE R C I S E S SE C TI ON 15.6

Exercise 15.23: Assuming class D1 on page 620 had intended to override its inherited
fcn function, how would you fix that class? Assuming you fixed the class so that fcn
matched the definition in Base, how would the calls in that section be resolved?
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15.7 Constructors and Copy Control
Like any other class, a class in an inheritance hierarchy controls what happens
when objects of its type are created, copied, moved, assigned, or destroyed. As for
any other class, if a class (base or derived) does not itself define one of the copy-
control operations, the compiler will synthesize that operation. Also, as usual, the
synthesized version of any of these members might be a deleted function.

15.7.1 Virtual Destructors
The primary direct impact that inheritance has on copy control for a base class is
that a base class generally should define a virtual destructor (§ 15.2.1, p. 594). The
destructor needs to be virtual to allow objects in the inheritance hierarchy to be
dynamically allocated.

Recall that the destructor is run when we delete a pointer to a dynamically
allocated object (§ 13.1.3, p. 502). If that pointer points to a type in an inheritance
hierarchy, it is possible that the static type of the pointer might differ from the
dynamic type of the object being destroyed (§ 15.2.2, p. 597). For example, if we
delete a pointer of type Quote*, that pointer might point at a Bulk_quote ob-
ject. If the pointer points at a Bulk_quote, the compiler has to know that it should
run the Bulk_quotedestructor. As with any other function, we arrange to run the
proper destructor by defining the destructor as virtual in the base class:

class Quote {
public:

// virtual destructor needed if a base pointer pointing to a derived object is deleted
virtual ~Quote() = default; // dynamic binding for the destructor

};

Like any other virtual, the virtual nature of the destructor is inherited. Thus,
classes derived from Quote have virtual destructors, whether they use the synthe-
sized destructor or define their own version. So long as the base class destructor is
virtual, when we delete a pointer to base, the correct destructor will be run:

Quote *itemP = new Quote; // same static and dynamic type
delete itemP; // destructor for Quote called
itemP = new Bulk_quote; // static and dynamic types differ
delete itemP; // destructor for Bulk_quote called

Executing delete on a pointer to base that points to a derived object
has undefined behavior if the base’s destructor is not virtual.

Destructors for base classes are an important exception to the rule of thumb that
if a class needs a destructor, it also needs copy and assignment (§ 13.1.4, p. 504).
A base class almost always needs a destructor, so that it can make the destructor
virtual. If a base class has an empty destructor in order to make it virtual, then the
fact that the class has a destructor does not indicate that the assignment operator
or copy constructor is also needed.
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Virtual Destructors Turn Off Synthesized Move

The fact that a base class needs a virtual destructor has an important indirect im-
pact on the definition of base and derived classes: If a class defines a destructor—
even if it uses = default to use the synthesized version—the compiler will not
synthesize a move operation for that class (§ 13.6.2, p. 537).

EXE R C I S E S SE C TI O N 15.7.1

Exercise 15.24: What kinds of classes need a virtual destructor? What operations must
a virtual destructor perform?

15.7.2 Synthesized Copy Control and Inheritance
The synthesized copy-control members in a base or a derived class execute like
any other synthesized constructor, assignment operator, or destructor: They mem-
berwise initialize, assign, or destroy the members of the class itself. In addition,
these synthesized members initialize, assign, or destroy the direct base part of an
object by using the corresponding operation from the base class. For example,

• The synthesized Bulk_quote default constructor runs the Disc_Quote de-
fault constructor, which in turn runs the Quote default constructor.

• The Quote default constructor default initializes the bookNo member to the
empty string and uses the in-class initializer to initialize price to zero.

• When the Quote constructor finishes, the Disc_Quote constructor contin-
ues, which uses the in-class initializers to initialize qty and discount.

• When the Disc_quote constructor finishes, the Bulk_quote constructor
continues but has no other work to do.

Similarly, the synthesized Bulk_quote copy constructor uses the (synthesized)
Disc_quote copy constructor, which uses the (synthesized) Quote copy con-
structor. The Quote copy constructor copies the bookNo and price members;
and the Disc_Quote copy constructor copies the qty and discount members.

It is worth noting that it doesn’t matter whether the base-class member is it-
self synthesized (as is the case in our Quote hierarchy) or has a an user-provided
definition. All that matters is that the corresponding member is accessible (§ 15.5,
p. 611) and that it is not a deleted function.

Each of our Quote classes use the synthesized destructor. The derived classes
do so implicitly, whereas the Quote class does so explicitly by defining its (virtual)
destructor as = default. The synthesized destructor is (as usual) empty and its
implicit destruction part destroys the members of the class (§ 13.1.3, p. 501). In
addition to destroying its own members, the destruction phase of a destructor in
a derived class also destroys its direct base. That destructor in turn invokes the
destructor for its own direct base, if any. And, so on up to the root of the hierarchy.
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As we’ve seen, Quote does not have synthesized move operations because it
defines a destructor. The (synthesized) copy operations will be used whenever we
move a Quote object (§ 13.6.2, p. 540). As we’re about to see, the fact that Quote
does not have move operations means that its derived classes don’t either.

Base Classes and Deleted Copy Control in the Derived

The synthesized default constructor, or any of the copy-control members of either
a base or a derived class, may be defined as deleted for the same reasons as in any
other class (§ 13.1.6, p. 508, and § 13.6.2, p. 537). In addition, the way in which a
base class is defined can cause a derived-class member to be defined as deleted:

• If the default constructor, copy constructor, copy-assignment operator, or de-
structor in the base class is deleted or inaccessible (§ 15.5, p. 612), then the
corresponding member in the derived class is defined as deleted, because
the compiler can’t use the base-class member to construct, assign, or destroy
the base-class part of the object.

• If the base class has an inaccessible or deleted destructor, then the synthe-
sized default and copy constructors in the derived classes are defined as
deleted, because there is no way to destroy the base part of the derived object.

• As usual, the compiler will not synthesize a deleted move operation. If we
use = default to request a move operation, it will be a deleted function in
the derived if the corresponding operation in the base is deleted or inaccessi-
ble, because the base class part cannot be moved. The move constructor will
also be deleted if the base class destructor is deleted or inaccessible.

As an example, this base class, B,

class B {
public:

B();
B(const B&) = delete;
// other members, not including a move constructor

};
class D : public B {

// no constructors
};

D d; // ok: D’s synthesized default constructor uses B’s default constructor
D d2(d); // error: D’s synthesized copy constructor is deleted
D d3(std::move(d)); // error: implicitly uses D’s deleted copy constructor

has an accessible default constructor and an explicitly deleted copy constructor.
Because the copy constructor is defined, the compiler will not synthesize a move
constructor for class B (§ 13.6.2, p. 537). As a result, we can neither move nor
copy objects of type B. If a class derived from B wanted to allow its objects to be
copied or moved, that derived class would have to define its own versions of these
constructors. Of course, that class would have to decide how to copy or move the
members in it base-class part. In practice, if a base class does not have a default,
copy, or move constructor, then its derived classes usually don’t either.
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Move Operations and Inheritance

As we’ve seen, most base classes define a virtual destructor. As a result, by default,
base classes generally do not get synthesized move operations. Moreover, by de-
fault, classes derived from a base class that doesn’t have move operations don’t
get synthesized move operations either.

Because lack of a move operation in a base class suppresses synthesized move
for its derived classes, base classes ordinarily should define the move operations if
it is sensible to do so. Our Quote class can use the synthesized versions. However,
Quote must define these members explicitly. Once it defines its move operations,
it must also explicitly define the copy versions as well (§ 13.6.2, p. 539):

class Quote {
public:

Quote() = default; // memberwise default initialize
Quote(const Quote&) = default; // memberwise copy
Quote(Quote&&) = default; // memberwise copy
Quote& operator=(const Quote&) = default; // copy assign
Quote& operator=(Quote&&) = default; // move assign
virtual ~Quote() = default;
// other members as before

};

Now, Quote objects will be memberwise copied, moved, assigned, and destroyed.
Moreover, classes derived from Quotewill automatically obtain synthesized move
operations as well, unless they have members that otherwise preclude move.

EXE R C I S E S SE C TI O N 15.7.2

Exercise 15.25: Why did we define a default constructor for Disc_quote? What ef-
fect, if any, would removing that constructor have on the behavior of Bulk_quote?

15.7.3 Derived-Class Copy-Control Members
As we saw in § 15.2.2 (p. 598), the initialization phase of a derived-class constructor
initializes the base-class part(s) of a derived object as well as initializing its own
members. As a result, the copy and move constructors for a derived class must
copy/move the members of its base part as well as the members in the derived.
Similarly, a derived-class assignment operator must assign the members in the
base part of the derived object.

Unlike the constructors and assignment operators, the destructor is responsible
only for destroying the resources allocated by the derived class. Recall that the
members of an object are implicitly destroyed (§ 13.1.3, p. 502). Similarly, the base-
class part of a derived object is destroyed automatically.
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When a derived class defines a copy or move operation, that operation is
responsible for copying or moving the entire object, including base-class
members.

Defining a Derived Copy or Move Constructor

When we define a copy or move constructor (§ 13.1.1, p. 496, and § 13.6.2, p. 534)
for a derived class, we ordinarily use the corresponding base-class constructor to
initialize the base part of the object:

class Base { /* . . . */ };

class D: public Base {
public:

// by default, the base class default constructor initializes the base part of an object
// to use the copy or move constructor, we must explicitly call that
// constructor in the constructor initializer list
D(const D& d): Base(d) // copy the base members

/* initializers for members of D */ { /* ... */ }
D(D&& d): Base(std::move(d)) // move the base members

/* initializers for members of D */ { /* ... */ }
};

The initializer Base(d) passes a D object to a base-class constructor. Although
in principle, Base could have a constructor that has a parameter of type D, in
practice, that is very unlikely. Instead, Base(d) will (ordinarily) match the Base
copy constructor. The D object, d, will be bound to the Base& parameter in that
constructor. The Base copy constructor will copy the base part of d into the object
that is being created. Had the initializer for the base class been omitted,

// probably incorrect definition of the D copy constructor
// base-class part is default initialized, not copied
D(const D& d) /* member initializers, but no base-class initializer */

{ /* . . . */ }

the Base default constructor would be used to initialize the base part of a D object.
Assuming D’s constructor copies the derived members from d, this newly con-
structed object would be oddly configured: Its Base members would hold default
values, while its D members would be copies of the data from another object.

By default, the base-class default constructor initializes the base-class
part of a derived object. If we want copy (or move) the base-class part,
we must explicitly use the copy (or move) constructor for the base class
in the derived’s constructor initializer list.

Derived-Class Assignment Operator

Like the copy and move constructors, a derived-class assignment operator (§ 13.1.2,
p. 500, and § 13.6.2, p. 536), must assign its base part explicitly:
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// Base::operator=(const Base&) is not invoked automatically
D &D::operator=(const D &rhs)
{

Base::operator=(rhs); // assigns the base part
// assign the members in the derived class, as usual,
// handling self-assignment and freeing existing resources as appropriate
return *this;

}

This operator starts by explicitly calling the base-class assignment operator to as-
sign the members of the base part of the derived object. The base-class operator
will (presumably) correctly handle self-assignment and, if appropriate, will free
the old value in the base part of the left-hand operand and assign the new values
from rhs. Once that operator finishes, we continue doing whatever is needed to
assign the members in the derived class.

It is worth noting that a derived constructor or assignment operator can use
its corresponding base class operation regardless of whether the base defined its
own version of that operator or uses the synthesized version. For example, the
call to Base::operator= executes the copy-assignment operator in class Base.
It is immaterial whether that operator is defined explicitly by the Base class or is
synthesized by the compiler.

Derived-Class Destructor

Recall that the data members of an object are implicitly destroyed after the destruc-
tor body completes (§ 13.1.3, p. 502). Similarly, the base-class parts of an object
are also implicitly destroyed. As a result, unlike the constructors and assignment
operators, a derived destructor is responsible only for destroying the resources
allocated by the derived class:

class D: public Base {
public:

// Base::~Base invoked automatically
~D() { /* do what it takes to clean up derived members */ }

};

Objects are destroyed in the opposite order from which they are constructed:
The derived destructor is run first, and then the base-class destructors are invoked,
back up through the inheritance hierarchy.

Calls to Virtuals in Constructors and Destructors

As we’ve seen, the base-class part of a derived object is constructed first. While the
base-class constructor is executing, the derived part of the object is uninitialized.
Similarly, derived objects are destroyed in reverse order, so that when a base class
destructor runs, the derived part has already been destroyed. As a result, while
these base-class members are executing, the object is incomplete.

To accommodate this incompleteness, the compiler treats the object as if its
type changes during construction or destruction. That is, while an object is being
constructed it is treated as if it has the same class as the constructor; calls to virtual
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functions will be bound as if the object has the same type as the constructor itself.
Similarly, for destructors. This binding applies to virtuals called directly or that
are called indirectly from a function that the constructor (or destructor) calls.

To understand this behavior, consider what would happen if the derived-class
version of a virtual was called from a base-class constructor. This virtual probably
accesses members of the derived object. After all, if the virtual didn’t need to use
members of the derived object, the derived class probably could use the version in
its base class. However, those members are uninitialized while a base constructor
is running. If such access were allowed, the program would probably crash.

If a constructor or destructor calls a virtual, the version that is run is the
one corresponding to the type of the constructor or destructor itself.

EXE R C I S E S SE C TI O N 15.7.3

Exercise 15.26: Define the Quote and Bulk_quote copy-control members to do the
same job as the synthesized versions. Give them and the other constructors print state-
ments that identify which function is running. Write programs using these classes and
predict what objects will be created and destroyed. Compare your predictions with the
output and continue experimenting until your predictions are reliably correct.

15.7.4 Inherited Constructors
Under the new standard, a derived class can reuse the constructors defined by its
direct base class. Although, as we’ll see, such constructors are not inherited in the
normal sense of that term, it is nonetheless common to refer to such constructors
as “inherited.” For the same reasons that a class may initialize only its direct base
class, a class may inherit constructors only from its direct base. A class cannot
inherit the default, copy, and move constructors. If the derived class does not
directly define these constructors, the compiler synthesizes them as usual.

A derived class inherits its base-class constructors by providing a using dec-
laration that names its (direct) base class. As an example, we can redefine our
Bulk_quote class (§ 15.4, p. 610) to inherit its constructors from Disc_quote:

class Bulk_quote : public Disc_quote {
public:

using Disc_quote::Disc_quote; // inherit Disc_quote’s constructors
double net_price(std::size_t) const;

};

Ordinarily, a using declaration only makes a name visible in the current scope.
When applied to a constructor, a using declaration causes the compiler to gen-
erate code. The compiler generates a derived constructor corresponding to each
constructor in the base. That is, for each constructor in the base class, the compiler
generates a constructor in the derived class that has the same parameter list.
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These compiler-generated constructors have the form

derived(parms) : base(args) { }

where derived is the name of the derived class, base is the name of the base class,
parms is the parameter list of the constructor, and args pass the parameters from
the derived constructor to the base constructor. In our Bulk_quote class, the
inherited constructor would be equivalent to

Bulk_quote(const std::string& book, double price,
std::size_t qty, double disc):

Disc_quote(book, price, qty, disc) { }

If the derived class has any data members of its own, those members are default
initialized (§ 7.1.4, p. 266).

Characteristics of an Inherited Constructor

Unlike using declarations for ordinary members, a constructor using declara-
tion does not change the access level of the inherited constructor(s). For exam-
ple, regardless of where the using declaration appears, a private constructor in
the base is a private constructor in the derived; similarly for protected and
public constructors.

Moreover, a using declaration can’t specify explicit or constexpr. If a
constructor in the base is explicit (§ 7.5.4, p. 296) or constexpr (§ 7.5.6, p. 299),
the inherited constructor has the same property.

If a base-class constructor has default arguments (§ 6.5.1, p. 236), those argu-
ments are not inherited. Instead, the derived class gets multiple inherited construc-
tors in which each parameter with a default argument is successively omitted. For
example, if the base has a constructor with two parameters, the second of which
has a default, the derived class will obtain two constructors: one with both param-
eters (and no default argument) and a second constructor with a single parameter
corresponding to the left-most, non-defaulted parameter in the base class.

If a base class has several constructors, then with two exceptions, the derived
class inherits each of the constructors from its base class. The first exception is that
a derived class can inherit some constructors and define its own versions of other
constructors. If the derived class defines a constructor with the same parameters
as a constructor in the base, then that constructor is not inherited. The one defined
in the derived class is used in place of the inherited constructor.

The second exception is that the default, copy, and move constructors are not
inherited. These constructors are synthesized using the normal rules. An inher-
ited constructor is not treated as a user-defined constructor. Therefore, a class that
contains only inherited constructors will have a synthesized default constructor.

EXE R C I S E S SE C TI O N 15.7.4

Exercise 15.27: Redefine your Bulk_quote class to inherit its constructors.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

630 Object-Oriented Programming

15.8 Containers and Inheritance
When we use a container to store objects from an inheritance hierarchy, we gener-
ally must store those objects indirectly. We cannot put objects of types related by
inheritance directly into a container, because there is no way to define a container
that holds elements of differing types.

As an example, assume we want to define a vector to hold several books that
a customer wants to buy. It should be easy to see that we can’t use a vector
that holds Bulk_quote objects. We can’t convert Quote objects to Bulk_quote
(§ 15.2.3, p. 602), so we wouldn’t be able to put Quote objects into that vector.

It may be somewhat less obvious that we also can’t use a vector that holds
objects of type Quote. In this case, we can put Bulk_quote objects into the con-
tainer. However, those objects would no longer be Bulk_quote objects:

vector<Quote> basket;
basket.push_back(Quote("0-201-82470-1", 50));
// ok, but copies only the Quote part of the object into basket
basket.push_back(Bulk_quote("0-201-54848-8", 50, 10, .25));

// calls version defined by Quote, prints 750, i.e., 15 * $50
cout << basket.back().net_price(15) << endl;

The elements in basket are Quote objects. When we add a Bulk_quote object
to the vector its derived part is ignored (§ 15.2.3, p. 603).

Because derived objects are “sliced down” when assigned to a base-type
object, containers and types related by inheritance do not mix well.

Put (Smart) Pointers, Not Objects, in Containers

When we need a container that holds objects related by inheritance, we typically
define the container to hold pointers (preferably smart pointers (§ 12.1, p. 450)) to
the base class. As usual, the dynamic type of the object to which those pointers
point might be the base-class type or a type derived from that base:

vector<shared_ptr<Quote>> basket;

basket.push_back(make_shared<Quote>("0-201-82470-1", 50));
basket.push_back(

make_shared<Bulk_quote>("0-201-54848-8", 50, 10, .25));

// calls the version defined by Quote; prints 562.5, i.e., 15 * $50 less the discount
cout << basket.back()->net_price(15) << endl;

Because basket holds shared_ptrs, we must dereference the value returned by
basket.back() to get the object on which to run net_price. We do so by using
-> in the call to net_price. As usual, the version of net_price that is called
depends on the dynamic type of the object to which that pointer points.

It is worth noting that we defined basket as shared_ptr<Quote>, yet in the
second push_back we passed a shared_ptr to a Bulk_quote object. Just as
we can convert an ordinary pointer to a derived type to a pointer to an base-class
type (§ 15.2.2, p. 597), we can also convert a smart pointer to a derived type to a
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smart pointer to an base-class type. Thus, make_shared<Bulk_quote> returns a
shared_ptr<Bulk_quote>object, which is converted to shared_ptr<Quote>
when we call push_back. As a result, despite appearances, all of the elements of
basket have the same type.

EXE R C I S E S SE C TI ON 15.8

Exercise 15.28: Define a vector to hold Quote objects but put Bulk_quote objects
into that vector. Compute the total net_price of all the elements in the vector.

Exercise 15.29: Repeat your program, but this time store shared_ptrs to objects of
type Quote. Explain any discrepancy in the sum generated by the this version and the
previous program. If there is no discrepancy, explain why there isn’t one.

15.8.1 Writing a Basket Class
One of the ironies of object-oriented programming in C++ is that we cannot use ob-
jects directly to support it. Instead, we must use pointers and references. Because
pointers impose complexity on our programs, we often define auxiliary classes to
help manage that complexity. We’ll start by defining a class to represent a basket:

class Basket {
public:

// Basket uses synthesized default constructor and copy-control members
void add_item(const std::shared_ptr<Quote> &sale)

{ items.insert(sale); }
// prints the total price for each book and the overall total for all items in the basket
double total_receipt(std::ostream&) const;

private:
// function to compare shared_ptrs needed by the multiset member
static bool compare(const std::shared_ptr<Quote> &lhs,

const std::shared_ptr<Quote> &rhs)
{ return lhs->isbn() < rhs->isbn(); }
// multiset to hold multiple quotes, ordered by the compare member
std::multiset<std::shared_ptr<Quote>, decltype(compare)*>

items{compare};
};

Our class uses a multiset (§ 11.2.1, p. 423) to hold the transactions, so that we
can store multiple transactions for the same book, and so that all the transactions
for a given book will be kept together (§ 11.2.2, p. 424).

The elements in our multiset are shared_ptrs and there is no less-than op-
erator for shared_ptr. As a result, we must provide our own comparison oper-
ation to order the elements (§ 11.2.2, p. 425). Here, we define a private static
member, named compare, that compares the isbns of the objects to which the
shared_ptrs point. We initialize our multiset to use this comparison function
through an in-class initializer (§ 7.3.1, p. 274):
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// multiset to hold multiple quotes, ordered by the compare member
std::multiset<std::shared_ptr<Quote>, decltype(compare)*>

items{compare};

This declaration can be hard to read, but reading from left to right, we see that we
are defining a multiset of shared_ptrs to Quote objects. The multiset will
use a function with the same type as our compare member to order the elements.
The multiset member is named items, and we’re initializing items to use our
compare function.

Defining the Members of Basket

The Basket class defines only two operations. We defined the add_item mem-
ber inside the class. That member takes a shared_ptr to a dynamically allo-
cated Quote and puts that shared_ptr into the multiset. The second member,
total_receipt, prints an itemized bill for the contents of the basket and returns
the price for all the items in the basket:

double Basket::total_receipt(ostream &os) const
{

double sum = 0.0; // holds the running total

// iter refers to the first element in a batch of elements with the same ISBN
// upper_bound returns an iterator to the element just past the end of that batch
for (auto iter = items.cbegin();

iter != items.cend();
iter = items.upper_bound(*iter)) {

// we know there’s at least one element with this key in the Basket
// print the line item for this book
sum += print_total(os, **iter, items.count(*iter));

}
os << "Total Sale: " << sum << endl; // print the final overall total
return sum;

}

Our for loop starts by defining and initializing iter to refer to the first element
in the multiset. The condition checks whether iter is equal to items.cend().
If so, we’ve processed all the purchases and we drop out of the for. Otherwise,
we process the next book.

The interesting bit is the “increment” expression in the for. Rather than the
usual loop that reads each element, we advance iter to refer to the next key. We
skip over all the elements that match the current key by calling upper_bound
(§ 11.3.5, p. 438). The call to upper_bound returns the iterator that refers to the
element just past the last one with the same key as in iter. The iterator we get
back denotes either the end of the set or the next book.

Inside the for loop, we call print_total (§ 15.1, p. 593) to print the details
for each book in the basket:

sum += print_total(os, **iter, items.count(*iter));

The arguments to print_total are an ostream on which to write, a Quote
object to process, and a count. When we dereference iter, we get a shared_ptr
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that points to the object we want to print. To get that object, we must dereference
that shared_ptr. Thus, **iter is a Quote object (or an object of a type derived
from Quote). We use the multiset count member (§ 11.3.5, p. 436) to determine
how many elements in the multiset have the same key (i.e., the same ISBN).

As we’ve seen, print_totalmakes a virtual call to net_price, so the result-
ing price depends on the dynamic type of **iter. The print_total function
prints the total for the given book and returns the total price that it calculated. We
add that result into sum, which we print after we complete the for loop.

Hiding the Pointers

Users of Basket still have to deal with dynamic memory, because add_item takes
a shared_ptr. As a result, users have to write code such as

Basket bsk;
bsk.add_item(make_shared<Quote>("123", 45));
bsk.add_item(make_shared<Bulk_quote>("345", 45, 3, .15));

Our next step will be to redefine add_item so that it takes a Quote object instead
of a shared_ptr. This new version of add_item will handle the memory alloca-
tion so that our users no longer need to do so. We’ll define two versions, one that
will copy its given object and the other that will move from it (§ 13.6.3, p. 544):

void add_item(const Quote& sale); // copy the given object
void add_item(Quote&& sale); // move the given object

The only problem is that add_item doesn’t know what type to allocate. When it
does its memory allocation, add_item will copy (or move) its sale parameter.
Somewhere there will be a new expression such as:

new Quote(sale)

Unfortunately, this expression won’t do the right thing: new allocates an object of
the type we request. This expression allocates an object of type Quote and copies
the Quote portion of sale. However, sale might refer to a Bulk_quote object,
in which case, that object will be sliced down.

Simulating Virtual Copy

We’ll solve this problem by giving our Quote classes a virtual member that allo-
cates a copy of itself.

class Quote {
public:

// virtual function to return a dynamically allocated copy of itself
// these members use reference qualifiers; see § 13.6.3 (p. 546)
virtual Quote* clone() const & {return new Quote(*this);}
virtual Quote* clone() &&

{return new Quote(std::move(*this));}
// other members as before

};
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class Bulk_quote : public Quote {
Bulk_quote* clone() const & {return new Bulk_quote(*this);}
Bulk_quote* clone() &&

{return new Bulk_quote(std::move(*this));}
// other members as before

};

Because we have a copy and a move version of add_item, we defined lvalue and
rvalue versions of clone (§ 13.6.3, p. 546). Each clone function allocates a new
object of its own type. The const lvalue reference member copies itself into that
newly allocated object; the rvalue reference member moves its own data.

Using clone, it is easy to write our new versions of add_item:

class Basket {
public:

void add_item(const Quote& sale) // copy the given object
{ items.insert(std::shared_ptr<Quote>(sale.clone())); }

void add_item(Quote&& sale) // move the given object
{ items.insert(

std::shared_ptr<Quote>(std::move(sale).clone())); }
// other members as before

};

Like add_item itself, clone is overloaded based on whether it is called on an
lvalue or an rvalue. Thus, the first version of add_item calls the const lvalue
version of clone, and the second version calls the rvalue reference version. Note
that in the rvalue version, although the type of sale is an rvalue reference type,
sale (like any other variable) is an lvalue (§ 13.6.1, p. 533). Therefore, we call
move to bind an rvalue reference to sale.

Our clone function is also virtual. Whether the Quote or Bulk_quote func-
tion is run, depends (as usual) on the dynamic type of sale. Regardless of whether
we copy or move the data, clone returns a pointer to a newly allocated object, of
its own type. We bind a shared_ptr to that object and call insert to add this
newly allocated object to items. Note that because shared_ptr supports the
derived-to-base conversion (§ 15.2.2, p. 597), we can bind a shared_ptr<Quote
to a Bulk_quote*.

EXE R C I S E S SE C TI O N 15.8.1

Exercise 15.30: Write your own version of the Basket class and use it to compute
prices for the same transactions as you used in the previous exercises.

15.9 Text Queries Revisited
As a final example of inheritance, we’ll extend our text-query application from
§ 12.3 (p. 484). The classes we wrote in that section let us look for occurrences of a
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given word in a file. We’d like to extend the system to support more complicated
queries. In our examples, we’ll run queries against the following simple story:

Alice Emma has long flowing red hair.
Her Daddy says when the wind blows
through her hair, it looks almost alive,
like a fiery bird in flight.
A beautiful fiery bird, he tells her,
magical but untamed.
"Daddy, shush, there is no such thing,"
she tells him, at the same time wanting
him to tell her more.
Shyly, she asks, "I mean, Daddy, is there?"

Our system should support the following queries:

• Word queries find all the lines that match a given string:

Executing Query for: Daddy
Daddy occurs 3 times
(line 2) Her Daddy says when the wind blows
(line 7) "Daddy, shush, there is no such thing,"
(line 10) Shyly, she asks, "I mean, Daddy, is there?"

• Not queries, using the ~ operator, yield lines that don’t match the query:

Executing Query for: ~(Alice)
~(Alice) occurs 9 times
(line 2) Her Daddy says when the wind blows
(line 3) through her hair, it looks almost alive,
(line 4) like a fiery bird in flight.
. . .

• Or queries, using the | operator, return lines matching either of two queries:

Executing Query for: (hair | Alice)
(hair | Alice) occurs 2 times
(line 1) Alice Emma has long flowing red hair.
(line 3) through her hair, it looks almost alive,

• And queries, using the & operator, return lines matching both queries:

Executing query for: (hair & Alice)
(hair & Alice) occurs 1 time
(line 1) Alice Emma has long flowing red hair.

Moreover, we want to be able to combine these operations, as in

fiery & bird | wind

We’ll use normal C++ precedence rules (§ 4.1.2, p. 136) to evaluate compound ex-
pressions such as this example. Thus, this query will match a line in which both
fiery and bird appear or one in which wind appears:
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Executing Query for: ((fiery & bird) | wind)
((fiery & bird) | wind) occurs 3 times
(line 2) Her Daddy says when the wind blows
(line 4) like a fiery bird in flight.
(line 5) A beautiful fiery bird, he tells her,

Our output will print the query, using parentheses to indicate the way in which
the query was interpreted. As with our original implementation, our system will
display lines in ascending order and will not display the same line more than once.

15.9.1 An Object-Oriented Solution
We might think that we should use the TextQuery class from § 12.3.2 (p. 487) to
represent our word query and derive our other queries from that class.

However, this design would be flawed. To see why, consider a Not query. A
Word query looks for a particular word. In order for a Not query to be a kind
of Word query, we would have to be able to identify the word for which the Not
query was searching. In general, there is no such word. Instead, a Not query has a
query (a Word query or any other kind of query) whose value it negates. Similarly,
an And query and an Or query have two queries whose results it combines.

This observation suggests that we model our different kinds of queries as inde-
pendent classes that share a common base class:

WordQuery // Daddy
NotQuery // ~Alice
OrQuery // hair | Alice
AndQuery // hair & Alice

These classes will have only two operations:

• eval, which takes a TextQuery object and returns a QueryResult. The
eval function will use the given TextQuery object to find the query’s the
matching lines.

• rep, which returns the string representation of the underlying query. This
function will be used by eval to create a QueryResult representing the
match and by the output operator to print the query expressions.

Abstract Base Class

As we’ve seen, our four query types are not related to one another by inheritance;
they are conceptually siblings. Each class shares the same interface, which suggests
that we’ll need to define an abstract base class (§ 15.4, p. 610) to represent that
interface. We’ll name our abstract base class Query_base, indicating that its role
is to serve as the root of our query hierarchy.

Our Query_base class will define eval and rep as pure virtual functions
(§ 15.4, p. 610). Each of our classes that represents a particular kind of query must
override these functions. We’ll derive WordQuery and NotQuery directly from
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KEY CONCEPT: INHERITANCE VERSUS COMPOSITION

The design of inheritance hierarchies is a complicated topic in its own right and well
beyond the scope of this language Primer. However, there is one important design
guide that is so fundamental that every programmer should be familiar with it.

When we define a class as publicly inherited from another, the derived class should
reflect an “Is A” relationship to the base class. In well-designed class hierarchies,
objects of a publicly derived class can be used wherever an object of the base class is
expected.

Another common relationship among types is a “Has A” relationship. Types re-
lated by a “Has A” relationship imply membership.

In our bookstore example, our base class represents the concept of a quote for a
book sold at a stipulated price. Our Bulk_quote “is a” kind of quote, but one with a
different pricing strategy. Our bookstore classes “have a” price and an ISBN.

Query_base. The AndQuery and OrQuery classes share one property that the
other classes in our system do not: Each has two operands. To model this prop-
erty, we’ll define another abstract base class, named BinaryQuery, to represent
queries with two operands. The AndQuery and OrQuery classes will inherit from
BinaryQuery, which in turn will inherit from Query_base. These decisions give
us the class design represented in Figure 15.2.

Figure 15.2: Query_base Inheritance Hierarchy
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Hiding a Hierarchy in an Interface Class

Our program will deal with evaluating queries, not with building them. However,
we need to be able to create queries in order to run our program. The simplest way
to do so is to write C++ expressions to create the queries. For example, we’d like
to generate the compound query previously described by writing code such as

Query q = Query("fiery") & Query("bird") | Query("wind");
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This problem description implicitly suggests that user-level code won’t use the
inherited classes directly. Instead, we’ll define an interface class named Query,
which will hide the hierarchy. The Query class will store a pointer to Query_base.
That pointer will be bound to an object of a type derived from Query_base. The
Query class will provide the same operations as the Query_base classes: eval to
evaluate the associated query, and rep to generate a string version of the query.
It will also define an overloaded output operator to display the associated query.

Users will create and manipulate Query_base objects only indirectly through
operations on Query objects. We’ll define three overloaded operators on Query
objects, along with a Query constructor that takes a string. Each of these func-
tions will dynamically allocate a new object of a type derived from Query_base:

• The & operator will generate a Query bound to a new AndQuery.

• The | operator will generate a Query bound to a new OrQuery.

• The ~ operator will generate a Query bound to a new NotQuery.

• The Query constructor that takes a stringwill generate a new WordQuery.

Figure 15.3: Objects Created by Query Expressions
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objects created by the expression
Query q = Query("fiery") & Query("bird") | Query("wind");

Understanding How These Classes Work

It is important to realize that much of the work in this application consists of build-
ing objects to represent the user’s query. For example, an expression such as the
one above generates the collection of interrelated objects illustrated in Figure 15.3.

Once the tree of objects is built up, evaluating (or generating the representation
of) a query is basically a process (managed for us by the compiler) of following
these links, asking each object to evaluate (or display) itself. For example, if we
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call eval on q (i.e., on the root of the tree), that call asks the OrQuery to which q
points to eval itself. Evaluating this OrQuery calls eval on its two operands—
on the AndQuery and the WordQuery that looks for the word wind. Evaluating
the AndQuery evaluates its two WordQuerys, generating the results for the words
fiery and bird, respectively.

When new to object-oriented programming, it is often the case that the hardest
part in understanding a program is understanding the design. Once you are thor-
oughly comfortable with the design, the implementation flows naturally. As an aid
to understanding this design, we’ve summarized the classes used in this example
in Table 15.1 (overleaf).

EXE R C I S E S SE C TI O N 15.9.1

Exercise 15.31: Given that s1, s2, s3, and s4 are all strings, determine what objects
are created in the following expressions:

(a) Query(s1) | Query(s2) & ~ Query(s3);
(b) Query(s1) | (Query(s2) & ~ Query(s3));
(c) (Query(s1) & (Query(s2)) | (Query(s3) & Query(s4)));

15.9.2 The Query_base and Query Classes
We’ll start our implementation by defining the Query_base class:

// abstract class acts as a base class for concrete query types; all members are private
class Query_base {

friend class Query;
protected:

using line_no = TextQuery::line_no; // used in the eval functions
virtual ~Query_base() = default;

private:
// eval returns the QueryResult that matches this Query
virtual QueryResult eval(const TextQuery&) const = 0;
// rep is a string representation of the query
virtual std::string rep() const = 0;

};

Both eval and rep are pure virtual functions, which makes Query_base an ab-
stract base class (§ 15.4, p. 610). Because we don’t intend users, or the derived
classes, to use Query_base directly, Query_base has no public members. All
use of Query_base will be through Query objects. We grant friendship to the
Query class, because members of Query will call the virtuals in Query_base.

The protected member, line_no, will be used inside the eval functions.
Similarly, the destructor is protected because it is used (implicitly) by the de-
structors in the derived classes.
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Table 15.1: Recap: Query Program Design

Query Program Interface Classes and Operations

TextQuery Class that reads a given file and builds a lookup map. This class has a query
operation that takes a string argument and returns a QueryResult
representing the lines on which that string appears (§ 12.3.2, p. 487).

QueryResult Class that holds the results of a query operation (§ 12.3.2, p. 489).
Query Interface class that points to an object of a type derived from Query_base.
Query q(s) Binds the Query q to a new WordQuery holding the string s.
q1 & q2 Returns a Query bound to a new AndQuery object holding q1 and q2.
q1 | q2 Returns a Query bound to a new OrQuery object holding q1 and q2.
~q Returns a Query bound to a new NotQuery object holding q.

Query Program Implementation Classes

Query_base Abstract base class for the query classes.
WordQuery Class derived from Query_base that looks for a given word.
NotQuery Class derived from Query_base that represents the set of lines in which its

Query operand does not appear.
BinaryQuery Abstract base class derived from Query_base that represents queries with

two Query operands.
OrQuery Class derived from BinaryQuery that returns the union of the line

numbers in which its two operands appear.

AndQuery Class derived from BinaryQuery that returns the intersection of the line
numbers in which its two operands appear.

The Query Class

The Query class provides the interface to (and hides) the Query_base inheri-
tance hierarchy. Each Query object will hold a shared_ptr to a correspond-
ing Query_base object. Because Query is the only interface to the Query_base
classes, Query must define its own versions of eval and rep.

The Query constructor that takes a string will create a new WordQuery and
bind its shared_ptr member to that newly created object. The &, |, and ~ oper-
ators will create AndQuery, OrQuery, and NotQuery objects, respectively. These
operators will return a Query object bound to its newly generated object. To sup-
port these operators, Query needs a constructor that takes a shared_ptr to a
Query_base and stores its given pointer. We’ll make this constructor private
because we don’t intend general user code to define Query_base objects. Because
this constructor is private, we’ll need to make the operators friends.

Given the preceding design, the Query class itself is simple:

// interface class to manage the Query_base inheritance hierarchy
class Query {

// these operators need access to the shared_ptr constructor
friend Query operator~(const Query &);
friend Query operator|(const Query&, const Query&);
friend Query operator&(const Query&, const Query&);

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 15.9 Text Queries Revisited 641

public:
Query(const std::string&); // builds a new WordQuery

// interface functions: call the corresponding Query_base operations
QueryResult eval(const TextQuery &t) const

{ return q->eval(t); }
std::string rep() const { return q->rep(); }

private:
Query(std::shared_ptr<Query_base> query): q(query) { }
std::shared_ptr<Query_base> q;

};

We start by naming as friends the operators that create Query objects. These oper-
ators need to be friends in order to use the private constructor.

In the public interface for Query, we declare, but cannot yet define, the con-
structor that takes a string. That constructor creates a WordQuery object, so we
cannot define this constructor until we have defined the WordQuery class.

The other two public members represent the interface for Query_base. In
each case, the Query operation uses its Query_base pointer to call the respective
(virtual) Query_base operation. The actual version that is called is determined at
run time and will depend on the type of the object to which q points.

The Query Output Operator

The output operator is a good example of how our overall query system works:

std::ostream &
operator<<(std::ostream &os, const Query &query)
{

// Query::rep makes a virtual call through its Query_base pointer to rep()
return os << query.rep();

}

When we print a Query, the output operator calls the (public) repmember of class
Query. That function makes a virtual call through its pointer member to the rep
member of the object to which this Query points. That is, when we write

Query andq = Query(sought1) & Query(sought2);
cout << andq << endl;

the output operator calls Query::rep on andq. Query::rep in turn makes a
virtual call through its Query_base pointer to the Query_base version of rep.
Because andq points to an AndQuery object, that call will run AndQuery::rep.

EXE R C I S E S SE C TI O N 15.9.2

Exercise 15.32: What happens when an object of type Query is copied, moved, as-
signed, and destroyed?

Exercise 15.33: What about objects of type Query_base?
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15.9.3 The Derived Classes
The most interesting part of the classes derived from Query_base is how they are
represented. The WordQuery class is most straightforward. Its job is to hold the
search word.

The other classes operate on one or two operands. A NotQuery has a sin-
gle operand, and AndQuery and OrQuery have two operands. In each of these
classes, the operand(s) can be an object of any of the concrete classes derived from
Query_base: A NotQuery can be applied to a WordQuery, an AndQuery, an
OrQuery, or another NotQuery. To allow this flexibility, the operands must be
stored as pointers to Query_base. That way we can bind the pointer to whichever
concrete class we need.

However, rather than storing a Query_base pointer, our classes will them-
selves use a Query object. Just as user code is simplified by using the interface
class, we can simplify our own class code by using the same class.

Now that we know the design for these classes, we can implement them.

The WordQuery Class

A WordQuery looks for a given string. It is the only operation that actually
performs a query on the given TextQuery object:

class WordQuery: public Query_base {
friend class Query; // Query uses the WordQuery constructor
WordQuery(const std::string &s): query_word(s) { }

// concrete class: WordQuery defines all inherited pure virtual functions
QueryResult eval(const TextQuery &t) const

{ return t.query(query_word); }
std::string rep() const { return query_word; }
std::string query_word; // word for which to search

};

Like Query_base, WordQuery has no publicmembers; WordQuerymust make
Query a friend in order to allow Query to access the WordQuery constructor.

Each of the concrete query classes must define the inherited pure virtual func-
tions, eval and rep. We defined both operations inside the WordQuery class
body: eval calls the query member of its given TextQuery parameter, which
does the actual search in the file; rep returns the string that this WordQuery
represents (i.e., query_word).

Having defined the WordQuery class, we can now define the Query construc-
tor that takes a string:

inline
Query::Query(const std::string &s): q(new WordQuery(s)) { }

This constructor allocates a WordQuery and initializes its pointer member to point
to that newly allocated object.

The NotQuery Class and the ~ Operator

The ~ operator generates a NotQuery, which holds a Query, which it negates:
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class NotQuery: public Query_base {
friend Query operator~(const Query &);
NotQuery(const Query &q): query(q) { }

// concrete class: NotQuery defines all inherited pure virtual functions
std::string rep() const {return "~(" + query.rep() + ")";}
QueryResult eval(const TextQuery&) const;
Query query;

};

inline Query operator~(const Query &operand)
{

return std::shared_ptr<Query_base>(new NotQuery(operand));
}

Because the members of NotQuery are all private, we start by making the ~ op-
erator a friend. To rep a NotQuery, we concatenate the ~ symbol to the rep-
resentation of the underlying Query. We parenthesize the output to ensure that
precedence is clear to the reader.

It is worth noting that the call to rep in NotQuery’s own rep member ulti-
mately makes a virtual call to rep: query.rep() is a nonvirtual call to the rep
member of the Query class. Query::rep in turn calls q->rep(), which is a vir-
tual call through its Query_base pointer.

The ~ operator dynamically allocates a new NotQuery object. The return (im-
plicitly) uses the Query constructor that takes a shared_ptr<Query_base>.
That is, the return statement is equivalent to

// allocate a new NotQuery object
// bind the resulting NotQuery pointer to a shared_ptr<Query_base
shared_ptr<Query_base> tmp(new NotQuery(expr));

return Query(tmp); // use the Query constructor that takes a shared_ptr

The evalmember is complicated enough that we will implement it outside the
class body. We’ll define the eval functions in § 15.9.4 (p. 647).

The BinaryQuery Class

The BinaryQuery class is an abstract base class that holds the data needed by the
query types that operate on two operands:

class BinaryQuery: public Query_base {
protected:

BinaryQuery(const Query &l, const Query &r, std::string s):
lhs(l), rhs(r), opSym(s) { }

// abstract class: BinaryQuery doesn’t define eval
std::string rep() const { return "(" + lhs.rep() + " "

+ opSym + " "
+ rhs.rep() + ")"; }

Query lhs, rhs; // right- and left-hand operands
std::string opSym; // name of the operator

};
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The data in a BinaryQuery are the two Query operands and the corresponding
operator symbol. The constructor takes the two operands and the operator symbol,
each of which it stores in the corresponding data members.

To rep a BinaryOperator, we generate the parenthesized expression con-
sisting of the representation of the left-hand operand, followed by the operator,
followed by the representation of the right-hand operand. As when we displayed
a NotQuery, the calls to rep ultimately make virtual calls to the rep function of
the Query_base objects to which lhs and rhs point.

The BinaryQuery class does not define the eval function and so in-
herits a pure virtual. Thus, BinaryQuery is also an abstract base class,
and we cannot create objects of BinaryQuery type.

The AndQuery and OrQuery Classes and Associated Operators

The AndQuery and OrQuery classes, and their corresponding operators, are quite
similar to one another:

class AndQuery: public BinaryQuery {
friend Query operator&(const Query&, const Query&);
AndQuery(const Query &left, const Query &right):

BinaryQuery(left, right, "&") { }

// concrete class: AndQuery inherits rep and defines the remaining pure virtual
QueryResult eval(const TextQuery&) const;

};

inline Query operator&(const Query &lhs, const Query &rhs)
{

return std::shared_ptr<Query_base>(new AndQuery(lhs, rhs));
}

class OrQuery: public BinaryQuery {
friend Query operator|(const Query&, const Query&);
OrQuery(const Query &left, const Query &right):

BinaryQuery(left, right, "|") { }

QueryResult eval(const TextQuery&) const;
};

inline Query operator|(const Query &lhs, const Query &rhs)
{

return std::shared_ptr<Query_base>(new OrQuery(lhs, rhs));
}

These classes make the respective operator a friend and define a constructor to
create their BinaryQuery base part with the appropriate operator. They inherit
the BinaryQuery definition of rep, but each overrides the eval function.

Like the ~ operator, the & and | operators return a shared_ptr bound to a
newly allocated object of the corresponding type. That shared_ptr gets con-
verted to Query as part of the return statement in each of these operators.
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EXE R C I S E S SE C TI O N 15.9.3

Exercise 15.34: For the expression built in Figure 15.3 (p. 638):

(a) List the constructors executed in processing that expression.
(b) List the calls to rep that are made from cout << q.
(c) List the calls to eval made from q.eval().

Exercise 15.35: Implement the Query and Query_base classes, including a defini-
tion of rep but omitting the definition of eval.

Exercise 15.36: Put print statements in the constructors and rep members and run
your code to check your answers to (a) and (b) from the first exercise.

Exercise 15.37: What changes would your classes need if the derived classes had
members of type shared_ptr<Query_base> rather than of type Query?

Exercise 15.38: Are the following declarations legal? If not, why not? If so, explain
what the declarations mean.

BinaryQuery a = Query("fiery") & Query("bird");
AndQuery b = Query("fiery") & Query("bird");
OrQuery c = Query("fiery") & Query("bird");

15.9.4 The eval Functions
The eval functions are the heart of our query system. Each of these functions calls
eval on its operand(s) and then applies its own logic: The OrQuery eval oper-
ation returns the union of the results of its two operands; AndQuery returns the
intersection. The NotQuery is more complicated: It must return the line numbers
that are not in its operand’s set.

To support the processing in the eval functions, we need to use the version
of QueryResult that defines the members we added in the exercises to § 12.3.2
(p. 490). We’ll assume that QueryResult has begin and end members that will
let us iterate through the set of line numbers that the QueryResult holds. We’ll
also assume that QueryResult has a member named get_file that returns a
shared_ptr to the underlying file on which the query was executed.

Our Query classes use members defined for QueryResult in the exer-
cises to § 12.3.2 (p. 490).

OrQuery::eval

An OrQuery represents the union of the results for its two operands, which we
obtain by calling eval on each of its operands. Because these operands are Query
objects, calling eval is a call to Query::eval, which in turn makes a virtual
call to eval on the underlying Query_base object. Each of these calls yields a
QueryResult representing the line numbers in which its operand appears. We’ll
combine those line numbers into a new set:
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// returns the union of its operands’ result sets
QueryResult
OrQuery::eval(const TextQuery& text) const
{

// virtual calls through the Query members, lhs and rhs
// the calls to eval return the QueryResult for each operand
auto right = rhs.eval(text), left = lhs.eval(text);

// copy the line numbers from the left-hand operand into the result set
auto ret_lines =

make_shared<set<line_no>>(left.begin(), left.end());

// insert lines from the right-hand operand
ret_lines->insert(right.begin(), right.end());
// return the new QueryResult representing the union of lhs and rhs
return QueryResult(rep(), ret_lines, left.get_file());

}

We initialize ret_lines using the set constructor that takes a pair of iterators.
The begin and end members of a QueryResult return iterators into that ob-
ject’s set of line numbers. So, ret_lines is created by copying the elements
from left’s set. We next call insert on ret_lines to insert the elements from
right. After this call, ret_lines contains the line numbers that appear in either
left or right.

The eval function ends by building and returning a QueryResult repre-
senting the combined match. The QueryResult constructor (§ 12.3.2, p. 489)
takes three arguments: a string representing the query, a shared_ptr to the
set of matching line numbers, and a shared_ptr to the vector that represents
the input file. We call rep to generate the string and get_file to obtain the
shared_ptr to the file. Because both left and right refer to the same file, it
doesn’t matter which of these we use for get_file.

AndQuery::eval

The AndQuery version of eval is similar to the OrQuery version, except that it
calls a library algorithm to find the lines in common to both queries:

// returns the intersection of its operands’ result sets
QueryResult
AndQuery::eval(const TextQuery& text) const
{

// virtual calls through the Query operands to get result sets for the operands
auto left = lhs.eval(text), right = rhs.eval(text);

// set to hold the intersection of left and right
auto ret_lines = make_shared<set<line_no>>();

// writes the intersection of two ranges to a destination iterator
// destination iterator in this call adds elements to ret
set_intersection(left.begin(), left.end(),

right.begin(), right.end(),
inserter(*ret_lines, ret_lines->begin()));

return QueryResult(rep(), ret_lines, left.get_file());
}
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Here we use the library set_intersection algorithm, which is described in
Appendix A.2.8 (p. 880), to merge these two sets.

The set_intersection algorithm takes five iterators. It uses the first four to
denote two input sequences (§ 10.5.2, p. 413). Its last argument denotes a destina-
tion. The algorithm writes the elements that appear in both input sequences into
the destination.

In this call we pass an insert iterator (§ 10.4.1, p. 401) as the destination. When
set_intersection writes to this iterator, the effect will be to insert a new ele-
ment into ret_lines.

Like the OrQuery eval function, this one ends by building and returning a
QueryResult representing the combined match.

NotQuery::eval

NotQuery finds each line of the text within which the operand is not found:

// returns the lines not in its operand’s result set
QueryResult
NotQuery::eval(const TextQuery& text) const
{

// virtual call to eval through the Query operand
auto result = query.eval(text);

// start out with an empty result set
auto ret_lines = make_shared<set<line_no>>();

// we have to iterate through the lines on which our operand appears
auto beg = result.begin(), end = result.end();

// for each line in the input file, if that line is not in result,
// add that line number to ret_lines
auto sz = result.get_file()->size();
for (size_t n = 0; n != sz; ++n) {

// if we haven’t processed all the lines in result
// check whether this line is present
if (beg == end || *beg != n)

ret_lines->insert(n); // if not in result, add this line
else if (beg != end)

++beg; // otherwise get the next line number in result if there is one
}
return QueryResult(rep(), ret_lines, result.get_file());

}

As in the other eval functions, we start by calling eval on this object’s oper-
and. That call returns the QueryResult containing the line numbers on which
the operand appears, but we want the line numbers on which the operand does
not appear. That is, we want every line in the file that is not already in result.

We generate that set by iterating through sequenital integers up to the size of
the input file. We’ll put each number that is not in result into ret_lines. We
position beg and end to denote the first and one past the last elements in result.
That object is a set, so when we iterate through it, we’ll obtain the line numbers
in ascending order.
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The loop body checks whether the current number is in result. If not, we add
that number to ret_lines. If the number is in result, we increment beg, which
is our iterator into result.

Once we’ve processed all the line numbers, we return a QueryResult con-
taining ret_lines, along with the results of running rep and get_file as in
the previous eval functions.

EXE R C I S E S SE C TI O N 15.9.4

Exercise 15.39: Implement the Query and Query_base classes. Test your application
by evaluating and printing a query such as the one in Figure 15.3 (p. 638).

Exercise 15.40: In the OrQuery eval function what would happen if its rhs member
returned an empty set? What if its lhs member did so? What if both rhs and lhs
returned empty sets?

Exercise 15.41: Reimplement your classes to use built-in pointers to Query_base
rather than shared_ptrs. Remember that your classes will no longer be able to use
the synthesized copy-control members.

Exercise 15.42: Design and implement one of the following enhancements:

(a) Print words only once per sentence rather than once per line.
(b) Introduce a history system in which the user can refer to a previous query by

number, possibly adding to it or combining it with another.
(c) Allow the user to limit the results so that only matches in a given range of lines

are displayed.
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CH A P T E R SU M M A R Y
Inheritance lets us write new classes that share behavior with their base class(es)
but override or add to that behavior as needed. Dynamic binding lets us ignore
type differences by choosing, at run time, which version of a function to run based
on an object’s dynamic type. The combination of inheritance and dynamic binding
lets us write type-independent, programs that have type-specific behavior.

In C++, dynamic binding applies only to functions declared as virtual and
called through a reference or pointer.

A derived-class object contains a subobject corresponding to each of its base
classes. Because every derived object contains a base part, we can convert a ref-
erence or pointer to a derived-class type to a reference or pointer to an accessible
base class.

Inherited objects are constructed, copied, moved, and assigned by construct-
ing, copying, moving, and assigning the base part(s) of the object before handling
the derived part. Destructors execute in the opposite order; the derived type is
destroyed first, followed by destructors for the base-class subobjects. Base classes
usually should define a virtual destructor even if the class otherwise has no need
for a destructor. The destructor must be virtual if a pointer to a base is ever deleted
when it actually addresses a derived-class object.

A derived class specifies a protection level for each of its base class(es). Mem-
bers of a public base are part of the interface of the derived class; members of
a private base are inaccessible; members of a protected base are accessible to
classes that derive from the derived class but not to users of the derived class.

DEFINED TERMS

abstract base class Class that has one or
more pure virtual functions. We cannot cre-
ate objects of an abstract base-class type.

accessible Base class member that can be
used through a derived object. Accessibil-
ity depends on the access specifier used in
derivation list of the derived class and the
access level of the member in the base class.
For example, a public member of a class
that is inherited via public inheritance is
accessible to users of the derived class. A
public base class member is inacceessible
if the inheritance is private.

base class Class from which other classes
inherit. The members of the base class be-
come members of the derived class.

class derivation list List of base classes,
each of which may have an optional ac-
cess level, from which a derived class inher-

its. If no access specifier is provided, the
inheritance is public if the derived class
is defined with the struct keyword, and
is private if the class is defined with the
class keyword.

derived class Class that inherits from an-
other class. A derived class can override the
virtuals of its base and can define new mem-
bers. A derived-class scope is nested in the
scope of its base class(es); members of the
derived class can use members of the base
class directly.

derived-to-base conversion Implicit con-
version of a derived object to a reference to a
base class, or of a pointer to a derived object
to a pointer to the base type.

direct base class Base class from which a
derived class inherits directly. Direct base
classes are specified in the derivation list of
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the derived class. A direct base class may
itself be a derived class.

dynamic binding Delaying until run time
the selection of which function to run. In
C++, dynamic binding refers to the run-
time choice of which virtual function to run
based on the underlying type of the object
to which a reference or pointer is bound.

dynamic type Type of an object at run
time. The dynamic type of an object to
which a reference refers or to which a
pointer points may differ from the static
type of the reference or pointer. A pointer
or reference to a base-class type can refer to
an to object of derived type. In such cases
the static type is reference (or pointer) to
base, but the dynamic type is reference (or
pointer) to derived.

indirect base class Base class that does
not appear in the derivation list of a derived
class. A class from which the direct base
class inherits, directly or indirectly, is an in-
direct base class to the derived class.

inheritance Programming technique for
defining a new class (known as a derived
class) in terms of an existing class (known
as the base class). The derived class inherits
the members of the base class.

object-oriented programming Method of
writing programs using data abstraction,
inheritance, and dynamic binding.

override Virtual function defined in a de-
rived class that has the same parameter list
as a virtual in a base class overrides the
base-class definition.

polymorphism As used in object-oriented
programming, refers to the ability to ob-
tain type-specific behavior based on the dy-
namic type of a reference or pointer.

private inheritance In private inheri-
tance, the public and protected mem-
bers of the base class are privatemembers
of the derived.

protected access specifier Members de-
fined after the protected keyword may
be accessed by the members and friends of
a derived class. However, these members
are only accessible through derived objects.
protected members are not accessible to
ordinary users of the class.

protected inheritance In protected in-
heritance, the protected and public
members of the base class are protected
members of the derived class.

public inheritance The public interface
of the base class is part of the public in-
terface of the derived class.

pure virtual Virtual function declared in
the class header using = 0 just before the
semicolon. A pure virtual function need
not be (but may be) defined. Classes with
pure virtuals are abstract classes. If a de-
rived class does not define its own version
of an inherited pure virtual, then the de-
rived class is abstract as well.

refactoring Redesigning programs to col-
lect related parts into a single abstraction,
replacing the original code with uses of the
new abstraction. Typically, classes are refac-
tored to move data or function members to
the highest common point in the hierarchy
to avoid code duplication.

run-time binding See dynamic binding.

sliced down What happens when an ob-
ject of derived type is used to initialize or
assign an object of the base type. The de-
rived portion of the object is “sliced down,”
leaving only the base portion, which is as-
signed to the base.

static type Type with which a variable is
defined or that an expression yields. Static
type is known at compile time.

virtual function Member function that de-
fines type-specific behavior. Calls to a vir-
tual made through a reference or pointer are
resolved at run time, based on the type of
the object to which the reference or pointer
is bound.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

C H A P T E R 16
T E M P L A T E S A N D G E N E R I C

P R O G R A M M I N G

CONTENTS

Section 16.1 Defining a Template . . . . . . . . . . . . . 652
Section 16.2 Template Argument Deduction . . . . . . . 678
Section 16.3 Overloading and Templates . . . . . . . . . 694
Section 16.4 Variadic Templates . . . . . . . . . . . . . . 699
Section 16.5 Template Specializations . . . . . . . . . . 706
Chapter Summary . . . . . . . . . . . . . . . . . . . . . . 713
Defined Terms . . . . . . . . . . . . . . . . . . . . . . . . . 713

Both object-oriented programming (OOP) and generic programming
deal with types that are not known at the time the program is written.
The distinction between the two is that OOP deals with types that are
not known until run time, whereas in generic programming the types
become known during compilation.

The containers, iterators, and algorithms described in Part II are
all examples of generic programming. When we write a generic pro-
gram, we write the code in a way that is independent of any partic-
ular type. When we use a generic program, we supply the type(s) or
value(s) on which that instance of the program will operate.

For example, the library provides a single, generic definition of
each container, such as vector. We can use that generic definition to
define many different types of vectors, each of which differs from
the others as to the type of elements the vector contains.

Templates are the foundation of generic programming. We can
use and have used templates without understanding how they are
defined. In this chapter we’ll see how to define our own templates.
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Templates are the foundation for generic programming in C++. A template is a
blueprint or formula for creating classes or functions. When we use a generic type,
such as vector, or a generic function, such as find, we supply the information
needed to transform that blueprint into a specific class or function. That transfor-
mation happens during compilation. In Chapter 3 and Part II we learned how to
use templates. In this chapter we’ll learn how to define them.

16.1 Defining a Template
Imagine that we want to write a function to compare two values and indicate
whether the first is less than, equal to, or greater than the second. In practice,
we’d want to define several such functions, each of which will compare values of
a given type. Our first attempt might be to define several overloaded functions:

// returns 0 if the values are equal, -1 if v1 is smaller, 1 if v2 is smaller
int compare(const string &v1, const string &v2)
{

if (v1 < v2) return -1;
if (v2 < v1) return 1;
return 0;

}

int compare(const double &v1, const double &v2)
{

if (v1 < v2) return -1;
if (v2 < v1) return 1;
return 0;

}

These functions are nearly identical: The only difference between them is the type
of their parameters. The function body is the same in each function.

Having to repeat the body of the function for each type that we compare is
tedious and error-prone. More importantly, we need to know when we write the
program all the types that we might ever want to compare. This strategy cannot
work if we want to be able to use the function on types that our users might supply.

16.1.1 Function Templates
Rather than defining a new function for each type, we can define a function tem-
plate. A function template is a formula from which we can generate type-specific
versions of that function. The template version of compare looks like

template <typename T>
int compare(const T &v1, const T &v2)
{

if (v1 < v2) return -1;
if (v2 < v1) return 1;
return 0;

}
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A template definition starts with the keyword template followed by a template
parameter list, which is a comma-separated list of one or more template parame-
ters bracketed by the less-than (<) and greater-than (>) tokens.

In a template definition, the template parameter list cannot be empty.

The template parameter list acts much like a function parameter list. A function
parameter list defines local variable(s) of a specified type but does not say how to
initialize them. At run time, arguments are supplied that initialize the parameters.

Analogously, template parameters represent types or values used in the defini-
tion of a class or function. When we use a template, we specify—either implicitly
or explicitly—template argument(s) to bind to the template parameter(s).

Our compare function declares one type parameter named T. Inside compare,
we use the name T to refer to a type. Which actual type T represents is determined
at compile time based on how compare is used.

Instantiating a Function Template

When we call a function template, the compiler (ordinarily) uses the arguments of
the call to deduce the template argument(s) for us. That is, when we call compare,
the compiler uses the type of the arguments to determine what type to bind to the
template parameter T. For example, in this call

cout << compare(1, 0) << endl; // T is int

the arguments have type int. The compiler will deduce int as the template ar-
gument and will bind that argument to the template parameter T.

The compiler uses the deduced template parameter(s) to instantiate a specific
version of the function for us. When the compiler instantiates a template, it creates
a new “instance” of the template using the actual template argument(s) in place of
the corresponding template parameter(s). For example, given the calls

// instantiates int compare(const int&, const int&)
cout << compare(1, 0) << endl; // T is int

// instantiates int compare(const vector<int>&, const vector<int>&)
vector<int> vec1{1, 2, 3}, vec2{4, 5, 6};
cout << compare(vec1, vec2) << endl; // T is vector<int>

the compiler will instantiate two different versions of compare. For the first call,
the compiler will write and compile a version of comparewith T replaced by int:

int compare(const int &v1, const int &v2)
{

if (v1 < v2) return -1;
if (v2 < v1) return 1;
return 0;

}

For the second call, it will generate a version of compare with T replaced by
vector<int>. These compiler-generated functions are generally referred to as
an instantiation of the template.
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Template Type Parameters

Our compare function has one template type parameter. In general, we can use
a type parameter as a type specifier in the same way that we use a built-in or
class type specifier. In particular, a type parameter can be used to name the return
type or a function parameter type, and for variable declarations or casts inside the
function body:

// ok: same type used for the return type and parameter
template <typename T> T foo(T* p)
{

T tmp = *p; // tmp will have the type to which p points
// . . .
return tmp;

}

Each type parameter must be preceded by the keyword class or typename:

// error: must precede U with either typename or class
template <typename T, U> T calc(const T&, const U&);

These keywords have the same meaning and can be used interchangeably inside a
template parameter list. A template parameter list can use both keywords:

// ok: no distinction between typename and class in a template parameter list
template <typename T, class U> calc (const T&, const U&);

It may seem more intuitive to use the keyword typename rather than class
to designate a template type parameter. After all, we can use built-in (nonclass)
types as a template type argument. Moreover, typename more clearly indicates
that the name that follows is a type name. However, typename was added to C++
after templates were already in widespread use; some programmers continue to
use class exclusively.

Nontype Template Parameters

In addition to defining type parameters, we can define templates that take nontype
parameters. A nontype parameter represents a value rather than a type. Nontype
parameters are specified by using a specific type name instead of the class or
typename keyword.

When the template is instantiated, nontype parameters are replaced with a
value supplied by the user or deduced by the compiler. These values must be
constant expressions (§ 2.4.4, p. 65), which allows the compiler to instantiate the
templates during compile time.

As an example, we can write a version of compare that will handle string lit-
erals. Such literals are arrays of const char. Because we cannot copy an array,
we’ll define our parameters as references to an array (§ 6.2.4, p. 217). Because we’d
like to be able to compare literals of different lengths, we’ll give our template two
nontype parameters. The first template parameter will represent the size of the
first array, and the second parameter will represent the size of the second array:
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template<unsigned N, unsigned M>
int compare(const char (&p1)[N], const char (&p2)[M])
{

return strcmp(p1, p2);
}

When we call this version of compare:

compare("hi", "mom")

the compiler will use the size of the literals to instantiate a version of the template
with the sizes substituted for N and M. Remembering that the compiler inserts a null
terminator at the end of a string literal (§ 2.1.3, p. 39), the compiler will instantiate

int compare(const char (&p1)[3], const char (&p2)[4])

A nontype parameter may be an integral type, or a pointer or (lvalue) reference
to an object or to a function type. An argument bound to a nontype integral pa-
rameter must be a constant expression. Arguments bound to a pointer or reference
nontype parameter must have static lifetime (Chapter 12, p. 450). We may not use
an ordinary (nonstatic) local object or a dynamic object as a template argument
for reference or pointer nontype template parameters. A pointer parameter can
also be instantiated by nullptr or a zero-valued constant expression.

A template nontype parameter is a constant value inside the template defini-
tion. A nontype parameter can be used when constant expressions are required,
for example, to specify the size of an array.

Template arguments used for nontype template parameters must be
constant expressions.

inline and constexpr Function Templates

A function template can be declared inline or constexpr in the same ways as
nontemplate functions. The inline or constexpr specifier follows the template
parameter list and precedes the return type:

// ok: inline specifier follows the template parameter list
template <typename T> inline T min(const T&, const T&);

// error: incorrect placement of the inline specifier
inline template <typename T> T min(const T&, const T&);

Writing Type-Independent Code

Simple though it is, our initial compare function illustrates two important princi-
ples for writing generic code:

• The function parameters in the template are references to const.

• The tests in the body use only < comparisons.
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By making the function parameters references to const, we ensure that our func-
tion can be used on types that cannot be copied. Most types—including the built-
in types and, except for unique_ptr and the IO types, all the library types we’ve
used—do allow copying. However, there can be class types that do not allow copy-
ing. By making our parameters references to const, we ensure that such types can
be used with our compare function. Moreover, if compare is called with large ob-
jects, then this design will also make the function run faster.

You might think it would be more natural for the comparisons to be done using
both the < and > operators:

// expected comparison
if (v1 < v2) return -1;
if (v1 > v2) return 1;
return 0;

However, by writing the code using only the < operator, we reduce the require-
ments on types that can be used with our compare function. Those types must
support <, but they need not also support >.

In fact, if we were truly concerned about type independence and portability,
we probably should have defined our function using the less (§ 14.8.2, p. 575):

// version of compare that will be correct even if used on pointers; see § 14.8.2 (p. 575)
template <typename T> int compare(const T &v1, const T &v2)
{

if (less<T>()(v1, v2)) return -1;
if (less<T>()(v2, v1)) return 1;
return 0;

}

The problem with our original version is that if a user calls it with two pointers
and those pointers do not point to the same array, then our code is undefined.

Template programs should try to minimize the number of require-
ments placed on the argument types.

Template Compilation

When the compiler sees the definition of a template, it does not generate code. It
generates code only when we instantiate a specific instance of the template. The
fact that code is generated only when we use a template (and not when we define
it) affects how we organize our source code and when errors are detected.

Ordinarily, when we call a function, the compiler needs to see only a declara-
tion for the function. Similarly, when we use objects of class type, the class defi-
nition must be available, but the definitions of the member functions need not be
present. As a result, we put class definitions and function declarations in header
files and definitions of ordinary and class-member functions in source files.

Templates are different: To generate an instantiation, the compiler needs to
have the code that defines a function template or class template member function.
As a result, unlike nontemplate code, headers for templates typically include defi-
nitions as well as declarations
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Definitions of function templates and member functions of class tem-
plates are ordinarily put into header files.

KEY CONCEPT: TEMPLATES AND HEADERS

Templates contain two kinds of names:

• Those that do not depend on a template parameter

• Those that do depend on a template parameter

It is up to the provider of a template to ensure that all names that do not depend on
a template parameter are visible when the template is used. Moreover, the template
provider must ensure that the definition of the template, including the definitions of
the members of a class template, are visible when the template is instantiated.

It is up to users of a template to ensure that declarations for all functions, types,
and operators associated with the types used to instantiate the template are visible.

Both of these requirements are easily satisfied by well-structured programs that
make appropriate use of headers. Authors of templates should provide a header that
contains the template definition along with declarations for all the names used in the
class template or in the definitions of its members. Users of the template must include
the header for the template and for any types used to instantiate that template.

Compilation Errors Are Mostly Reported during Instantiation

The fact that code is not generated until a template is instantiated affects when we
learn about compilation errors in the code inside the template. In general, there
are three stages during which the compiler might flag an error.

The first stage is when we compile the template itself. The compiler generally
can’t find many errors at this stage. The compiler can detect syntax errors—such
as forgetting a semicolon or misspelling a variable name—but not much else.

The second error-detection time is when the compiler sees a use of the template.
At this stage, there is still not much the compiler can check. For a call to a function
template, the compiler typically will check that the number of the arguments is
appropriate. It can also detect whether two arguments that are supposed to have
the same type do so. For a class template, the compiler can check that the right
number of template arguments are provided but not much more.

The third time when errors are detected is during instantiation. It is only then
that type-related errors can be found. Depending on how the compiler manages
instantiation, these errors may be reported at link time.

When we write a template, the code may not be overtly type specific, but tem-
plate code usually makes some assumptions about the types that will be used. For
example, the code inside our original compare function:

if (v1 < v2) return -1; // requires < on objects of type T
if (v2 < v1) return 1; // requires < on objects of type T
return 0; // returns int; not dependent on T
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assumes that the argument type has a < operator. When the compiler processes the
body of this template, it cannot verify whether the conditions in the if statements
are legal. If the arguments passed to compare have a < operation, then the code is
fine, but not otherwise. For example,

Sales_data data1, data2;
cout << compare(data1, data2) << endl; // error: no < on Sales_data

This call instantiates a version of compare with T replaced by Sales_data. The
if conditions attempt to use < on Sales_data objects, but there is no such op-
erator. This instantiation generates a version of the function that will not compile.
However, errors such as this one cannot be detected until the compiler instantiates
the definition of compare on type Sales_data.

It is up to the caller to guarantee that the arguments passed to the tem-
plate support any operations that template uses, and that those opera-
tions behave correctly in the context in which the template uses them.

EXE R C I S E S SE C TI O N 16.1.1

Exercise 16.1: Define instantiation.

Exercise 16.2: Write and test your own versions of the compare functions.

Exercise 16.3: Call your compare function on two Sales_data objects to see how
your compiler handles errors during instantiation.

Exercise 16.4: Write a template that acts like the library find algorithm. The func-
tion will need two template type parameters, one to represent the function’s iterator
parameters and the other for the type of the value. Use your function to find a given
value in a vector<int> and in a list<string>.

Exercise 16.5: Write a template version of the print function from § 6.2.4 (p. 217) that
takes a reference to an array and can handle arrays of any size and any element type.

Exercise 16.6: How do you think the library begin and end functions that take an
array argument work? Define your own versions of these functions.

Exercise 16.7: Write a constexpr template that returns the size of a given array.

Exercise 16.8: In the “Key Concept” box on page 108, we noted that as a matter of
habit C++ programmers prefer using != to using <. Explain the rationale for this habit.

16.1.2 Class Templates
A class template is a blueprint for generating classes. Class templates differ from
function templates in that the compiler cannot deduce the template parameter
type(s) for a class template. Instead, as we’ve seen many times, to use a class
template we must supply additional information inside angle brackets following
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the template’s name (§ 3.3, p. 97). That extra information is the list of template
arguments to use in place of the template parameters.

Defining a Class Template

As an example, we’ll implement a template version of StrBlob (§ 12.1.1, p. 456).
We’ll name our template Blob to indicate that it is no longer specific to strings.
Like StrBlob, our template will provide shared (and checked) access to the ele-
ments it holds. Unlike that class, our template can be used on elements of pretty
much any type. As with the library containers, our users will have to specify the
element type when they use a Blob.

Like function templates, class templates begin with the keyword template
followed by a template parameter list. In the definition of the class template (and
its members), we use the template parameters as stand-ins for types or values that
will be supplied when the template is used:

template <typename T> class Blob {
public:

typedef T value_type;
typedef typename std::vector<T>::size_type size_type;
// constructors
Blob();
Blob(std::initializer_list<T> il);
// number of elements in the Blob
size_type size() const { return data->size(); }
bool empty() const { return data->empty(); }

// add and remove elements
void push_back(const T &t) {data->push_back(t);}
// move version; see § 13.6.3 (p. 548)
void push_back(T &&t) { data->push_back(std::move(t)); }
void pop_back();

// element access
T& back();
T& operator[](size_type i); // defined in § 14.5 (p. 566)

private:
std::shared_ptr<std::vector<T>> data;
// throws msg if data[i] isn’t valid
void check(size_type i, const std::string &msg) const;

};

Our Blob template has one template type parameter, named T. We use the type
parameter anywhere we refer to the element type that the Blob holds. For exam-
ple, we define the return type of the operations that provide access to the elements
in the Blob as T&. When a user instantiates a Blob, these uses of Twill be replaced
by the specified template argument type.

With the exception of the template parameter list, and the use of T instead of
string, this class is the same as the version we defined in § 12.1.1 (p. 456) and
updated in § 12.1.6 (p. 475) and in Chapters 13 and 14.
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Instantiating a Class Template

As we’ve seen many times, when we use a class template, we must supply extra
information. We can now see that that extra information is a list of explicit tem-
plate arguments that are bound to the template’s parameters. The compiler uses
these template arguments to instantiate a specific class from the template.

For example, to define a type from our Blob template, we must provide the
element type:

Blob<int> ia; // empty Blob<int>
Blob<int> ia2 = {0,1,2,3,4}; // Blob<int> with five elements

Both ia and ia2 use the same type-specific version of Blob (i.e., Blob<int>).
From these definitions, the compiler will instantiate a class that is equivalent to

template <> class Blob<int> {
typedef typename std::vector<int>::size_type size_type;
Blob();
Blob(std::initializer_list<int> il);
// . . .
int& operator[](size_type i);

private:
std::shared_ptr<std::vector<int>> data;
void check(size_type i, const std::string &msg) const;

};

When the compiler instantiates a class from our Blob template, it rewrites the
Blob template, replacing each instance of the template parameter T by the given
template argument, which in this case is int.

The compiler generates a different class for each element type we specify:

// these definitions instantiate two distinct Blob types
Blob<string> names; // Blob that holds strings
Blob<double> prices;// different element type

These definitions would trigger instantiations of two distinct classes: The defini-
tion of names creates a Blob class in which each occurrence of T is replaced by
string. The definition of prices generates a Blob with T replaced by double.

Each instantiation of a class template constitutes an independent class.
The type Blob<string> has no relationship to, or any special access
to, the members of any other Blob type.

References to a Template Type in the Scope of the Template

In order to read template class code, it can be helpful to remember that the name of
a class template is not the name of a type (§ 3.3, p. 97). A class template is used to
instantiate a type, and an instantiated type always includes template argument(s).

What can be confusing is that code in a class template generally doesn’t use the
name of an actual type (or value) as a template argument. Instead, we often use
the template’s own parameter(s) as the template argument(s). For example, our
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datamember uses two templates, vector and shared_ptr. Whenever we use a
template, we must supply template arguments. In this case, the template argument
we supply is the same type that is used to instantiate the Blob. Therefore, the
definition of data

std::shared_ptr<std::vector<T>> data;

uses Blob’s type parameter to say that data is the instantiation of shared_ptr
that points to the instantiation of vector that holds objects of type T. When we
instantiate a particular kind of Blob, such as Blob<string>, then data will be

shared_ptr<vector<string>>

If we instantiate Blob<int>, then data will be shared_ptr<vector<int>>,
and so on.

Member Functions of Class Templates

As with any class, we can define the member functions of a class template either
inside or outside of the class body. As with any other class, members defined inside
the class body are implicitly inline.

A class template member function is itself an ordinary function. However, each
instantiation of the class template has its own version of each member. As a result,
a member function of a class template has the same template parameters as the
class itself. Therefore, a member function defined outside the class template body
starts with the keyword template followed by the class’ template parameter list.

As usual, when we define a member outside its class, we must say to which
class the member belongs. Also as usual, the name of a class generated from a
template includes its template arguments. When we define a member, the template
argument(s) are the same as the template parameter(s). That is, for a given member
function of StrBlob that was defined as

ret-type StrBlob::member-name(parm-list)

the corresponding Blob member will look like

template <typename T>
ret-type Blob<T>::member-name(parm-list)

The check and Element Access Members

We’ll start by defining the check member, which verifies a given index:

template <typename T>
void Blob<T>::check(size_type i, const std::string &msg) const
{

if (i >= data->size())
throw std::out_of_range(msg);

}

Aside from the differences in the class name and the use of the template parameter
list, this function is identical to the original StrBlob member.

The subscript operator and back function use the template parameter to spec-
ify the return type but are otherwise unchanged:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

662 Templates and Generic Programming

template <typename T>
T& Blob<T>::back()
{

check(0, "back on empty Blob");
return data->back();

}
template <typename T>
T& Blob<T>::operator[](size_type i)
{

// if i is too big, check will throw, preventing access to a nonexistent element
check(i, "subscript out of range");
return (*data)[i];

}

In our original StrBlob class these operators returned string&. The template
versions will return a reference to whatever type is used to instantiate Blob.

The pop_back function is nearly identical to our original StrBlob member:

template <typename T> void Blob<T>::pop_back()
{

check(0, "pop_back on empty Blob");
data->pop_back();

}

The subscript operator and back members are overloaded on const. We leave
the definition of these members, and of the front members, as an exercise.

Blob Constructors

As with any other member defined outside a class template, a constructor starts by
declaring the template parameters for the class template of which it is a member:

template <typename T>
Blob<T>::Blob(): data(std::make_shared<std::vector<T>>()) { }

Here we are defining the member named Blob in the scope of Blob<T>. Like our
StrBlob default constructor (§ 12.1.1, p. 456), this constructor allocates an empty
vector and stores the pointer to that vector in data. As we’ve seen, we use the
class’ own type parameter as the template argument of the vector we allocate.

Similarly, the constructor that takes an initializer_list uses its type pa-
rameter T as the element type for its initializer_list parameter:

template <typename T>
Blob<T>::Blob(std::initializer_list<T> il):

data(std::make_shared<std::vector<T>>(il)) { }

Like the default constructor, this constructor allocates a new vector. In this case,
we initialize that vector from the parameter, il.

To use this constructor, we must pass an initializer_list in which the
elements are compatible with the element type of the Blob:

Blob<string> articles = {"a", "an", "the"};

The parameter in this constructor has type initializer_list<string>. Each
string literal in the list is implicitly converted to string.
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Instantiation of Class-Template Member Functions

By default, a member function of a class template is instantiated only if the program
uses that member function. For example, this code

// instantiates Blob<int> and the initializer_list<int> constructor
Blob<int> squares = {0,1,2,3,4,5,6,7,8,9};
// instantiates Blob<int>::size() const
for (size_t i = 0; i != squares.size(); ++i)

squares[i] = i*i; // instantiates Blob<int>::operator[](size_t)

instantiates the Blob<int> class and three of its member functions: operator[],
size, and the initializer_list<int> constructor.

If a member function isn’t used, it is not instantiated. The fact that members
are instantiated only if we use them lets us instantiate a class with a type that may
not meet the requirements for some of the template’s operations (§ 9.2, p. 329).

By default, a member of an instantiated class template is instantiated
only if the member is used.

Simplifying Use of a Template Class Name inside Class Code

There is one exception to the rule that we must supply template arguments when
we use a class template type. Inside the scope of the class template itself, we may
use the name of the template without arguments:

// BlobPtr throws an exception on attempts to access a nonexistent element
template <typename T> class BlobPtr
public:

BlobPtr(): curr(0) { }
BlobPtr(Blob<T> &a, size_t sz = 0):

wptr(a.data), curr(sz) { }
T& operator*() const
{ auto p = check(curr, "dereference past end");

return (*p)[curr]; // (*p) is the vector to which this object points
}
// increment and decrement
BlobPtr& operator++(); // prefix operators
BlobPtr& operator--();

private:
// check returns a shared_ptr to the vector if the check succeeds
std::shared_ptr<std::vector<T>>

check(std::size_t, const std::string&) const;

// store a weak_ptr, which means the underlying vector might be destroyed
std::weak_ptr<std::vector<T>> wptr;
std::size_t curr; // current position within the array

};

Careful readers will have noted that the prefix increment and decrement members
of BlobPtr return BlobPtr&, not BlobPtr<T>&. When we are inside the scope
of a class template, the compiler treats references to the template itself as if we had
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supplied template arguments matching the template’s own parameters. That is, it
is as if we had written:

BlobPtr<T>& operator++();
BlobPtr<T>& operator--();

Using a Class Template Name outside the Class Template Body

When we define members outside the body of a class template, we must remember
that we are not in the scope of the class until the class name is seen (§ 7.4, p. 282):

// postfix: increment/decrement the object but return the unchanged value
template <typename T>
BlobPtr<T> BlobPtr<T>::operator++(int)
{

// no check needed here; the call to prefix increment will do the check
BlobPtr ret = *this; // save the current value
++*this; // advance one element; prefix ++ checks the increment
return ret; // return the saved state

}

Because the return type appears outside the scope of the class, we must specify
that the return type returns a BlobPtr instantiated with the same type as the
class. Inside the function body, we are in the scope of the class so do not need
to repeat the template argument when we define ret. When we do not supply
template arguments, the compiler assumes that we are using the same type as the
member’s instantiation. Hence, the definition of ret is as if we had written:

BlobPtr<T> ret = *this;

Inside the scope of a class template, we may refer to the template with-
out specifying template argument(s).

Class Templates and Friends

When a class contains a friend declaration (§ 7.2.1, p. 269), the class and the friend
can independently be templates or not. A class template that has a nontemplate
friend grants that friend access to all the instantiations of the template. When the
friend is itself a template, the class granting friendship controls whether friendship
includes all instantiations of the template or only specific instantiation(s).

One-to-One Friendship

The most common form of friendship from a class template to another template
(class or function) establishes friendship between corresponding instantiations of
the class and its friend. For example, our Blob class should declare the BlobPtr
class and a template version of the Blob equality operator (originally defined for
StrBlob in the exercises in § 14.3.1 (p. 562)) as friends.

In order to refer to a specific instantiation of a template (class or function) we
must first declare the template itself. A template declaration includes the tem-
plate’s template parameter list:
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// forward declarations needed for friend declarations in Blob
template <typename> class BlobPtr;
template <typename> class Blob; // needed for parameters in operator==
template <typename T>

bool operator==(const Blob<T>&, const Blob<T>&);

template <typename T> class Blob {
// each instantiation of Blob grants access to the version of
// BlobPtr and the equality operator instantiated with the same type
friend class BlobPtr<T>;
friend bool operator==<T>

(const Blob<T>&, const Blob<T>&);
// other members as in § 12.1.1 (p. 456)

};

We start by declaring that Blob, BlobPtr, and operator== are templates. These
declarations are needed for the parameter declaration in the operator== function
and the friend declarations in Blob.

The friend declarations use Blob’s template parameter as their own template
argument. Thus, the friendship is restricted to those instantiations of BlobPtr
and the equality operator that are instantiated with the same type:

Blob<char> ca; // BlobPtr<char> and operator==<char> are friends
Blob<int> ia; // BlobPtr<int> and operator==<int> are friends

The members of BlobPtr<char> may access the nonpublic parts of ca (or
any other Blob<char> object), but ca has no special access to ia (or any other
Blob<int>) or to any other instantiation of Blob.

General and Specific Template Friendship

A class can also make every instantiation of another template its friend, or it may
limit friendship to a specific instantiation:

// forward declaration necessary to befriend a specific instantiation of a template
template <typename T> class Pal;
class C { // C is an ordinary, nontemplate class

friend class Pal<C>; // Pal instantiated with class C is a friend to C
// all instances of Pal2 are friends to C;
// no forward declaration required when we befriend all instantiations
template <typename T> friend class Pal2;

};

template <typename T> class C2 { // C2 is itself a class template
// each instantiation of C2 has the same instance of Pal as a friend
friend class Pal<T>; // a template declaration for Pal must be in scope
// all instances of Pal2 are friends of each instance of C2, prior declaration needed
template <typename X> friend class Pal2;
// Pal3 is a nontemplate class that is a friend of every instance of C2
friend class Pal3; // prior declaration for Pal3 not needed

};

To allow all instantiations as friends, the friend declaration must use template pa-
rameter(s) that differ from those used by the class itself.
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Befriending the Template’s Own Type Parameter

Under the new standard, we can make a template type parameter a friend:

template <typename Type> class Bar {
friend Type; // grants access to the type used to instantiate Bar

// . . .
};

Here we say that whatever type is used to instantiate Bar is a friend. Thus, for
some type named Foo, Foowould be a friend of Bar<Foo>, Sales_data a friend
of Bar<Sales_data>, and so on.

It is worth noting that even though a friend ordinarily must be a class or a
function, it is okay for Bar to be instantiated with a built-in type. Such friendship
is allowed so that we can instantiate classes such as Bar with built-in types.

Template Type Aliases

An instantiation of a class template defines a class type, and as with any other class
type, we can define a typedef (§ 2.5.1, p. 67) that refers to that instantiated class:

typedef Blob<string> StrBlob;

This typedef will let us run the code we wrote in § 12.1.1 (p. 456) using our
template version of Blob instantiated with string. Because a template is not a
type, we cannot define a typedef that refers to a template. That is, there is no
way to define a typedef that refers to Blob<T>.

However, the new standard lets us define a type alias for a class template:

template<typename T> using twin = pair<T, T>;
twin<string> authors; // authors is a pair<string, string>

Here we’ve defined twin as a synonym for pairs in which the members have the
same type. Users of twin need to specify that type only once.

A template type alias is a synonym for a family of classes:

twin<int> win_loss; // win_loss is a pair<int, int>
twin<double> area; // area is a pair<double, double>

Just as we do when we use a class template, when we use twin, we specify which
particular kind of twin we want.

When we define a template type alias, we can fix one or more of the template
parameters:

template <typename T> using partNo = pair<T, unsigned>;
partNo<string> books; // books is a pair<string, unsigned>
partNo<Vehicle> cars; // cars is a pair<Vehicle, unsigned>
partNo<Student> kids; // kids is a pair<Student, unsigned>

Here we’ve defined partNo as a synonym for the family of types that are pairs
in which the secondmember is an unsigned. Users of partNo specify a type for
the first member of the pair but have no choice about second.
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static Members of Class Templates

Like any other class, a class template can declare static members (§ 7.6, p. 300):

template <typename T> class Foo {
public:

static std::size_t count() { return ctr; }
// other interface members

private:
static std::size_t ctr;
// other implementation members

};

Here Foo is a class template that has a public static member function named
count and a private static data member named ctr. Each instantiation of
Foo has its own instance of the static members. That is, for any given type X,
there is one Foo<X>::ctr and one Foo<X>::count member. All objects of type
Foo<X> share the same ctr object and count function. For example,

// instantiates static members Foo<string>::ctr and Foo<string>::count
Foo<string> fs;

// all three objects share the same Foo<int>::ctr and Foo<int>::count members
Foo<int> fi, fi2, fi3;

As with any other static data member, there must be exactly one definition of
each static data member of a template class. However, there is a distinct object
for each instantiation of a class template. As a result, we define a static data
member as a template similarly to how we define the member functions of that
template:

template <typename T>
size_t Foo<T>::ctr = 0; // define and initialize ctr

As with any other member of a class template, we start by defining the template
parameter list, followed by the type of the member we are defining and the mem-
ber’s name. As usual, a member’s name includes the member’s class name, which
for a class generated from a template includes its template arguments. Thus, when
Foo is instantiated for a particular template argument type, a separate ctr will be
instantiated for that class type and initialized to 0.

As with static members of nontemplate classes, we can access a static mem-
ber of a class template through an object of the class type or by using the scope op-
erator to access the member directly. Of course, to use a static member through
the class, we must refer to a specific instantiation:

Foo<int> fi; // instantiates Foo<int> class
// and the static data member ctr

auto ct = Foo<int>::count(); // instantiates Foo<int>::count
ct = fi.count(); // uses Foo<int>::count
ct = Foo::count(); // error: which template instantiation?

Like any other member function, a static member function is instantiated only
if it is used in a program.
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EXE R C I S E S SE C TI O N 16.1.2

Exercise 16.9: What is a function template? What is a class template?

Exercise 16.10: What happens when a class template is instantiated?

Exercise 16.11: The following definition of List is incorrect. How would you fix it?

template <typename elemType> class ListItem;
template <typename elemType> class List {
public:

List<elemType>();
List<elemType>(const List<elemType> &);
List<elemType>& operator=(const List<elemType> &);
~List();
void insert(ListItem *ptr, elemType value);

private:
ListItem *front, *end;

};

Exercise 16.12: Write your own version of the Blob and BlobPtr templates. includ-
ing the various const members that were not shown in the text.

Exercise 16.13: Explain which kind of friendship you chose for the equality and rela-
tional operators for BlobPtr.

Exercise 16.14: Write a Screen class template that uses nontype parameters to define
the height and width of the Screen.

Exercise 16.15: Implement input and output operators for your Screen template.
Which, if any, friends are necessary in class Screen to make the input and output
operators work? Explain why each friend declaration, if any, was needed.

Exercise 16.16: Rewrite the StrVec class (§ 13.5, p. 526) as a template named Vec.

16.1.3 Template Parameters
Like the names of function parameters, a template parameter name has no intrinsic
meaning. We ordinarily name type parameters T, but we can use any name:

template <typename Foo> Foo calc(const Foo& a, const Foo& b)
{

Foo tmp = a; // tmp has the same type as the parameters and return type
// . . .
return tmp; // return type and parameters have the same type

}

Template Parameters and Scope

Template parameters follow normal scoping rules. The name of a template pa-
rameter can be used after it has been declared and until the end of the template
declaration or definition. As with any other name, a template parameter hides any
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declaration of that name in an outer scope. Unlike most other contexts, however, a
name used as a template parameter may not be reused within the template:

typedef double A;
template <typename A, typename B> void f(A a, B b)
{

A tmp = a; // tmp has same type as the template parameter A, not double
double B; // error: redeclares template parameter B

}

Normal name hiding says that the typedef of A is hidden by the type parameter
named A. Thus, tmp is not a double; it has whatever type gets bound to the tem-
plate parameter A when calc is used. Because we cannot reuse names of template
parameters, the declaration of the variable named B is an error.

Because a parameter name cannot be reused, the name of a template parameter
can appear only once with in a given template parameter list:

// error: illegal reuse of template parameter name V
template <typename V, typename V> // . . .

Template Declarations

A template declaration must include the template parameters :

// declares but does not define compare and Blob
template <typename T> int compare(const T&, const T&);
template <typename T> class Blob;

As with function parameters, the names of a template parameter need not be the
same across the declaration(s) and the definition of the same template:

// all three uses of calc refer to the same function template
template <typename T> T calc(const T&, const T&); // declaration
template <typename U> U calc(const U&, const U&); // declaration

// definition of the template
template <typename Type>
Type calc(const Type& a, const Type& b) { /* . . . */ }

Of course, every declaration and the definition of a given template must have the
same number and kind (i.e., type or nontype) of parameters.

For reasons we’ll explain in § 16.3 (p. 698), declarations for all the tem-
plates needed by a given file usually should appear together at the be-
ginning of a file before any code that uses those names.

Using Class Members That Are Types

Recall that we use the scope operator (::) to access both static members and
type members (§ 7.4, p. 282, and § 7.6, p. 301). In ordinary (nontemplate) code, the
compiler has access to the class defintion. As a result, it knows whether a name
accessed through the scope operator is a type or a static member. For example,
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when we write string::size_type, the compiler has the definition of string
and can see that size_type is a type.

Assuming T is a template type parameter, When the compiler sees code such as
T::mem it won’t know until instantiation time whether mem is a type or a static
data member. However, in order to process the template, the compiler must know
whether a name represents a type. For example, assuming T is the name of a type
parameter, when the compiler sees a statement of the following form:

T::size_type * p;

it needs to know whether we’re defining a variable named p or are multiplying a
static data member named size_type by a variable named p.

By default, the language assumes that a name accessed through the scope op-
erator is not a type. As a result, if we want to use a type member of a template type
parameter, we must explicitly tell the compiler that the name is a type. We do so
by using the keyword typename:

template <typename T>
typename T::value_type top(const T& c)
{

if (!c.empty())
return c.back();

else
return typename T::value_type();

}

Our top function expects a container as its argument and uses typename to spec-
ify its return type and to generate a value initialized element (§ 7.5.3, p. 293) to
return if c has no elements.

When we want to inform the compiler that a name represents a type, we
must use the keyword typename, not class.

Default Template Arguments

Just as we can supply default arguments to function parameters (§ 6.5.1, p. 236),
we can also supply default template arguments. Under the new standard, we can
supply default arguments for both function and class templates. Earlier versions
of the language, allowed default arguments only with class templates.

As an example, we’ll rewrite compare to use the library less function-object
template (§ 14.8.2, p. 574) by default:

// compare has a default template argument, less<T>
// and a default function argument, F()
template <typename T, typename F = less<T>>
int compare(const T &v1, const T &v2, F f = F())
{

if (f(v1, v2)) return -1;
if (f(v2, v1)) return 1;
return 0;

}
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Here we’ve given our template a second type parameter, named F, that represents
the type of a callable object (§ 10.3.2, p. 388) and defined a new function parameter,
f, that will be bound to a callable object.

We’ve also provided defaults for this template parameter and its correspond-
ing function parameter. The default template argument specifies that compare
will use the library less function-object class, instantiated with the same type pa-
rameter as compare. The default function argument says that f will be a default-
initialized object of type F.

When users call this version of compare, they may supply their own compari-
son operation but are not required to do so:

bool i = compare(0, 42); // uses less; i is -1
// result depends on the isbns in item1 and item2
Sales_data item1(cin), item2(cin);
bool j = compare(item1, item2, compareIsbn);

The first call uses the default function argument, which is a default-initialized ob-
ject of type less<T>. In this call, T is int so that object has type less<int>. This
instantiation of compare will use less<int> to do its comparisons.

In the second call, we pass compareIsbn (§ 11.2.2, p. 425) and two objects of
type Sales_data. When compare is called with three arguments, the type of
the third argument must be a callable object that returns a type that is convert-
ible to bool and takes arguments of a type compatible with the types of the first
two arguments. As usual, the types of the template parameters are deduced from
their corresponding function arguments. In this call, the type of T is deduced as
Sales_data and F is deduced as the type of compareIsbn.

As with function default arguments, a template parameter may have a default
argument only if all of the parameters to its right also have default arguments.

Template Default Arguments and Class Templates

Whenever we use a class template, we must always follow the template’s name
with brackets. The brackets indicate that a class must be instantiated from a tem-
plate. In particular, if a class template provides default arguments for all of its
template parameters, and we want to use those defaults, we must put an empty
bracket pair following the template’s name:

template <class T = int> class Numbers { // by default T is int
public:

Numbers(T v = 0): val(v) { }
// various operations on numbers

private:
T val;

};

Numbers<long double> lots_of_precision;
Numbers<> average_precision; // empty <> says we want the default type

Here we instantiate two versions of Numbers: average_precision instantiates
Numbers with T replaced by int; lots_of_precision instantiates Numbers
with T replaced by long double.
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EXE R C I S E S SE C TI O N 16.1.3

Exercise 16.17: What, if any, are the differences between a type parameter that is de-
clared as a typename and one that is declared as a class? When must typename be
used?

Exercise 16.18: Explain each of the following function template declarations and iden-
tify whether any are illegal. Correct each error that you find.

(a) template <typename T, U, typename V> void f1(T, U, V);

(b) template <typename T> T f2(int &T);

(c) inline template <typename T> T foo(T, unsigned int*);

(d) template <typename T> f4(T, T);

(e) typedef char Ctype;
template <typename Ctype> Ctype f5(Ctype a);

Exercise 16.19: Write a function that takes a reference to a container and prints the
elements in that container. Use the container’s size_type and size members to
control the loop that prints the elements.

Exercise 16.20: Rewrite the function from the previous exercise to use iterators re-
turned from begin and end to control the loop.

16.1.4 Member Templates
A class—either an ordinary class or a class template—may have a member func-
tion that is itself a template. Such members are referred to as member templates.
Member templates may not be virtual.

Member Templates of Ordianary (Nontemplate) Classes

As an example of an ordinary class that has a member template, we’ll define a class
that is similar to the default deleter type used by unique_ptr (§ 12.1.5, p. 471).
Like the default deleter, our class will have an overloaded function-call operator
(§ 14.8, p. 571) that will take a pointer and execute delete on the given pointer.
Unlike the default deleter, our class will also print a message whenever the deleter
is executed. Because we want to use our deleter with any type, we’ll make the call
operator a template:

// function-object class that calls delete on a given pointer
class DebugDelete {
public:

DebugDelete(std::ostream &s = std::cerr): os(s) { }
// as with any function template, the type of T is deduced by the compiler
template <typename T> void operator()(T *p) const

{ os << "deleting unique_ptr" << std::endl; delete p; }
private:

std::ostream &os;
};
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Like any other template, a member template starts with its own template param-
eter list. Each DebugDelete object has an ostream member on which to write,
and a member function that is itself a template. We can use this class as a replace-
ment for delete:

double* p = new double;
DebugDelete d; // an object that can act like a delete expression
d(p); // calls DebugDelete::operator()(double*), which deletes p

int* ip = new int;
// calls operator()(int*) on a temporary DebugDelete object
DebugDelete()(ip);

Because calling a DebugDelete object deletes its given pointer, we can also
use DebugDelete as the deleter of a unique_ptr. To override the deleter of
a unique_ptr, we supply the type of the deleter inside brackets and supply an
object of the deleter type to the constructor (§ 12.1.5, p. 471):

// destroying the the object to which p points
// instantiates DebugDelete::operator()<int>(int *)
unique_ptr<int, DebugDelete> p(new int, DebugDelete());

// destroying the the object to which sp points
// instantiates DebugDelete::operator()<string>(string*)
unique_ptr<string, DebugDelete> sp(new string, DebugDelete());

Here, we’ve said that p’s deleter will have type DebugDelete, and we have sup-
plied an unnamed object of that type in p’s constructor.

The unique_ptr destructor calls the DebugDelete’s call operator. Thus,
whenever unique_ptr’s destructor is instantiated, DebugDelete’s call operator
will also be instantiated: Thus, the definitions above will instantiate:

// sample instantiations for member templates of DebugDelete
void DebugDelete::operator()(int *p) const { delete p; }
void DebugDelete::operator()(string *p) const { delete p; }

Member Templates of Class Templates

We can also define a member template of a class template. In this case, both the
class and the member have their own, independent, template parameters.

As an example, we’ll give our Blob class a constructor that will take two iter-
ators denoting a range of elements to copy. Because we’d like to support iterators
into varying kinds of sequences, we’ll make this constructor a template:

template <typename T> class Blob {
template <typename It> Blob(It b, It e);
// . . .

};

This constructor has its own template type parameter, It, which it uses for the
type of its two function parameters.

Unlike ordinary function members of class templates, member templates are
function templates. When we define a member template outside the body of a
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class template, we must provide the template parameter list for the class template
and for the function template. The parameter list for the class template comes first,
followed by the member’s own template parameter list:

template <typename T> // type parameter for the class
template <typename It> // type parameter for the constructor

Blob<T>::Blob(It b, It e):
data(std::make_shared<std::vector<T>>(b, e)) { }

Here we are defining a member of a class template that has one template type
parameter, which we have named T. The member itself is a function template that
has a type parameter named It.

Instantiation and Member Templates

To instantiate a member template of a class template, we must supply arguments
for the template parameters for both the class and the function templates. As usual,
argument(s) for the class template parameter(s) are determined by the type of the
object through which we call the member template. Also as usual, the compiler
typically deduces template argument(s) for the member template’s own parame-
ter(s) from the arguments passed in the call (§ 16.1.1, p. 653):

int ia[] = {0,1,2,3,4,5,6,7,8,9};
vector<long> vi = {0,1,2,3,4,5,6,7,8,9};
list<const char*> w = {"now", "is", "the", "time"};

// instantiates the Blob<int> class
// and the Blob<int> constructor that has two int* parameters
Blob<int> a1(begin(ia), end(ia));
// instantiates the Blob<int> constructor that has
// two vector<long>::iterator parameters
Blob<int> a2(vi.begin(), vi.end());
// instantiates the Blob<string> class and the Blob<string>
// constructor that has two (list<const char*>::iterator parameters
Blob<string> a3(w.begin(), w.end());

When we define a1, we explicitly specify that the compiler should instantiate a
version of Blob with the template parameter bound to int. The type parameter
for the constructor’s own parameters will be deduced from the type of begin(ia)
and end(ia). That type is int*. Thus, the definition of a1 instantiates:

Blob<int>::Blob(int*, int*);

The definition of a2 uses the already instantiated Blob<int> class, and instanti-
ates the constructor with It replaced by vector<short>::iterator. The def-
inition of a3 (explicitly) instantiates the Blob with its template parameter bound
to string and (implicitly) instantiates the member template constructor of that
class with its parameter bound to list<const char*>.
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EXE R C I S E S SE C TI O N 16.1.4

Exercise 16.21: Write your own version of DebugDelete.

Exercise 16.22: Revise your TextQuery programs from § 12.3 (p. 484) so that the
shared_ptr members use a DebugDelete as their deleter (§ 12.1.4, p. 468).

Exercise 16.23: Predict when the call operator will be executed in your main query
program. If your expectations and what happens differ, be sure you understand why.

Exercise 16.24: Add a constructor that takes two iterators to your Blob template.

16.1.5 Controlling Instantiations
The fact that instantiations are generated when a template is used (§ 16.1.1, p. 656)
means that the same instantiation may appear in multiple object files. When two
or more separately compiled source files use the same template with the same
template arguments, there is an instantiation of that template in each of those files.

In large systems, the overhead of instantiating the same template in multiple
files can become significant. Under the new standard, we can avoid this overhead
through an explicit instantiation. An explicit instantiation has the form

extern template declaration; // instantiation declaration
template declaration; // instantiation definition

where declaration is a class or function declaration in which all the template param-
eters are replaced by the template arguments. For example,

// instantion declaration and definition
extern template class Blob<string>; // declaration
template int compare(const int&, const int&); // definition

When the compiler sees an extern template declaration, it will not generate code
for that instantiation in that file. Declaring an instantiation as extern is a promise
that there will be a nonextern use of that instantiation elsewhere in the program.
There may be several extern declarations for a given instantiation but there must
be exactly one definition for that instantiation.

Because the compiler automatically instantiates a template when we use it, the
extern declaration must appear before any code that uses that instantiation:

// Application.cc
// these template types must be instantiated elsewhere in the program
extern template class Blob<string>;
extern template int compare(const int&, const int&);

Blob<string> sa1, sa2; // instantiation will appear elsewhere

// Blob<int> and its initializer_list constructor instantiated in this file
Blob<int> a1 = {0,1,2,3,4,5,6,7,8,9};
Blob<int> a2(a1); // copy constructor instantiated in this file

int i = compare(a1[0], a2[0]); // instantiation will appear elsewhere
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The file Application.o will contain instantiations for Blob<int>, along with
the initializer_list and copy constructors for that class. The compare<int>
function and Blob<string> class will not be instantiated in that file. There must
be definitions of these templates in some other file in the program:

// templateBuild.cc
// instantiation file must provide a (nonextern) definition for every
// type and function that other files declare as extern
template int compare(const int&, const int&);
template class Blob<string>; // instantiates all members of the class template

When the compiler sees an instantiation definition (as opposed to a declaration), it
generates code. Thus, the file templateBuild.o will contain the definitions for
compare instantiated with int and for the Blob<string> class. When we build
the application, we must link templateBuild.owith the Application.o files.

There must be an explicit instantiation definition somewhere in the pro-
gram for every instantiation declaration.

Instantiation Definitions Instantiate All Members

An instantiation definition for a class template instantiates all the members of that
template including inline member functions. When the compiler sees an instantia-
tion definition it cannot know which member functions the program uses. Hence,
unlike the way it handles ordinary class template instantiations, the compiler in-
stantiates all the members of that class. Even if we do not use a member, that
member will be instantiated. Consequently, we can use explicit instantiation only
for types that can be used with all the members of that template.

An instantiation definition can be used only for types that can be used
with every member function of a class template.

16.1.6 Efficiency and Flexibility
The library smart pointer types (§ 12.1, p. 450) offer a good illustration of design
choices faced by designers of templates.

The obvious difference between shared_ptr and unique_ptr is the strategy
they use in managing the pointer they hold—one class gives us shared ownership;
the other owns the pointer that it holds. This difference is essential to what these
classes do.

These classes also differ in how they let users override their default deleter. We
can easily override the deleter of a shared_ptr by passing a callable object when
we create or reset the pointer. In contrast, the type of the deleter is part of the
type of a unique_ptr object. Users must supply that type as an explicit template
argument when they define a unique_ptr. As a result, it is more complicated for
users of unique_ptr to provide their own deleter.
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EXE R C I S E S SE C TI O N 16.1.5

Exercise 16.25: Explain the meaning of these declarations:

extern template class vector<string>;
template class vector<Sales_data>;

Exercise 16.26: Assuming NoDefault is a class that does not have a default construc-
tor, can we explicitly instantiate vector<NoDefault>? If not, why not?

Exercise 16.27: For each labeled statement explain what, if any, instantiations happen.
If a template is instantiated, explain why; if not, explain why not.

template <typename T> class Stack { };

void f1(Stack<char>); // (a)
class Exercise {

Stack<double> &rsd; // (b)
Stack<int> si; // (c)

};
int main() {

Stack<char> *sc; // (d)
f1(*sc); // (e)
int iObj = sizeof(Stack< string >); // (f)

}

The difference in how the deleter is handled is incidental to the functionality
of these classes. However, as we’ll see, this difference in implementation strategy
may have important performance impacts.

Binding the Deleter at Run Time

Although we don’t know how the library types are implemented, we can infer that
shared_ptr must access its deleter indirectly. That is the deleter must be stored
as a pointer or as a class (such as function (§ 14.8.3, p. 577)) that encapsulates a
pointer.

We can be certain that shared_ptr does not hold the deleter as a direct mem-
ber, because the type of the deleter isn’t known until run time. Indeed, we can
change the type of the deleter in a given shared_ptr during that shared_ptr’s
lifetime. We can construct a shared_ptr using a deleter of one type, and subse-
quently use reset to give that same shared_ptr a different type of deleter. In
general, we cannot have a member whose type changes at run time. Hence, the
deleter must be stored indirectly.

To think about how the deleter must work, let’s assume that shared_ptr
stores the pointer it manages in a member named p, and that the deleter is ac-
cessed through a member named del. The shared_ptr destructor must include
a statement such as

// value of del known only at run time; call through a pointer
del ? del(p) : delete p; // del(p) requires run-time jump to del’s location
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Because the deleter is stored indirectly, the call del(p) requires a run-time jump
to the location stored in del to execute the code to which del points.

Binding the Deleter at Compile Time

Now, let’s think about how unique_ptr might work. In this class, the type of the
deleter is part of the type of the unique_ptr. That is, unique_ptr has two tem-
plate parameters, one that represents the pointer that the unique_ptr manages
and the other that represents the type of the deleter. Because the type of the deleter
is part of the type of a unique_ptr, the type of the deleter member is known at
compile time. The deleter can be stored directly in each unique_ptr object.

The unique_ptrdestructor operates similarly to its shared_ptr counterpart
in that it calls a user-supplied deleter or executes delete on its stored pointer:

// del bound at compile time; direct call to the deleter is instantiated
del(p); // no run-time overhead

The type of del is either the default deleter type or a user-supplied type. It doesn’t
matter; either way the code that will be executed is known at compile time. Indeed,
if the deleter is something like our DebugDelete class (§ 16.1.4, p. 672) this call
might even be inlined at compile time.

By binding the deleter at compile time, unique_ptr avoids the run-time cost
of an indirect call to its deleter. By binding the deleter at run time, shared_ptr
makes it easier for users to override the deleter.

EXE R C I S E S SE C TI O N 16.1.6

Exercise 16.28: Write your own versions of shared_ptr and unique_ptr.

Exercise 16.29: Revise your Blob class to use your version of shared_ptr rather
than the library version.

Exercise 16.30: Rerun some of your programs to verify your shared_ptr and re-
vised Blob classes. (Note: Implementing the weak_ptr type is beyond the scope of
this Primer, so you will not be able to use the BlobPtr class with your revised Blob.)

Exercise 16.31: Explain how the compiler might inline the call to the deleter if we used
DebugDelete with unique_ptr.

16.2 Template Argument Deduction
We’ve seen that, by default, the compiler uses the arguments in a call to determine
the template parameters for a function template. The process of determining the
template arguments from the function arguments is known as template argument
deduction. During template argument deduction, the compiler uses types of the
arguments in the call to find the template arguments that generate a version of the
function that best matches the given call.
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16.2.1 Conversions and Template Type Parameters
As with a nontemplate function, the arguments we pass in a call to a function
template are used to initialize that function’s parameters. Function parameters
whose type uses a template type parameter have special initialization rules. Only
a very limited number of conversions are automatically applied to such arguments.
Rather than converting the arguments, the compiler generates a new instantiation.

As usual, top-level consts (§ 2.4.3, p. 63) in either the parameter or the argu-
ment are ignored. The only other conversions performed in a call to a function
template are

• const conversions: A function parameter that is a reference (or pointer) to a
const can be passed a reference (or pointer) to a nonconst object (§ 4.11.2,
p. 162).

• Array- or function-to-pointer conversions: If the function parameter is not a
reference type, then the normal pointer conversion will be applied to argu-
ments of array or function type. An array argument will be converted to a
pointer to its first element. Similarly, a function argument will be converted
to a pointer to the function’s type (§ 4.11.2, p. 161).

Other conversions, such as the arithmetic conversions (§ 4.11.1, p. 159), derived-
to-base (§ 15.2.2, p. 597), and user-defined conversions (§ 7.5.4, p. 294, and § 14.9,
p. 579), are not performed.

As examples, consider calls to the functions fobj and fref. The fobj func-
tion copies its parameters, whereas fref’s parameters are references:

template <typename T> T fobj(T, T); // arguments are copied
template <typename T> T fref(const T&, const T&); // references

string s1("a value");
const string s2("another value");

fobj(s1, s2); // calls fobj(string, string); const is ignored
fref(s1, s2); // calls fref(const string&, const string&)

// uses premissible conversion to const on s1

int a[10], b[42];
fobj(a, b); // calls f(int*, int*)
fref(a, b); // error: array types don’t match

In the first pair of calls, we pass a string and a const string. Even though
these types do not match exactly, both calls are legal. In the call to fobj, the
arguments are copied, so whether the original object is const doesn’t matter. In
the call to fref, the parameter type is a reference to const. Conversion to const
for a reference parameter is a permitted conversion, so this call is legal.

In the next pair of calls, we pass array arguments in which the arrays are differ-
ent sizes and hence have different types. In the call to fobj, the fact that the array
types differ doesn’t matter. Both arrays are converted to pointers. The template
parameter type in fobj is int*. The call to fref, however, is illegal. When the
parameter is a reference, the arrays are not converted to pointers (§ 6.2.4, p. 217).
The types of a and b don’t match, so the call is in error.
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const conversions and array or function to pointer are the only auto-
matic conversions for arguments to parameters with template types.

Function Parameters That Use the Same Template Parameter Type

A template type parameter can be used as the type of more than one function pa-
rameter. Because there are limited conversions, the arguments to such parameters
must have essentially the same type. If the deduced types do not match, then the
call is an error. For example, our compare function (§ 16.1.1, p. 652) takes two
const T& parameters. Its arguments must have essentially the same type:

long lng;
compare(lng, 1024); // error: cannot instantiate compare(long, int)

This call is in error because the arguments to compare don’t have the same type.
The template argument deduced from the first argument is long; the one for the
second is int. These types don’t match, so template argument deduction fails.

If we want to allow normal conversions on the arguments, we can define the
function with two type parameters:

// argument types can differ but must be compatible
template <typename A, typename B>
int flexibleCompare(const A& v1, const B& v2)
{

if (v1 < v2) return -1;
if (v2 < v1) return 1;
return 0;

}

Now the user may supply arguments of different types:

long lng;
flexibleCompare(lng, 1024); // ok: calls flexibleCompare(long, int)

Of course, a < operator must exist that can compare values of those types.

Normal Conversions Apply for Ordinary Arguments

A function template can have parameters that are defined using ordinary types—
that is, types that do not involve a template type parameter. Such arguments have
no special processing; they are converted as usual to the corresponding type of the
parameter (§ 6.1, p. 203). For example, consider the following template:

template <typename T> ostream &print(ostream &os, const T &obj)
{

return os << obj;
}

The first function parameter has a known type, ostream&. The second parame-
ter, obj, has a template parameter type. Because the type of os is fixed, normal
conversions are applied to arguments passed to os when print is called:
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print(cout, 42); // instantiates print(ostream&, int)
ofstream f("output");
print(f, 10); // uses print(ostream&, int); converts f to ostream&

In the first call, the type of the first argument exactly matches the type of the first
parameter. This call will cause a version of print that takes an ostream& and an
int to be instantiated. In the second call, the first argument is an ofstream and
there is a conversion from ofstream to ostream& (§ 8.2.1, p. 317). Because the
type of this parameter does not depend on a template parameter, the compiler will
implicitly convert f to ostream&.

Normal conversions are applied to arguments whose type is not a tem-
plate parameter.

EXE R C I S E S SE C TI O N 16.2.1

Exercise 16.32: What happens during template argument deduction?

Exercise 16.33: Name two type conversions allowed on function arguments involved
in template argument deduction.

Exercise 16.34: Given only the following code, explain whether each of these calls is
legal. If so, what is the type of T? If not, why not?

template <class T> int compare(const T&, const T&);
(a) compare("hi", "world"); (b) compare("bye", "dad");

Exercise 16.35: Which, if any, of the following calls are errors? If the call is legal, what
is the type of T? If the call is not legal, what is the problem?

template <typename T> T calc(T, int);
template <typename T> T fcn(T, T);
double d; float f; char c;
(a) calc(c, ’c’); (b) calc(d, f);
(c) fcn(c, ’c’); (d) fcn(d, f);

Exercise 16.36: What happens in the following calls:

template <typename T> f1(T, T);
template <typename T1, typename T2) f2(T1, T2);
int i = 0, j = 42, *p1 = &i, *p2 = &j;
const int *cp1 = &i, *cp2 = &j;
(a) f1(p1, p2); (b) f2(p1, p2); (c) f1(cp1, cp2);
(d) f2(cp1, cp2); (e) f1(p1, cp1); (e) f2(p1, cp1);

16.2.2 Function-Template Explicit Arguments
In some situations, it is not possible for the compiler to deduce the types of the
template arguments. In others, we want to allow the user to control the template
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instantiation. Both cases arise most often when a function return type differs from
any of those used in the parameter list.

Specifying an Explicit Template Argument

As an example in which we want to let the user specify which type to use, we’ll
define a function template named sum that takes arguments of two different types.
We’d like to let the user specify the type of the result. That way the user can choose
whatever precision is appropriate.

We can let the user control the type of the return by defining a third template
parameter to represent the return type:

// T1 cannot be deduced: it doesn’t appear in the function parameter list
template <typename T1, typename T2, typename T3>
T1 sum(T2, T3);

In this case, there is no argument whose type can be used to deduce the type of T1.
The caller must provide an explicit template argument for this parameter on each
call to sum.

We supply an explicit template argument to a call the same way that we define
an instance of a class template. Explicit template arguments are specified inside
angle brackets after the function name and before the argument list:

// T1 is explicitly specified; T2 and T3 are inferred from the argument types
auto val3 = sum<long long>(i, lng); // long long sum(int, long)

This call explicitly specifies the type for T1. The compiler will deduce the types for
T2 and T3 from the types of i and lng.

Explicit template argument(s) are matched to corresponding template parame-
ter(s) from left to right; the first template argument is matched to the first template
parameter, the second argument to the second parameter, and so on. An explicit
template argument may be omitted only for the trailing (right-most) parameters,
and then only if these can be deduced from the function parameters. If our sum
function had been written as

// poor design: users must explicitly specify all three template parameters
template <typename T1, typename T2, typename T3>
T3 alternative_sum(T2, T1);

then we would always have to specify arguments for all three parameters:

// error: can’t infer initial template parameters
auto val3 = alternative_sum<long long>(i, lng);

// ok: all three parameters are explicitly specified
auto val2 = alternative_sum<long long, int, long>(i, lng);

Normal Conversions Apply for Explicitly Specified Arguments

For the same reasons that normal conversions are permitted for parameters that
are defined using ordinary types (§ 16.2.1, p. 680), normal conversions also apply
for arguments whose template type parameter is explicitly specified:
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long lng;
compare(lng, 1024); // error: template parameters don’t match
compare<long>(lng, 1024); // ok: instantiates compare(long, long)
compare<int>(lng, 1024); // ok: instantiates compare(int, int)

As we’ve seen, the first call is in error because the arguments to compare must
have the same type. If we explicitly specify the template parameter type, normal
conversions apply. Thus, the call to compare<long> is equivalent to calling a
function taking two const long& parameters. The int parameter is automati-
cally converted to long. In the second call, T is explicitly specified as int, so lng
is converted to int.

EXE R C I S E S SE C TI O N 16.2.2

Exercise 16.37: The library max function has two function parameters and returns the
larger of its arguments. This function has one template type parameter. Could you call
max passing it an int and a double? If so, how? If not, why not?

Exercise 16.38: When we call make_shared (§ 12.1.1, p. 451), we have to provide an
explicit template argument. Explain why that argument is needed and how it is used.

Exercise 16.39: Use an explicit template argument to make it sensible to pass two
string literals to the original version of compare from § 16.1.1 (p. 652).

16.2.3 Trailing Return Types and Type Transformation
Using an explicit template argument to represent a template function’s return type
works well when we want to let the user determine the return type. In other cases,
requiring an explicit template argument imposes a burden on the user with no
compensating advantage. For example, we might want to write a function that
takes a pair of iterators denoting a sequence and returns a reference to an element
in the sequence:

template <typename It>
??? &fcn(It beg, It end)
{

// process the range
return *beg; // return a reference to an element from the range

}

We don’t know the exact type we want to return, but we do know that we want
that type to be a reference to the element type of the sequence we’re processing:

vector<int> vi = {1,2,3,4,5};
Blob<string> ca = { "hi", "bye" };

auto &i = fcn(vi.begin(), vi.end()); // fcn should return int&
auto &s = fcn(ca.begin(), ca.end()); // fcn should return string&
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Here, we know that our function will return *beg, and we know that we can use
decltype(*beg) to obtain the type of that expression. However, beg doesn’t
exist until the parameter list has been seen. To define this function, we must use
a trailing return type (§ 6.3.3, p. 229). Because a trailing return appears after the
parameter list, it can use the function’s parameters:

// a trailing return lets us declare the return type after the parameter list is seen
template <typename It>
auto fcn(It beg, It end) -> decltype(*beg)
{

// process the range
return *beg; // return a reference to an element from the range

}

Here we’ve told the compiler that fcn’s return type is the same as the type re-
turned by dereferencing its beg parameter. The dereference operator returns an
lvalue (§ 4.1.1, p. 136), so the type deduced by decltype is a reference to the type
of the element that beg denotes. Thus, if fcn is called on a sequence of strings,
the return type will be string&. If the sequence is int, the return will be int&.

The Type Transformation Library Template Classes

Sometimes we do not have direct access to the type that we need. For example,
we might want to write a function similar to fcn that returns an element by value
(§ 6.3.2, p. 224), rather than a reference to an element.

The problem we face in writing this function is that we know almost nothing
about the types we’re passed. In this function, the only operations we know we can
use are iterator operations, and there are no iterator operations that yield elements
(as opposed to references to elements).

To obtain the element type, we can use a library type transformation template.
These templates are defined in the type_traits header. In general the classes
in type_traits are used for so-called template metaprogramming, a topic that
is beyond the scope of this Primer. However, the type transformation templates
are useful in ordinary programming as well. These templates are described in
Table 16.1 and we’ll see how they are implemented in § 16.5 (p. 710).

In this case, we can use remove_reference to obtain the element type. The
remove_reference template has one template type parameter and a (public)
type member named type. If we instantiate remove_reference with a refer-
ence type, then type will be the referred-to type. For example, if we instanti-
ate remove_reference<int&>, the type member will be int. Similarly, if we
instantiate remove_reference<string&>, type will be string, and so on.
More generally, given that beg is an iterator:

remove_reference<decltype(*beg)>::type

will be the type of the element to which beg refers: decltype(*beg) returns
the reference type of the element type. remove_reference::type strips off the
reference, leaving the element type itself.

Using remove_reference and a trailing return with decltype, we can write
our function to return a copy of an element’s value:
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// must use typename to use a type member of a template parameter; see § 16.1.3 (p. 670)
template <typename It>
auto fcn2(It beg, It end) ->

typename remove_reference<decltype(*beg)>::type
{

// process the range
return *beg; // return a copy of an element from the range

}

Note that type is member of a class that depends on a template parameter. As
a result, we must use typename in the declaration of the return type to tell the
compiler that type represents a type (§ 16.1.3, p. 670).

Table 16.1: Standard Type Transformation Templates

For Mod<T>, where Mod is If T is Then Mod<T>::type is

remove_reference X& or X&& X
otherwise T

add_const X&, const X, or function T
otherwise const T

add_lvalue_reference X& T
X&& X&
otherwise T&

add_rvalue_reference X& or X&& T
otherwise T&&

remove_pointer X* X
otherwise T

add_pointer X& or X&& X*
otherwise T*

make_signed unsigned X X
otherwise T

make_unsigned signed type unsigned T
otherwise T

remove_extent X[n] X
otherwise T

remove_all_extents X[n1][n2]... X
otherwise T

Each of the type transformation templates described in Table 16.1 works simi-
larly to remove_reference. Each template has a public member named type
that represents a type. That type may be related to the template’s own template
type parameter in a way that is indicated by the template’s name. If it is not pos-
sible (or not necessary) to transform the template’s parameter, the type member
is the template parameter type itself. For example, if T is a pointer type, then
remove_pointer<T>::type is the type to which T points. If T isn’t a pointer,
then no transformation is needed. In this case, type is the same type as T.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

686 Templates and Generic Programming

EXE R C I S E S SE C TI O N 16.2.3

Exercise 16.40: Is the following function legal? If not, why not? If it is legal, what, if
any, are the restrictions on the argument type(s) that can be passed, and what is the
return type?

template <typename It>
auto fcn3(It beg, It end) -> decltype(*beg + 0)
{

// process the range
return *beg; // return a copy of an element from the range

}

Exercise 16.41: Write a version of sum with a return type that is guaranteed to be large
enough to hold the result of the addition.

16.2.4 Function Pointers and Argument Deduction
When we initialize or assign a function pointer (§ 6.7, p. 247) from a function tem-
plate, the compiler uses the type of the pointer to deduce the template argument(s).

As an example, assume we have a function pointer that points to a function
returning anint that takes two parameters, each of which is a reference to a const
int. We can use that pointer to point to an instantiation of compare:

template <typename T> int compare(const T&, const T&);

// pf1 points to the instantiation int compare(const int&, const int&)
int (*pf1)(const int&, const int&) = compare;

The type of the parameters in pf1 determines the type of the template argument
for T. The template argument for T is int. The pointer pf1 points to the instan-
tiation of compare with T bound to int. It is an error if the template arguments
cannot be determined from the function pointer type:

// overloaded versions of func; each takes a different function pointer type
void func(int(*)(const string&, const string&));
void func(int(*)(const int&, const int&));

func(compare); // error: which instantiation of compare?

The problem is that by looking at the type of func’s parameter, it is not possible to
determine a unique type for the template argument. The call to func could instan-
tiate the version of compare that takes ints or the version that takes strings.
Because it is not possible to identify a unique instantiation for the argument to
func, this call won’t compile.

We can disambiguate the call to func by using explicit template arguments:

// ok: explicitly specify which version of compare to instantiate
func(compare<int>); // passing compare(const int&, const int&)

This expression calls the version of func that takes a function pointer with two
const int& parameters.
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When the address of a function-template instantiation is taken, the con-
text must be such that it allows a unique type or value to be determined
for each template parameter.

16.2.5 Template Argument Deduction and References
In order to understand type deduction from a call to a function such as

template <typename T> void f(T &p);

in which the function’s parameter p is a reference to a template type parameter T,
it is important to keep in mind two points: Normal reference binding rules apply;
and consts are low level, not top level.

Type Deduction from Lvalue Reference Function Parameters

When a function parameter is an ordinary (lvalue) reference to a template type
parameter (i.e., that has the form T&), the binding rules say that we can pass only
an lvalue (e.g., a variable or an expression that returns a reference type). That
argument might or might not have a const type. If the argument is const, then
T will be deduced as a const type:

template <typename T> void f1(T&); // argument must be an lvalue
// calls to f1 use the referred-to type of the argument as the template parameter type
f1(i); // i is an int; template parameter T is int
f1(ci); // ci is a const int; template parameter T is const int
f1(5); // error: argument to a & parameter must be an lvalue

If a function parameter has type const T&, normal binding rules say that we
can pass any kind of argument—an object (const or otherwise), a temporary, or
a literal value. When the function parameter is itself const, the type deduced for
T will not be a const type. The const is already part of the function parameter
type; therefore, it does not also become part of the template parameter type:

template <typename T> void f2(const T&); // can take an rvalue
// parameter in f2 is const &; const in the argument is irrelevant
// in each of these three calls, f2’s function parameter is inferred as const int&
f2(i); // i is an int; template parameter T is int
f2(ci); // ci is a const int, but template parameter T is int
f2(5); // a const & parameter can be bound to an rvalue; T is int

Type Deduction from Rvalue Reference Function Parameters

When a function parameter is an rvalue reference (§ 13.6.1, p. 532) (i.e., has the
form T&&), normal binding rules say that we can pass an rvalue to this parameter.
When we do so, type deduction behaves similarly to deduction for an ordinary
lvalue reference function parameter. The deduced type for T is the type of the
rvalue:

template <typename T> void f3(T&&);
f3(42); // argument is an rvalue of type int; template parameter T is int
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Reference Collapsing and Rvalue Reference Parameters

Assuming i is an int object, we might think that a call such as f3(i) would be
illegal. After all, i is an lvalue, and normally we cannot bind an rvalue reference to
an lvalue. However, the language defines two exceptions to normal binding rules
that allow this kind of usage. These exceptions are the foundation for how library
facilities such as move operate.

The first exception affects how type deduction is done for rvalue reference pa-
rameters. When we pass an lvalue (e.g., i) to a function parameter that is an rvalue
reference to a template type parameter (e.g, T&&), the compiler deduces the tem-
plate type parameter as the argument’s lvalue reference type. So, when we call
f3(i), the compiler deduces the type of T as int&, not int.

Deducing T as int& would seem to mean that f3’s function parameter would
be an rvalue reference to the type int&. Ordinarily, we cannot (directly) define a
reference to a reference (§ 2.3.1, p. 51). However, it is possible to do so indirectly
through a type alias (§ 2.5.1, p. 67) or through a template type parameter.

In such contexts, we see the second exception to the normal binding rules: If
we indirectly create a reference to a reference, then those references “collapse.” In
all but one case, the references collapse to form an ordinary lvalue reference type.
The new standard, expanded the collapsing rules to include rvalue references. Ref-
erences collapse to form an rvalue reference only in the specific case of an rvalue
reference to an rvalue reference. That is, for a given type X:

• X& &, X& &&, and X&& & all collapse to type X&

• The type X&& && collapses to X&&

Reference collapsing applies only when a reference to a reference is cre-
ated indirectly, such as in a type alias or a template parameter.

The combination of the reference collapsing rule and the special rule for type
deduction for rvalue reference parameters means that we can call f3 on an lvalue.
When we pass an lvalue to f3’s (rvalue reference) function parameter, the compiler
will deduce T as an lvalue reference type:

f3(i); // argument is an lvalue; template parameter T is int&
f3(ci); // argument is an lvalue; template parameter T is const int&

When a template parameter T is deduced as a reference type, the collapsing rule
says that the function parameter T&& collapses to an lvalue reference type. For
example, the resulting instantiation for f3(i) would be something like

// invalid code, for illustration purposes only
void f3<int&>(int& &&); // when T is int&, function parameter is int& &&

The function parameter in f3 is T&& and T is int&, so T&& is int& &&, which
collapses to int&. Thus, even though the form of the function parameter in f3
is an rvalue reference (i.e., T&&), this call instantiates f3 with an lvalue reference
type (i.e., int&):

void f3<int&>(int&); // when T is int&, function parameter collapses to int&
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There are two important consequences from these rules:

• A function parameter that is an rvalue reference to a template type parameter
(e.g., T&&) can be bound to an lvalue; and

• If the argument is an lvalue, then the deduced template argument type will
be an lvalue reference type and the function parameter will be instantiated
as an (ordinary) lvalue reference parameter (T&)

It is also worth noting that by implication, we can pass any type of argument to a
T&& function parameter. A parameter of such a type can (obviously) be used with
rvalues, and as we’ve just seen, can be used by lvalues as well.

An argument of any type can be passed to a function parameter that is
an rvalue reference to a template parameter type (i.e., T&&). When an
lvalue is passed to such a parameter, the function parameter is instanti-
ated as an ordinary, lvalue reference (T&).

Writing Template Functions with Rvalue Reference Parameters

The fact that the template parameter can be deduced to a reference type can have
surprising impacts on the code inside the template:

template <typename T> void f3(T&& val)
{

T t = val; // copy or binding a reference?
t = fcn(t); // does the assignment change only t or val and t?
if (val == t) { /* . . . */ } // always true if T is a reference type

}

When we call f3 on an rvalue, such as the literal 42, T is int. In this case, the local
variable t has type int and is initialized by copying the value of the parameter
val. When we assign to t, the parameter val remains unchanged.

On the other hand, when we call f3 on the lvalue i, then T is int&. When
we define and initialize the local variable t, that variable has type int&. The
initialization of t binds t to val. When we assign to t, we change val at the same
time. In this instantiation of f3, the if test will always yield true.

It is surprisingly hard to write code that is correct when the types involved
might be plain (nonreference) types or reference types (although the type transfor-
mation classes such as remove_reference can help (§ 16.2.3, p. 684)).

In practice, rvalue reference parameters are used in one of two contexts: Either
the template is forwarding its arguments, or the template is overloaded. We’ll look
at forwarding in § 16.2.7 (p. 692) and at template overloading in § 16.3 (p. 694).

For now, it’s worth noting that function templates that use rvalue references
often use overloading in the same way as we saw in § 13.6.3 (p. 544):

template <typename T> void f(T&&); // binds to nonconst rvalues
template <typename T> void f(const T&); // lvalues and const rvalues

As with nontemplate functions, the first version will bind to modifiable rvalues
and the second to lvalues or to const rvalues.
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EXE R C I S E S SE C TI O N 16.2.5

Exercise 16.42: Determine the type of T and of val in each of the following calls:

template <typename T> void g(T&& val);
int i = 0; const int ci = i;
(a) g(i); (b) g(ci); (c) g(i * ci);

Exercise 16.43: Using the function defined in the previous exercise, what would the
template parameter of g be if we called g(i = ci)?

Exercise 16.44: Using the same three calls as in the first exercise, determine the types
for T if g’s function parameter is declared as T (not T&&). What if g’s function parame-
ter is const T&?

Exercise 16.45: Given the following template, explain what happens if we call g on a
literal value such as 42. What if we call g on a variable of type int?

template <typename T> void g(T&& val) { vector<T> v; }

16.2.6 Understanding std::move
The library move function (§ 13.6.1, p. 533) is a good illustration of a template that
uses rvalue references. Fortunately, we can use move without understanding the
template mechanisms that it uses. However, looking at how move works can help
cement our general understanding, and use, of templates.

In § 13.6.2 (p. 534) we noted that although we cannot directly bind an rvalue
reference to an lvalue, we can use move to obtain an rvalue reference bound to an
lvalue. Because move can take arguments of essentially any type, it should not be
surprising that move is a function template.

How std::move Is Defined

The standard defines move as follows:

// for the use of typename in the return type and the cast see § 16.1.3 (p. 670)
// remove_reference is covered in § 16.2.3 (p. 684)
template <typename T>
typename remove_reference<T>::type&& move(T&& t)
{

// static_cast covered in § 4.11.3 (p. 163)
return static_cast<typename remove_reference<T>::type&&>(t);

}

This code is short but subtle. First, move’s function parameter, T&&, is an rvalue
reference to a template parameter type. Through reference collapsing, this param-
eter can match arguments of any type. In particular, we can pass either an lvalue
or an rvalue to move:

string s1("hi!"), s2;
s2 = std::move(string("bye!")); // ok: moving from an rvalue
s2 = std::move(s1); // ok: but after the assigment s1 has indeterminate value
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How std::move Works

In the first assignment, the argument to move is the rvalue result of the string
constructor, string("bye"). As we’ve seen, when we pass an rvalue to an
rvalue reference function parameter, the type deduced from that argument is the
referred-to type (§ 16.2.5, p. 687). Thus, in std::move(string("bye!")):

• The deduced type of T is string.

• Therefore, remove_reference is instantiated with string.

• The type member of remove_reference<string> is string.

• The return type of move is string&&.

• move’s function parameter, t, has type string&&.

Accordingly, this call instantiates move<string>, which is the function

string&& move(string &&t)

The body of this function returns static_cast<string&&>(t). The type of t
is already string&&, so the cast does nothing. Therefore, the result of this call is
the rvalue reference it was given.

Now consider the second assignment, which calls std::move(s1). In this
call, the argument to move is an lvalue. This time:

• The deduced type of T is string& (reference to string, not plain string).

• Therefore, remove_reference is instantiated with string&.

• The type member of remove_reference<string&> is string,

• The return type of move is still string&&.

• move’s function parameter, t, instantiates as string& &&, which collapses
to string&.

Thus, this call instantiates move<string&>, which is

string&& move(string &t)

and which is exactly what we’re after—we want to bind an rvalue reference to an
lvalue. The body of this instantiation returns static_cast<string&&>(t). In
this case, the type of t is string&, which the cast converts to string&&.

static_cast from an Lvalue to an Rvalue Reference Is Permitted

Ordinarily, a static_cast can perform only otherwise legitimate conversions
(§ 4.11.3, p. 163). However, there is again a special dispensation for rvalue refer-
ences: Even though we cannot implicitly convert an lvalue to an rvalue reference,
we can explicitly cast an lvalue to an rvalue reference using static_cast.

Binding an rvalue reference to an lvalue gives code that operates on the rvalue
reference permission to clobber the lvalue. There are times, such as in our StrVec
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reallocate function in § 13.6.1 (p. 533), when we know it is safe to clobber an
lvalue. By letting us do the cast, the language allows this usage. By forcing us to
use a cast, the language tries to prevent us from doing so accidentally.

Finally, although we can write such casts directly, it is much easier to use the
library move function. Moreover, using std::move consistently makes it easy to
find the places in our code that might potentially clobber lvalues.

EXE R C I S E S SE C TI O N 16.2.6

Exercise 16.46: Explain this loop from StrVec::reallocate in § 13.5 (p. 530):

for (size_t i = 0; i != size(); ++i)
alloc.construct(dest++, std::move(*elem++));

16.2.7 Forwarding
Some functions need to forward one or more of their arguments with their types
unchanged to another, forwarded-to, function. In such cases, we need to preserve
everything about the forwarded arguments, including whether or not the argu-
ment type is const, and whether the argument is an lvalue or an rvalue.

As an example, we’ll write a function that takes a callable expression and two
additional arguments. Our function will call the given callable with the other two
arguments in reverse order. The following is a first cut at our flip function:

// template that takes a callable and two parameters
// and calls the given callable with the parameters ‘‘flipped’’
// flip1 is an incomplete implementation: top-level const and references are lost
template <typename F, typename T1, typename T2>
void flip1(F f, T1 t1, T2 t2)
{

f(t2, t1);
}

This template works fine until we want to use it to call a function that has a refer-
ence parameter:

void f(int v1, int &v2) // note v2 is a reference
{

cout << v1 << " " << ++v2 << endl;
}

Here f changes the value of the argument bound to v2. However, if we call f
through flip1, the changes made by f do not affect the original argument:

f(42, i); // f changes its argument i
flip1(f, j, 42); // f called through flip1 leaves j unchanged

The problem is that j is passed to the t1 parameter in flip1. That parameter has
is a plain, nonreference type, int, not an int&. That is, the instantiation of this
call to flip1 is
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void flip1(void(*fcn)(int, int&), int t1, int t2);

The value of j is copied into t1. The reference parameter in f is bound to t1, not
to j.

Defining Function Parameters That Retain Type Information

To pass a reference through our flip function, we need to rewrite our function so
that its parameters preserve the “lvalueness” of its given arguments. Thinking
ahead a bit, we can imagine that we’d also like to preserve the constness of the
arguments as well.

We can preserve all the type information in an argument by defining its corre-
sponding function parameter as an rvalue reference to a template type parameter.
Using a reference parameter (either lvalue or rvalue) lets us preserve constness,
because the const in a reference type is low-level. Through reference collapsing
(§ 16.2.5, p. 688), if we define the function parameters as T1&& and T2&&, we can
preserve the lvalue/rvalue property of flip’s arguments (§ 16.2.5, p. 687):

template <typename F, typename T1, typename T2>
void flip2(F f, T1 &&t1, T2 &&t2)
{

f(t2, t1);
}

As in our earlier call, if we call flip2(f, j, 42), the lvalue j is passed to the
parameter t1. However, in flip2, the type deduced for T1 is int&, which means
that the type of t1 collapses to int&. The reference t1 is bound to j. When flip2
calls f, the reference parameter v2 in f is bound to t1, which in turn is bound to
j. When f increments v2, it is changing the value of j.

A function parameter that is an rvalue reference to a template type pa-
rameter (i.e., T&&) preserves the constness and lvalue/rvalue property
of its corresponding argument.

This version of flip2 solves one half of our problem. Our flip2 function
works fine for functions that take lvalue references but cannot be used to call a
function that has an rvalue reference parameter. For example:

void g(int &&i, int& j)
{

cout << i << " " << j << endl;
}

If we try to call g through flip2, we will be passing the parameter t2 to g’s rvalue
reference parameter. Even if we pass an rvalue to flip2:

flip2(g, i, 42); // error: can’t initialize int&& from an lvalue

what is passed to g will be the parameter named t2 inside flip2. A function
parameter, like any other variable, is an lvalue expression (§ 13.6.1, p. 533). As a
result, the call to g in flip2 passes an lvalue to g’s rvalue reference parameter.
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Using std::forward to Preserve Type Information in a Call

We can use a new library facility named forward to pass flip2’s parameters in
a way that preserves the types of the original arguments. Like move, forward is
defined in the utility header. Unlike move, forward must be called with an
explicit template argument (§ 16.2.2, p. 682). forward returns an rvalue reference
to that explicit argument type. That is, the return type of forward<T> is T&&.

Ordinarily, we use forward to pass a function parameter that is defined as an
rvalue reference to a template type parameter. Through reference collapsing on its
return type, forward preserves the lvalue/rvalue nature of its given argument:

template <typename Type> intermediary(Type &&arg)
{

finalFcn(std::forward<Type>(arg));
// . . .

}

Here we use Type—which is deduced from arg—as forward’s explicit template
argument type. Because arg is an rvalue reference to a template type parame-
ter, Type will represent all the type information in the argument passed to arg.
If that argument was an rvalue, then Type is an ordinary (nonreference) type
and forward<Type> will return Type&&. If the argument was an lvalue, then—
through reference collapsing—Type itself is an lvalue reference type. In this case,
the return type is an rvalue reference to an lvalue reference type. Again through
reference collapsing—this time on the return type—forward<Type> will return
an lvalue reference type.

When used with a function parameter that is an rvalue reference to tem-
plate type parameter (T&&), forward preserves all the details about an
argument’s type.

Using forward, we’ll rewrite our flip function once more:

template <typename F, typename T1, typename T2>
void flip(F f, T1 &&t1, T2 &&t2)
{

f(std::forward<T2>(t2), std::forward<T1>(t1));
}

If we call flip(g, i, 42), i will be passed to g as an int& and 42 will be passed
as an int&&.

As with std::move, it’s a good idea not to provide a usingdeclaration
for std::forward. § 18.2.3 (p. 798) will explain why.

16.3 Overloading and Templates
Function templates can be overloaded by other templates or by ordinary, nontem-
plate functions. As usual, functions with the same name must differ either as to
the number or the type(s) of their parameters.
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EXE R C I S E S SE C TI O N 16.2.7

Exercise 16.47: Write your own version of the flip function and test it by calling func-
tions that have lvalue and rvalue reference parameters.

Function matching (§ 6.4, p. 233) is affected by the presence of function tem-
plates in the following ways:

• The candidate functions for a call include any function-template instantiation
for which template argument deduction (§ 16.2, p. 678) succeeds.

• The candidate function templates are always viable, because template argu-
ment deduction will have eliminated any templates that are not viable.

• As usual, the viable functions (template and nontemplate) are ranked by the
conversions, if any, needed to make the call. Of course, the conversions used
to call a function template are quite limited (§ 16.2.1, p. 679).

• Also as usual, if exactly one function provides a better match than any of the
others, that function is selected. However, if there are several functions that
provide an equally good match, then:

– If there is only one nontemplate function in the set of equally good
matches, the nontemplate function is called.

– If there are no nontemplate functions in the set, but there are multiple
function templates, and one of these templates is more specialized than
any of the others, the more specialized function template is called.

– Otherwise, the call is ambiguous.

Correctly defining a set of overloaded function templates requires a
good understanding of the relationship among types and of the re-
stricted conversions applied to arguments in template functions.

Writing Overloaded Templates

As an example, we’ll build a set of functions that might be useful during debug-
ging. We’ll name our debugging functions debug_rep, each of which will return
a string representation of a given object. We’ll start by writing the most general
version of this function as a template that takes a reference to a const object:

// print any type we don’t otherwise handle
template <typename T> string debug_rep(const T &t)
{

ostringstream ret; // see § 8.3 (p. 321)
ret << t; // uses T’s output operator to print a representation of t
return ret.str(); // return a copy of the string to which ret is bound

}
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This function can be used to generate a string corresponding to an object of any
type that has an output operator.

Next, we’ll define a version of debug_rep to print pointers:

// print pointers as their pointer value, followed by the object to which the pointer points
// NB: this function will not work properly with char*; see § 16.3 (p. 698)
template <typename T> string debug_rep(T *p)
{

ostringstream ret;
ret << "pointer: " << p; // print the pointer’s own value
if (p)

ret << " " << debug_rep(*p); // print the value to which p points
else

ret << " null pointer"; // or indicate that the p is null
return ret.str(); // return a copy of the string to which ret is bound

}

This version generates a string that contains the pointer’s own value and calls
debug_rep to print the object to which that pointer points. Note that this function
can’t be used to print character pointers, because the IO library defines a version
of the << for char* values. That version of << assumes the pointer denotes a null-
terminated character array, and prints the contents of the array, not its address.
We’ll see in § 16.3 (p. 698) how to handle character pointers.

We might use these functions as follows:

string s("hi");
cout << debug_rep(s) << endl;

For this call, only the first version of debug_rep is viable. The second version of
debug_rep requires a pointer parameter, and in this call we passed a nonpointer
object. There is no way to instantiate a function template that expects a pointer
type from a nonpointer argument, so argument deduction fails. Because there is
only one viable function, that is the one that is called.

If we call debug_rep with a pointer:

cout << debug_rep(&s) << endl;

both functions generate viable instantiations:

• debug_rep(const string*&), which is the instantiation of the first ver-
sion of debug_rep with T bound to string*

• debug_rep(string*), which is the instantiation of the second version of
debug_rep with T bound to string

The instantiation of the second version of debug_rep is an exact match for this
call. The instantiation of the first version requires a conversion of the plain pointer
to a pointer to const. Normal function matching says we should prefer the second
template, and indeed that is the one that is run.
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Multiple Viable Templates

As another example, consider the following call:

const string *sp = &s;
cout << debug_rep(sp) << endl;

Here both templates are viable and both provide an exact match:

• debug_rep(const string*&), the instantiation of the first version of the
template with T bound to const string*

• debug_rep(const string*), the instantiation of the second version of
the template with T bound to const string

In this case, normal function matching can’t distinguish between these two calls.
We might expect this call to be ambiguous. However, due to the special rule for
overloaded function templates, this call resolves to debug_rep(T*), which is the
more specialized template.

The reason for this rule is that without it, there would be no way to call the
pointer version of debug_rep on a pointer to const. The problem is that the
template debug_rep(const T&) can be called on essentially any type, including
pointer types. That template is more general than debug_rep(T*), which can be
called only on pointer types. Without this rule, calls that passed pointers to const
would always be ambiguous.

When there are several overloaded templates that provide an equally
good match for a call, the most specialized version is preferred.

Nontemplate and Template Overloads

For our next example, we’ll define an ordinary nontemplate version of debug_rep
to print strings inside double quotes:

// print strings inside double quotes
string debug_rep(const string &s)
{

return ’"’ + s + ’"’;
}

Now, when we call debug_rep on a string,

string s("hi");
cout << debug_rep(s) << endl;

there are two equally good viable functions:

• debug_rep<string>(const string&), the first template with T bound
to string

• debug_rep(const string&), the ordinary, nontemplate function
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In this case, both functions have the same parameter list, so obviously, each func-
tion provides an equally good match for this call. However, the nontemplate ver-
sion is selected. For the same reasons that the most specialized of equally good
function templates is preferred, a nontemplate function is preferred over equally
good match(es) to a function template.

When a nontemplate function provides an equally good match for a call
as a function template, the nontemplate version is preferred.

Overloaded Templates and Conversions

There’s one case we haven’t covered so far: pointers to C-style character strings
and string literals. Now that we have a version of debug_rep that takes a string,
we might expect that a call that passes character strings would match that version.
However, consider this call:

cout << debug_rep("hi world!") << endl; // calls debug_rep(T*)

Here all three of the debug_rep functions are viable:

• debug_rep(const T&), with T bound to char[10]

• debug_rep(T*), with T bound to const char

• debug_rep(const string&), which requires a conversion from const
char* to string

Both templates provide an exact match to the argument—the second template re-
quires a (permissible) conversion from array to pointer, and that conversion is con-
sidered as an exact match for function-matching purposes (§ 6.6.1, p. 245). The
nontemplate version is viable but requires a user-defined conversion. That func-
tion is less good than an exact match, leaving the two templates as the possible
functions to call. As before, the T* version is more specialized and is the one that
will be selected.

If we want to handle character pointers as strings, we can define two more
nontemplate overloads:

// convert the character pointers to string and call the string version of debug_rep
string debug_rep(char *p)
{

return debug_rep(string(p));
}
string debug_rep(const char *p)
{

return debug_rep(string(p));
}

Missing Declarations Can Cause the Program to Misbehave

It is worth noting that for the char* versions of debug_rep to work correctly, a
declaration for debug_rep(const string&) must be in scope when these func-
tions are defined. If not, the wrong version of debug_rep will be called:
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template <typename T> string debug_rep(const T &t);
template <typename T> string debug_rep(T *p);
// the following declaration must be in scope
// for the definition of debug_rep(char*) to do the right thing
string debug_rep(const string &);

string debug_rep(char *p)
{

// if the declaration for the version that takes a const string& is not in scope
// the return will call debug_rep(const T&) with T instantiated to string
return debug_rep(string(p));

}

Ordinarily, if we use a function that we forgot to declare, our code won’t compile.
Not so with functions that overload a template function. If the compiler can instan-
tiate the call from the template, then the missing declaration won’t matter. In this
example, if we forget to declare the version of debug_rep that takes a string,
the compiler will silently instantiate the template version that takes a const T&.

Declare every function in an overload set before you define any of the
functions. That way you don’t have to worry whether the compiler will
instantiate a call before it sees the function you intended to call.

EXE R C I S E S SE C TI ON 16.3

Exercise 16.48: Write your own versions of the debug_rep functions.

Exercise 16.49: Explain what happens in each of the following calls:

template <typename T> void f(T);
template <typename T> void f(const T*);
template <typename T> void g(T);
template <typename T> void g(T*);
int i = 42, *p = &i;
const int ci = 0, *p2 = &ci;
g(42); g(p); g(ci); g(p2);
f(42); f(p); f(ci); f(p2);

Exercise 16.50: Define the functions from the previous exercise so that they print an
identifying message. Run the code from that exercise. If the calls behave differently
from what you expected, make sure you understand why.

16.4 Variadic Templates
A variadic template is a template function or class that can take a varying number
of parameters. The varying parameters are known as a parameter pack. There
are two kinds of parameter packs: A template parameter pack represents zero or
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more template parameters, and a function parameter pack represents zero or more
function parameters.

We use an ellipsis to indicate that a template or function parameter represents
a pack. In a template parameter list, class... or typename... indicates that
the following parameter represents a list of zero or more types; the name of a type
followed by an ellipsis represents a list of zero or more nontype parameters of the
given type. In the function parameter list, a parameter whose type is a template
parameter pack is a function parameter pack. For example:

// Args is a template parameter pack; rest is a function parameter pack
// Args represents zero or more template type parameters
// rest represents zero or more function parameters
template <typename T, typename... Args>
void foo(const T &t, const Args& ... rest);

declares that foo is a variadic function that has one type parameter named T and
a template parameter pack named Args. That pack represents zero or more ad-
ditional type parameters. The function parameter list of foo has one parameter,
whose type is a const & to whatever type T has, and a function parameter pack
named rest. That pack represents zero or more function parameters.

As usual, the compiler deduces the template parameter types from the func-
tion’s arguments. For a variadic template, the compiler also deduces the number
of parameters in the pack. For example, given these calls:

int i = 0; double d = 3.14; string s = "how now brown cow";
foo(i, s, 42, d); // three parameters in the pack
foo(s, 42, "hi"); // two parameters in the pack
foo(d, s); // one parameter in the pack
foo("hi"); // empty pack

the compiler will instantiate four different instances of foo:

void foo(const int&, const string&, const int&, const double&);
void foo(const string&, const int&, const char(&)[3]);
void foo(const double&, const string&);
void foo(const char(&)[3]);

In each case, the type of T is deduced from the type of the first argument. The
remaining arguments (if any) provide the number of, and types for, the additional
arguments to the function.

The sizeof... Operator

When we need to know how many elements there are in a pack, we can use the
sizeof... operator. Like sizeof (§ 4.9, p. 156), sizeof... returns a constant
expression (§ 2.4.4, p. 65) and does not evaluate its argument:

template<typename ... Args> void g(Args ... args) {
cout << sizeof...(Args) << endl; // number of type parameters
cout << sizeof...(args) << endl; // number of function parameters

}
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EXE R C I S E S SE C TI ON 16.4

Exercise 16.51: Determine what sizeof...(Args) and sizeof...(rest) return
for each call to foo in this section.

Exercise 16.52: Write a program to check your answer to the previous question.

16.4.1 Writing a Variadic Function Template
In § 6.2.6 (p. 220) we saw that we can use an initializer_list to define a
function that can take a varying number of arguments. However, the arguments
must have the same type (or types that are convertible to a common type). Vari-
adic functions are used when we know neither the number nor the types of the
arguments we want to process. As an example, we’ll define a function like our
earlier error_msg function, only this time we’ll allow the argument types to vary
as well. We’ll start by defining a variadic function named print that will print the
contents of a given list of arguments on a given stream.

Variadic functions are often recursive (§ 6.3.2, p. 227). The first call processes
the first argument in the pack and calls itself on the remaining arguments. Our
print function will execute this way—each call will print its second argument on
the stream denoted by its first argument. To stop the recursion, we’ll also need to
define a nonvariadic print function that will take a stream and an object:

// function to end the recursion and print the last element
// this function must be declared before the variadic version of print is defined
template<typename T>
ostream &print(ostream &os, const T &t)
{

return os << t; // no separator after the last element in the pack
}

// this version of print will be called for all but the last element in the pack
template <typename T, typename... Args>
ostream &print(ostream &os, const T &t, const Args&... rest)
{

os << t << ", "; // print the first argument
return print(os, rest...); // recursive call; print the other arguments

}

The first version of print stops the recursion and prints the last argument in the
initial call to print. The second, variadic, version prints the argument bound to t
and calls itself to print the remaining values in the function parameter pack.

The key part is the call to print inside the variadic function:

return print(os, rest...); // recursive call; print the other arguments

The variadic version of our print function takes three parameters: an ostream&,
a const T&, and a parameter pack. Yet this call passes only two arguments. What
happens is that the first argument in rest gets bound to t. The remaining ar-
guments in rest form the parameter pack for the next call to print. Thus, on
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each call, the first argument in the pack is removed from the pack and becomes the
argument bound to t. That is, given:

print(cout, i, s, 42); // two parameters in the pack

the recursion will execute as follows:

Call t rest...

print(cout, i, s, 42) i s, 42
print(cout, s, 42) s 42
print(cout, 42) calls the nonvariadic version of print

The first two calls can match only the variadic version of print because the nonva-
riadic version isn’t viable. These calls pass four and three arguments, respectively,
and the nonvariadic print takes only two arguments.

For the last call in the recursion, print(cout, 42), both versions of print
are viable. This call passes exactly two arguments, and the type of the first argu-
ment is ostream&. Thus, the nonvariadic version of print is viable.

The variadic version is also viable. Unlike an ordinary argument, a parame-
ter pack can be empty. Hence, the variadic version of print can be instantiated
with only two parameters: one for the ostream& parameter and the other for the
const T& parameter.

Both functions provide an equally good match for the call. However, a non-
variadic template is more specialized than a variadic template, so the nonvariadic
version is chosen for this call (§ 16.3, p. 695).

A declaration for the nonvariadic version of print must be in scope
when the variadic version is defined. Otherwise, the variadic function
will recurse indefinitely.

EXE R C I S E S SE C TI O N 16.4.1

Exercise 16.53: Write your own version of the print functions and test them by print-
ing one, two, and five arguments, each of which should have different types.

Exercise 16.54: What happens if we call print on a type that doesn’t have an <<
operator?

Exercise 16.55: Explain how the variadic version of print would execute if we de-
clared the nonvariadic version of print after the definition of the variadic version.

16.4.2 Pack Expansion
Aside from taking its size, the only other thing we can do with a parameter pack
is to expand it. When we expand a pack, we also provide a pattern to be used on
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each expanded element. Expanding a pack separates the pack into its constituent
elements, applying the pattern to each element as it does so. We trigger an expan-
sion by putting an ellipsis (. . . ) to the right of the pattern.

For example, our print function contains two expansions:

template <typename T, typename... Args>
ostream &
print(ostream &os, const T &t, const Args&... rest)// expand Args
{

os << t << ", ";
return print(os, rest...); // expand rest

}

The first expansion expands the template parameter pack and generates the func-
tion parameter list for print. The second expansion appears in the call to print.
That pattern generates the argument list for the call to print.

The expansion of Args applies the pattern const Args& to each element in
the template parameter pack Args. The expansion of this pattern is a comma-
separated list of zero or more parameter types, each of which will have the form
const type&. For example:

print(cout, i, s, 42); // two parameters in the pack

The types of the last two arguments along with the pattern determine the types of
the trailing parameters. This call is instantiated as

ostream&
print(ostream&, const int&, const string&, const int&);

The second expansion happens in the (recursive) call to print. In this case,
the pattern is the name of the function parameter pack (i.e., rest). This pattern
expands to a comma-separated list of the elements in the pack. Thus, this call is
equivalent to

print(os, s, 42);

Understanding Pack Expansions

The expansion of the function parameter pack in print just expanded the pack
into its constituent parts. More complicated patterns are also possible when we
expand a function parameter pack. For example, we might write a second variadic
function that calls debug_rep (§ 16.3, p. 695) on each of its arguments and then
calls print to print the resulting strings:

// call debug_rep on each argument in the call to print
template <typename... Args>
ostream &errorMsg(ostream &os, const Args&... rest)
{

// print(os, debug_rep(a1), debug_rep(a2), ..., debug_rep(an)
return print(os, debug_rep(rest)...);

}
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The call to print uses the pattern debug_rep(rest). That pattern says
that we want to call debug_rep on each element in the function parameter pack
rest. The resulting expanded pack will be a comma-separated list of calls to
debug_rep. That is, a call such as

errorMsg(cerr, fcnName, code.num(), otherData, "other", item);

will execute as if we had written

print(cerr, debug_rep(fcnName), debug_rep(code.num()),
debug_rep(otherData), debug_rep("otherData"),
debug_rep(item));

In contrast, the following pattern would fail to compile:

// passes the pack to debug_rep; print(os, debug_rep(a1, a2, ..., an))
print(os, debug_rep(rest...)); // error: no matching function to call

The problem here is that we expanded rest in the call to debug_rep. This call
would execute as if we had written

print(cerr, debug_rep(fcnName, code.num(),
otherData, "otherData", item));

In this expansion, we attempted to call debug_rep with a list of five arguments.
There is no version of debug_rep that matches this call. The debug_rep function
is not variadic and there is no version of debug_rep that has five parameters.

The pattern in an expansion applies separately to each element in the
pack.

EXE R C I S E S SE C TI O N 16.4.2

Exercise 16.56: Write and test a variadic version of errorMsg.

Exercise 16.57: Compare your variadic version of errorMsg to the error_msg func-
tion in § 6.2.6 (p. 220). What are the advantages and disadvantages of each approach?

16.4.3 Forwarding Parameter Packs
Under the new standard, we can use variadic templates together with forward
to write functions that pass their arguments unchanged to some other function.
To illustrate such functions, we’ll add an emplace_back member to our StrVec
class (§ 13.5, p. 526). The emplace_back member of the library containers is a
variadic member template (§ 16.1.4, p. 673) that uses its arguments to construct an
element directly in space managed by the container.

Our version of emplace_back for StrVec will also have to be variadic, be-
cause string has a number of constructors that differ in terms of their parameters.
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Because we’d like to be able to use the stringmove constructor, we’ll also need to
preserve all the type information about the arguments passed to emplace_back.

As we’ve seen, preserving type information is a two-step process. First, to pre-
serve type information in the arguments, we must define emplace_back’s func-
tion parameters as rvalue references to a template type parameter (§ 16.2.7, p. 693):

class StrVec {
public:

template <class... Args> void emplace_back(Args&&...);
// remaining members as in § 13.5 (p. 526)

};

The pattern in the expansion of the template parameter pack, &&, means that each
function parameter will be an rvalue reference to its corresponding argument.

Second, we must use forward to preserve the arguments’ original types when
emplace_back passes those arguments to construct (§ 16.2.7, p. 694):

template <class... Args>
inline
void StrVec::emplace_back(Args&&... args)
{

chk_n_alloc(); // reallocates the StrVec if necessary
alloc.construct(first_free++, std::forward<Args>(args)...);

}

The body of emplace_back calls chk_n_alloc (§ 13.5, p. 526) to ensure that
there is enough room for an element and calls construct to create an element in
the first_free spot. The expansion in the call to construct:

std::forward<Args>(args)...

expands both the template parameter pack, Args, and the function parameter
pack, args. This pattern generates elements with the form

std::forward<Ti>(ti)

where Ti represents the type of the ith element in the template parameter pack
and ti represents the ith element in the function parameter pack. For example,
assuming svec is a StrVec, if we call

svec.emplace_back(10, ’c’); // adds cccccccccc as a new last element

the pattern in the call to construct will expand to

std::forward<int>(10), std::forward<char>(c)

By using forward in this call, we guarantee that if emplace_back is called
with an rvalue, then construct will also get an rvalue. For example, in this call:

svec.emplace_back(s1 + s2); // uses the move constructor

the argument to emplace_back is an rvalue, which is passed to construct as

std::forward<string>(string("the end"))

The result type from forward<string> is string&&, so construct will be
called with an rvalue reference. The construct function will, in turn, forward
this argument to the string move constructor to build this element.
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ADVICE: FORWARDING AND VARIADIC TEMPLATES

Variadic functions often forward their parameters to other functions. Such functions
typically have a form similar to our emplace_back function:

// fun has zero or more parameters each of which is
// an rvalue reference to a template parameter type
template<typename... Args>
void fun(Args&&... args) // expands Args as a list of rvalue references
{

// the argument to work expands both Args and args
work(std::forward<Args>(args)...);

}

Here we want to forward all of fun’s arguments to another function named work that
presumably does the real work of the function. Like our call to construct inside
emplace_back, the expansion in the call to work expands both the template parame-
ter pack and the function parameter pack.

Because the parameters to fun are rvalue references, we can pass arguments of
any type to fun; because we use std::forward to pass those arguments, all type
information about those arguments will be preserved in the call to work.

EXE R C I S E S SE C TI O N 16.4.3

Exercise 16.58: Write the emplace_back function for your StrVec class and for the
Vec class that you wrote for the exercises in § 16.1.2 (p. 668).

Exercise 16.59: Assuming s is a string, explain svec.emplace_back(s).

Exercise 16.60: Explain how make_shared (§ 12.1.1, p. 451) works.

Exercise 16.61: Define your own version of make_shared.

16.5 Template Specializations
It is not always possible to write a single template that is best suited for every
possible template argument with which the template might be instantiated. In
some cases, the general template definition is simply wrong for a type: The general
definition might not compile or might do the wrong thing. At other times, we
may be able to take advantage of some specific knowledge to write more efficient
code than would be instantiated from the template. When we can’t (or don’t want
to) use the template version, we can define a specialized version of the class or
function template.

Our compare function is a good example of a function template for which
the general definition is not appropriate for a particular type, namely, character
pointers. We’d like compare to compare character pointers by calling strcmp
rather than by comparing the pointer values. Indeed, we have already overloaded
the compare function to handle character string literals (§ 16.1.1, p. 654):
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// first version; can compare any two types
template <typename T> int compare(const T&, const T&);

// second version to handle string literals
template<size_t N, size_t M>
int compare(const char (&)[N], const char (&)[M]);

However, the version of compare that has two nontype template parameters will
be called only when we pass a string literal or an array. If we call compare with
character pointers, the first version of the template will be called:

const char *p1 = "hi", *p2 = "mom";
compare(p1, p2); // calls the first template
compare("hi", "mom"); // calls the template with two nontype parameters

There is no way to convert a pointer to a reference to an array, so the second version
of compare is not viable when we pass p1 and p2 as arguments.

To handle character pointers (as opposed to arrays), we can define a template
specialization of the first version of compare. A specialization is a separate def-
inition of the template in which one or more template parameters are specified to
have particular types.

Defining a Function Template Specialization

When we specialize a function template, we must supply arguments for every
template parameter in the original template. To indicate that we are specializing
a template, we use the keyword template followed by an empty pair of angle
brackets (< >). The empty brackets indicate that arguments will be supplied for
all the template parameters of the original template:

// special version of compare to handle pointers to character arrays
template <>
int compare(const char* const &p1, const char* const &p2)
{

return strcmp(p1, p2);
}

The hard part in understanding this specialization is the function parameter types.
When we define a specialization, the function parameter type(s) must match the
corresponding types in a previously declared template. Here we are specializing:

template <typename T> int compare(const T&, const T&);

in which the function parameters are references to a const type. As with type
aliases, the interaction between template parameter types, pointers, and const
can be surprising (§ 2.5.1, p. 68).

We want to define a specialization of this function with T as const char*. Our
function requires a reference to the const version of this type. The const version
of a pointer type is a constant pointer as distinct from a pointer to const (§ 2.4.2,
p. 63). The type we need to use in our specialization is const char* const &,
which is a reference to a const pointer to const char.
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Function Overloading versus Template Specializations

When we define a function template specialization, we are essentially taking over
the job of the compiler. That is, we are supplying the definition to use for a specific
instantiation of the original template. It is important to realize that a specialization
is an instantiation; it is not an overloaded instance of the function name.

Specializations instantiate a template; they do not overload it. As a re-
sult, specializations do not affect function matching.

Whether we define a particular function as a specialization or as an indepen-
dent, nontemplate function can impact function matching. For example, we have
defined two versions of our compare function template, one that takes references
to array parameters and the other that takes const T&. The fact that we also have
a specialization for character pointers has no impact on function matching. When
we call compare on a string literal:

compare("hi", "mom")

both function templates are viable and provide an equally good (i.e., exact) match
to the call. However, the version with character array parameters is more special-
ized (§ 16.3, p. 695) and is chosen for this call.

Had we defined the version of compare that takes character pointers as a plain
nontemplate function (rather than as a specialization of the template), this call
would resolve differently. In this case, there would be three viable functions: the
two templates and the nontemplate character-pointer version. All three are also
equally good matches for this call. As we’ve seen, when a nontemplate provides
an equally good match as a function template, the nontemplate is selected (§ 16.3,
p. 695)

KEY CONCEPT: ORDINARY SCOPE RULES APPLY TO SPECIALIZATIONS

In order to specialize a template, a declaration for the original template must be in
scope. Moreover, a declaration for a specialization must be in scope before any code
uses that instantiation of the template.

With ordinary classes and functions, missing declarations are (usually) easy to
find—the compiler won’t be able to process our code. However, if a specialization
declaration is missing, the compiler will usually generate code using the original
template. Because the compiler can often instantiate the original template when a
specialization is missing, errors in declaration order between a template and its spe-
cializations are easy to make but hard to find.

It is an error for a program to use a specialization and an instantiation of the origi-
nal template with the same set of template arguments. However, it is an error that the
compiler is unlikely to detect.

Templates and their specializations should be declared in the same
header file. Declarations for all the templates with a given name should
appear first, followed by any specializations of those templates.
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Class Template Specializations

In addition to specializing function templates, we can also specialize class tem-
plates. As an example, we’ll define a specialization of the library hash template
that we can use to store Sales_data objects in an unordered container. By de-
fault, the unordered containers use hash<key_type> (§ 11.4, p. 444) to organize
their elements. To use this default with our own data type, we must define a spe-
cialization of the hash template. A specialized hash class must define

• An overloaded call operator (§ 14.8, p. 571) that returns a size_t and takes
an object of the container’s key type

• Two type members, result_type and argument_type, which are the re-
turn and argument types, respectively, of the call operator

• The default constructor and a copy-assignment operator (which can be im-
plicitly defined (§ 13.1.2, p. 500))

The only complication in defining this hash specialization is that when we
specialize a template, we must do so in the same namespace in which the original
template is defined. We’ll have more to say about namespaces in § 18.2 (p. 785).
For now, what we need to know is that we can add members to a namespace. To
do so, we must first open the namespace:

// open the std namespace so we can specialize std::hash
namespace std {
} // close the std namespace; note: no semicolon after the close curly

Any definitions that appear between the open and close curlies will be part of the
std namespace.

The following defines a specialization of hash for Sales_data:

// open the std namespace so we can specialize std::hash
namespace std {
template <> // we’re defining a specialization with
struct hash<Sales_data> // the template parameter of Sales_data
{

// the type used to hash an unordered container must define these types
typedef size_t result_type;
typedef Sales_data argument_type; // by default, this type needs ==

size_t operator()(const Sales_data& s) const;

// our class uses synthesized copy control and default constructor
};

size_t
hash<Sales_data>::operator()(const Sales_data& s) const
{

return hash<string>()(s.bookNo) ^
hash<unsigned>()(s.units_sold) ^
hash<double>()(s.revenue);

}
} // close the std namespace; note: no semicolon after the close curly
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Our hash<Sales_data> definition starts with template<>, which indicates
that we are defining a fully specialized template. The template we’re specializing
is named hash and the specialized version is hash<Sales_data>. The members
of the class follow directly from the requirements for specializing hash.

As with any other class, we can define the members of a specialization inside
the class or out of it, as we did here. The overloaded call operator must define
a hashing function over the values of the given type. This function is required
to return the same result every time it is called for a given value. A good hash
function will (almost always) yield different results for objects that are not equal.

Here, we delegate the complexity of defining a good hash function to the li-
brary. The library defines specializations of the hash class for the built-in types
and for many of the library types. We use an (unnamed) hash<string> object
to generate a hash code for bookNo, an object of type hash<unsigned> to gener-
ate a hash from units_sold, and an object of type hash<double> to generate a
hash from revenue. We exclusive OR (§ 4.8, p. 154) these results to form an overall
hash code for the given Sales_data object.

It is worth noting that we defined our hash function to hash all three data
members so that our hash function will be compatible with our definition of
operator== for Sales_data (§ 14.3.1, p. 561). By default, the unordered con-
tainers use the specialization of hash that corresponds to the key_type along
with the equality operator on the key type.

Assuming our specialization is in scope, it will be used automatically when we
use Sales_data as a key to one of these containers:

// uses hash<Sales_data> and Sales_data operator== from § 14.3.1 (p. 561)
unordered_multiset<Sales_data> SDset;

Because hash<Sales_data> uses the private members of Sales_data, we
must make this class a friend of Sales_data:

template <class T> class std::hash; // needed for the friend declaration
class Sales_data {
friend class std::hash<Sales_data>;

// other members as before
};

Here we say that the specific instantiation of hash<Sales_data> is a friend. Be-
cause that instantiation is defined in the std namespace, we must remember to
that this hash type is defined in the std namespace. Hence, our friend declara-
tion refers to std::hash.

To enable users of Sales_data to use the specialization of hash, we
should define this specialization in the Sales_data header.

Class-Template Partial Specializations

Differently from function templates, a class template specialization does not have
to supply an argument for every template parameter. We can specify some, but
not all, of the template parameters or some, but not all, aspects of the parameters.
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A class template partial specialization is itself a template. Users must supply
arguments for those template parameters that are not fixed by the specialization.

We can partially specialize only a class template. We cannot partially
specialize a function template.

In § 16.2.3 (p. 684) we introduced the library remove_reference type. That tem-
plate works through a series of specializations:

// original, most general template
template <class T> struct remove_reference {

typedef T type;
};

// partial specializations that will be used for lvalue and rvalue references
template <class T> struct remove_reference<T&> // lvalue references

{ typedef T type; };

template <class T> struct remove_reference<T&&> // rvalue references
{ typedef T type; };

The first template defines the most general version. It can be instantiated with any
type; it uses its template argument as the type for its member named type. The
next two classes are partial specializations of this original template.

Because a partial specialization is a template, we start, as usual, by defining the
template parameters. Like any other specialization, a partial specialization has the
same name as the template it specializes. The specialization’s template parameter
list includes an entry for each template parameter whose type is not completely
fixed by this partial specialization. After the class name, we specify arguments for
the template parameters we are specializing. These arguments are listed inside an-
gle brackets following the template name. The arguments correspond positionally
to the parameters in the original template.

The template parameter list of a partial specialization is a subset of, or a spe-
cialization of, the parameter list of the original template. In this case, the special-
izations have the same number of parameters as the original template. However,
the parameter’s type in the specializations differ from the original template. The
specializations will be used for lvalue and rvalue reference types, respectively:

int i;
// decltype(42) is int, uses the original template
remove_reference<decltype(42)>::type a;

// decltype(i) is int&, uses first (T&) partial specialization
remove_reference<decltype(i)>::type b;

// decltype(std::move(i)) is int&&, uses second (i.e., T&&) partial specialization
remove_reference<decltype(std::move(i))>::type c;

All three variables, a, b, and c, have type int.

Specializing Members but Not the Class

Rather than specializing the whole template, we can specialize just specific mem-
ber function(s). For example, if Foo is a template class with a member Bar, we can
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specialize just that member:

template <typename T> struct Foo {
Foo(const T &t = T()): mem(t) { }
void Bar() { /* . . . */ }
T mem;
// other members of Foo

};

template<> // we’re specializing a template
void Foo<int>::Bar() // we’re specializing the Bar member of Foo<int>
{

// do whatever specialized processing that applies to ints
}

Here we are specializing just one member of the Foo<int> class. The other mem-
bers of Foo<int> will be supplied by the Foo template:

Foo<string> fs; // instantiates Foo<string>::Foo()
fs.Bar(); // instantiates Foo<string>::Bar()

Foo<int> fi; // instantiates Foo<int>::Foo()
fi.Bar(); // uses our specialization of Foo<int>::Bar()

When we use Foo with any type other than int, members are instantiated as
usual. When we use Foo with int, members other than Bar are instantiated
as usual. If we use the Bar member of Foo<int>, then we get our specialized
definition.

EXE R C I S E S SE C TI ON 16.5

Exercise 16.62: Define your own version of hash<Sales_data> and define an
unordered_multisetof Sales_data objects. Put several transactions into the con-
tainer and print its contents.

Exercise 16.63: Define a function template to count the number of occurrences of a
given value in a vector. Test your program by passing it a vector of doubles, a
vector of ints, and a vector of strings.

Exercise 16.64: Write a specialized version of the template from the previous exercise
to handle vector<const char*> and a program that uses this specialization.

Exercise 16.65: In § 16.3 (p. 698) we defined overloaded two versions of debug_rep
one had a const char* and the other a char* parameter. Rewrite these functions as
specializations.

Exercise 16.66: What are the advantages and disadvantages of overloading these
debug_rep functions as compared to defining specializations?

Exercise 16.67: Would defining these specializations affect function matching for
debug_rep? If so, how? If not, why not?
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CH A P T E R SU M M A R Y
Templates are a distinctive feature of C++ and are fundamental to the library. A
template is a blueprint that the compiler uses to generate specific class types or
functions. This process is called instantiation. We write the template once, and the
compiler instantiates the template for the type(s) or value(s) with which we use
the template.

We can define both function templates and class templates. The library algo-
rithms are function templates and the library containers are class templates.

An explicit template argument lets us fix the type or value of one or more tem-
plate parameters. Normal conversions are applied to parameters that have an ex-
plicit template argument.

A template specialization is a user-provided instantiation of a template that
binds one or more template parameters to specified types or values. Specializa-
tions are useful when there are types that we cannot use (or do not want to use)
with the template definition.

A major part of the latest release of the C++ standard is variadic templates. A
variadic template can take a varying number and types of parameters. Variadic
templates let us write functions, such as the container emplace members and the
library make_shared function, that pass arguments to an object’s constructor.

DEFINED TERMS

class template Definition from which spe-
cific classes can be instantiated. Class tem-
plates are defined using the template key-
word followed by a comma-separated list of
one or more template parameters enclosed
in < and > brackets, followed by a class def-
inition.

default template arguments A type or a
value that a template uses if the user does
not supply a corresponding template argu-
ment.

explicit instantiation A declaration that
supplies explicit arguments for all the tem-
plate parameters. Used to guide the instan-
tiation process. If the declaration is extern,
the template will not be instantiated; oth-
erwise, the template is instantiated with
the specified arguments. There must be
a nonextern explicit instantiation some-
where in the program for every extern
template declaration.

explicit template argument Template ar-
gument supplied by the user in a call to a

function or when defining a template class
type. Explicit template arguments are sup-
plied inside angle brackets immediately fol-
lowing the template’s name.

function parameter pack Parameter pack
that represents zero or more function pa-
rameters.

function template Definition from which
specific functions can be instantiated. A
function template is defined using the
template keyword followed by a comma-
separated list of one or more template pa-
rameters enclosed in < and > brackets, fol-
lowed by a function definition.

instantiate Compiler process whereby the
actual template argument(s) are used to
generate a specific instance of the template
in which the parameter(s) are replaced by
the corresponding argument(s). Functions
are instantiated automatically based on the
arguments used in a call. We must supply
explicit template arguments whenever we
use a class template.
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instantiation Class or function generated
by the compiler from a template.

member template Member function that
is a template. A member template may not
be virtual.

nontype parameter A template parame-
ter that represents a value. Template ar-
guments for nontype template parameters
must be constant expressions.

pack expansion Process by which a pa-
rameter pack is replaced by the correspond-
ing list of its elements.

parameter pack Template or function pa-
rameter that represents zero or more param-
eters.

partial specialization Version of a class
template in which some some but not all of
the template parameters are specified or in
which one or more parameters are not com-
pletely specified.

pattern Defines the form of each element
in an expanded parameter pack.

template argument Type or value used to
instantiate a template parameter.

template argument deduction Process by
which the compiler determines which func-
tion template to instantiate. The compiler
examines the types of the arguments that
were specified using a template parameter.
It automatically instantiates a version of the
function with those types or values bound
to the template parameters.

template parameter Name specifed in the
template parameter list that may be used in-
side the definition of a template. Template
parameters can be type or nontype parame-
ters. To use a class template, we must sup-
ply explicit arguments for each template pa-
rameter. The compiler uses those types or

values to instantiate a version of the class in
which uses of the parameter(s) are replaced
by the actual argument(s). When a function
template is used, the compiler deduces the
template arguments from the arguments in
the call and instantiates a specific function
using the deduced template arguments.

template parameter list List of parame-
ters, separated by commas, to be used in the
definition or declaration of a template. Each
parameter may be a type or nontype param-
eter.

template parameter pack Parameter pack
that represents zero or more template pa-
rameters.

template specialization Redefinition of a
class template, a member of a class tem-
plate, or a function template, in which some
(or all) of the template parameters are spec-
ified. A template specialization may not
appear until after the base template that it
specializes has been declared. A template
specialization must appear before any use
of the template with the specialized argu-
ments. Each template parameter in a func-
tion template must be completely special-
ized.

type parameter Name used in a template
parameter list to represent a type. Type
parameters are specified following the key-
word typename or class.

type transformation Class templates de-
fined by the library that transform their
given template type parameter to a related
type.

variadic template Template that takes a
varying number of template arguments. A
template parameter pack is specified using
an elipsis (e.g., class. . . , typename. . . , or
type-name. . . ).
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Chapter 19 Specialized Tools and Techniques . . . . . . . . 819

Part IV covers additional features that, although useful in the right
context, are not needed by every C++ programmer. These features
divide into two clusters: those that are useful for large-scale prob-
lems and those that are applicable to specialized problems rather
than general ones. Features for specialized problems occur both in
the language, the topic of Chapter 19, and in the library, Chapter 17.

In Chapter 17 we cover four special-purpose library facilities: the
bitset class and three new library facilities: tuples, regular ex-
pressions, and random numbers. We’ll also look at some of the less
commonly used parts of the IO library.

Chapter 18 covers exception handling, namespaces, and multiple
inheritance. These features tend to be most useful in the context of
large-scale problems.

Even programs simple enough to be written by a single author
can benefit from exception handling, which is why we introduced
the basics of exception handling in Chapter 5. However, the need
to deal with run-time errors tends to be more important and harder
to manage in problems that require large programming teams. In
Chapter 18 we review some additional useful exception-handling fa-
cilities. We also look in more detail at how exceptions are handled,
and show how we can define and use our own exception classes.
This section will also cover improvements from the new standard
regarding specifying that a particular function will not throw.
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Large-scale applications often use code from multiple indepen-
dent vendors. Combining independently developed libraries would
be difficult (if not impossible) if vendors had to put the names they
define into a single namespace. Independently developed libraries
would almost inevitably use names in common with one another; a
name defined in one library would conflict with the use of that name
in another library. To avoid name collisions, we can define names
inside a namespace.

Whenever we use a name from the standard library, we are using
a name defined in the namespace named std. Chapter 18 shows
how we can define our own namespaces.

Chapter 18 closes by looking at an important but infrequently
used language feature: multiple inheritance. Multiple inheritance
is most useful for fairly complicated inheritance hierarchies.

Chapter 19 covers several specialized tools and techniques that
are applicable to particular kinds of problems. Among the features
covered in this chapter are how to redefine how memory allocation
works; C++ support for run-time type identification (RTTI), which
let us determine the actual type of an expression at run time; and
how we can define and use pointers to class members. Pointers to
class members differ from pointers to ordinary data or functions.
Ordinary pointers only vary based on the type of the object or func-
tion. Pointers to members must also reflect the class to which the
member belongs. We’ll also look at three additional aggregate types:
unions, nested classes, and local classes. The chapter closes by look-
ing briefly at a collection of features that are inherently nonportable:
the volatile qualifier, bit-fields, and linkage directives.
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S P E C I A L I Z E D L I B R A R Y

F A C I L I T I E S
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Defined Terms . . . . . . . . . . . . . . . . . . . . . . . . . 769

The latest standard greatly increased the size and scope of the library.
Indeed, the portion of the standard devoted to the library more than
doubled between the first release in 1998 and the 2011 standard. As
a result, covering every C++ library class is well beyond the scope of
this Primer. However, there are four library facilities that, although
more specialized than other library facilities we’ve covered, are gen-
eral enough to warrant discussion in an introductory book: tuples,
bitsets, random-number generation, and regular expressions. In
addition, we will also cover some additional, special-purpose parts
of the IO library.
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The library constitutes nearly two-thirds of the text of the new standard. Al-
though we cannot cover every library facility in depth, there remain a few library
facilities that are likely to be of use in many applications: tuples, bitsets, regu-
lar expressions, and random numbers. We’ll also look at some additional IO library
capabilities: format control, unformatted IO, and random access.

17.1 The tuple Type
A tuple is a template that is similar to a pair (§ 11.2.3, p. 426). Each pair type has
different types for its members, but every pair always has exactly two members.
A tuple also has members whose types vary from one tuple type to another, but
a tuple can have any number of members. Each distinct tuple type has a fixed
number of members, but the number of members in one tuple type can differ
from the number of members in another.

A tuple is most useful when we want to combine some data into a single
object but do not want to bother to define a data structure to represent those data.
Table 17.1 lists the operations that tuples support. The tuple type, along with
its companion types and functions, are defined in the tuple header.

A tuple can be thought of as a “quick and dirty” data structure.

17.1.1 Defining and Initializing tuples
When we define a tuple, we name the type(s) of each of its members:

tuple<size_t, size_t, size_t> threeD; // all three members set to 0
tuple<string, vector<double>, int, list<int>>

someVal("constants", {3.14, 2.718}, 42, {0,1,2,3,4,5});

When we create a tuple object, we can use the default tuple constructor, which
value initializes (§ 3.3.1, p. 98) each member, or we can supply an initializer for
each member as we do in the initialization of someVal. This tuple constructor is
explicit (§ 7.5.4, p. 296), so we must use the direct initialization syntax:

tuple<size_t, size_t, size_t> threeD = {1,2,3}; // error
tuple<size_t, size_t, size_t> threeD{1,2,3}; // ok

Alternatively, similar to the make_pair function (§ 11.2.3, p. 428), the library
defines a make_tuple function that generates a tuple object:

// tuple that represents a bookstore transaction: ISBN, count, price per book
auto item = make_tuple("0-999-78345-X", 3, 20.00);

Like make_pair, the make_tuple function uses the types of the supplied initial-
izers to infer the type of the tuple. In this case, item is a tuple whose type is
tuple<const char*, int, double>.
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Table 17.1: Operations on tuples

tuple<T1, T2, ..., Tn> t;
t is a tuple with as many members as there are types T1 . . .Tn. The members
are value initialized (§ 3.3.1, p. 98).

tuple<T1, T2, ..., Tn> t(v1, v2, ..., vn);
t is a tuple with types T1 . . .Tn in which each member is initialized from the
corresponding initializer, vi. This constructor is explicit (§ 7.5.4, p. 296).

make_tuple(v1, v2, ..., vn)
Returns a tuple initialized from the given initializers. The type of the tuple
is inferred from the types of the initializers.

t1 == t2
t1 != t2

Two tuples are equal if they have the same number of members and if each
pair of members are equal. Uses each member’s underlying == operator. Once
a member is found to be unequal, subsequent members are not tested.

t1 relop t2 Relational operations on tuples using dictionary ordering (§ 9.2.7, p. 340). The
tuples must have the same number of members. Members of t1 are
compared with the corresponding members from t2 using the < operator

get<i>(t) Returns a reference to the ith data member of t; if t is an lvalue, the result is
an lvalue reference; otherwise, it is an rvalue reference. All members of a
tuple are public.

tuple_size<tupleType>::value
A class template that can be instantiated by a tuple type and has a public
constexpr static data member named value of type size_t that is
number of members in the specified tuple type.

tuple_element<i, tupleType>::type
A class template that can be instantiated by an integral constant and a tuple
type and has a public member named type that is the type of the specified
members in the specified tuple type.

Accessing the Members of a tuple

A pair always has two members, which makes it possible for the library to give
these members names (i.e., first and second). No such naming convention is
possible for tuple because there is no limit on the number of members a tuple
type can have. As a result, the members are unnamed. Instead, we access the
members of a tuple through a library function template named get. To use get
we must specify an explicit template argument (§ 16.2.2, p. 682), which is the po-
sition of the member we want to access. We pass a tuple object to get, which
returns a reference to the specified member:

auto book = get<0>(item); // returns the first member of item
auto cnt = get<1>(item); // returns the second member of item
auto price = get<2>(item)/cnt; // returns the last member of item
get<2>(item) *= 0.8; // apply 20% discount

The value inside the brackets must be an integral constant expression (§ 2.4.4,
p. 65). As usual, we count from 0, meaning that get<0> is the first member.

If we have a tuple whose precise type details we don’t know, we can use two
auxilliary class templates to find the number and types of the tuple’s members:
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typedef decltype(item) trans; // trans is the type of item

// returns the number of members in object’s of type trans
size_t sz = tuple_size<trans>::value; // returns 3
// cnt has the same type as the second member in item
tuple_element<1, trans>::type cnt = get<1>(item); // cnt is an int

To use tuple_size or tuple_element, we need to know the type of a tuple
object. As usual, the easiest way to determine an object’s type is to use decltype
(§ 2.5.3, p. 70). Here, we use decltype to define a type alias for the type of item,
which we use to instantiate both templates.

tuple_size has a public static data member named value that is the
number or members in the specified tuple. The tuple_element template takes
an index as well as a tuple type. tuple_element has a public type member
named type that is the type of the specified member of the specified tuple type.
Like get, tuple_element uses indices starting at 0.

Relational and Equality Operators

The tuple relational and equality operators behave similarly to the corresponding
operations on containers (§ 9.2.7, p. 340). These operators execute pairwise on the
members of the left-hand and right-hand tuples. We can compare two tuples
only if they have the same number of members. Moreover, to use the equality or
inequality operators, it must be legal to compare each pair of members using the
== operator; to use the relational operators, it must be legal to use <. For example:

tuple<string, string> duo("1", "2");
tuple<size_t, size_t> twoD(1, 2);
bool b = (duo == twoD); // error: can’t compare a size_t and a string

tuple<size_t, size_t, size_t> threeD(1, 2, 3);
b = (twoD < threeD); // error: differing number of members

tuple<size_t, size_t> origin(0, 0);
b = (origin < twoD); // ok: b is true

Because tuple defines the < and == operators, we can pass sequences
of tuples to the algorithms and can use a tuple as key type in an
ordered container.

EXE R C I S E S SE C TI O N 17.1.1

Exercise 17.1: Define a tuple that holds three int values and initialize the members
to 10, 20, and 30.

Exercise 17.2: Define a tuple that holds a string, a vector<string>, and a
pair<string, int>.

Exercise 17.3: Rewrite the TextQuery programs from § 12.3 (p. 484) to use a tuple
instead of the QueryResult class. Explain which design you think is better and why.
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17.1.2 Using a tuple to Return Multiple Values
A common use of tuple is to return multiple values from a function. For example,
our bookstore might be one of several stores in a chain. Each store would have a
transaction file that holds data on each book that the store recently sold. We might
want to look at the sales for a given book in all the stores.

We’ll assume that we have a file of transactions for each store. Each of these
per-store transaction files will contain all the transactions for each book grouped
together. We’ll further assume that some other function reads these transaction
files, builds a vector<Sales_data> for each store, and puts those vectors in a
vector of vectors:

// each element in files holds the transactions for a particular store
vector<vector<Sales_data>> files;

We’ll write a function that will search files looking for the stores that sold a
given book. For each store that has a matching transaction, we’ll create a tuple
to hold the index of that store and two iterators. The index will be the position of
the matching store in files. The iterators will mark the first and one past the last
record for the given book in that store’s vector<Sales_data>.

A Function That Returns a tuple

We’ll start by writing the function to find a given book. This function’s argu-
ments are the vector of vectors just described, and a string that represents
the book’s ISBN. Our function will return a vector of tuples that will have an
entry for each store with at least one sale for the given book:

// matches has three members: an index of a store and iterators into that store’s vector
typedef tuple<vector<Sales_data>::size_type,

vector<Sales_data>::const_iterator,
vector<Sales_data>::const_iterator> matches;

// files holds the transactions for every store
// findBook returns a vector with an entry for each store that sold the given book
vector<matches>
findBook(const vector<vector<Sales_data>> &files,

const string &book)
{

vector<matches> ret; // initially empty
// for each store find the range of matching books, if any
for (auto it = files.cbegin(); it != files.cend(); ++it) {

// find the range of Sales_data that have the same ISBN
auto found = equal_range(it->cbegin(), it->cend(),

book, compareIsbn);
if (found.first != found.second) // this store had sales

// remember the index of this store and the matching range
ret.push_back(make_tuple(it - files.cbegin(),

found.first, found.second));
}
return ret; // empty if no matches found

}
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The for loop iterates through the elements in files. Those elements are them-
selves vectors. Inside the for we call a library algorithm named equal_range,
which operates like the associative container member of the same name (§ 11.3.5,
p. 439). The first two arguments to equal_range are iterators denoting an input
sequence (§ 10.1, p. 376). The third argument is a value. By default, equal_range
uses the < operator to compare elements. Because Sales_data does not have a <
operator, we pass a pointer to the compareIsbn function (§ 11.2.2, p. 425).

The equal_range algorithm returns a pair of iterators that denote a range of
elements. If book is not found, then the iterators will be equal, indicating that the
range is empty. Otherwise, the first member of the returned pair will denote
the first matching transaction and second will be one past the last.

Using a tuple Returned by a Function

Once we have built our vector of stores with matching transactions, we need to
process these transactions. In this program, we’ll report the total sales results for
each store that has a matching sale:

void reportResults(istream &in, ostream &os,
const vector<vector<Sales_data>> &files)

{
string s; // book to look for
while (in >> s) {

auto trans = findBook(files, s); // stores that sold this book
if (trans.empty()) {

cout << s << " not found in any stores" << endl;
continue; // get the next book to look for

}
for (const auto &store : trans) // for every store with a sale

// get<n> returns the specified member from the tuple in store
os << "store " << get<0>(store) << " sales: "

<< accumulate(get<1>(store), get<2>(store),
Sales_data(s))

<< endl;
}

}

The while loop repeatedly reads the istream named in to get the next book to
process. We call findBook to see if s is present, and assign the results to trans.
We use auto to simplify writing the type of trans, which is a vector of tuples.

If trans is empty, there were no sales for s. In this case, we print a message
and return to the while to get the next book to look for.

The for loop binds store to each element in trans. Because we don’t intend
to change the elements in trans, we declare store as a reference to const. We
use get to print the relevant data: get<0> is the index of the corresponding store,
get<1> is the iterator denoting the first transaction, and get<2> is the iterator
one past the last.

Because Sales_data defines the addition operator (§ 14.3, p. 560), we can use
the library accumulate algorithm (§ 10.2.1, p. 379) to sum the transactions. We
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pass a Sales_data object initialized by the Sales_data constructor that takes a
string (§ 7.1.4, p. 264) as the starting point for the summation. That constructor
initializes the bookNo member from the given string and the units_sold and
revenue members to zero.

EXE R C I S E S SE C TI O N 17.1.2

Exercise 17.4: Write and test your own version of the findBook function.

Exercise 17.5: Rewrite findBook to return a pair that holds an index and a pair of
iterators.

Exercise 17.6: Rewrite findBook so that it does not use tuple or pair.

Exercise 17.7: Explain which version of findBook you prefer and why.

Exercise 17.8: What would happen if we passed Sales_data() as the third param-
eter to accumulate in the last code example in this section?

17.2 The bitset Type
In § 4.8 (p. 152) we covered the built-in operators that treat an integral operand as
a collection of bits. The standard library defines the bitset class to make it easier
to use bit operations and possible to deal with collections of bits that are larger
than the longest integral type. The bitset class is defined in the bitset header.

17.2.1 Defining and Initializing bitsets
Table 17.2 (overleaf) lists the constructors for bitset. The bitset class is a class
template that, like the array class, has a fixed size (§ 9.2.4, p. 336). When we
define a bitset, we say how many bits the bitset will contain:

bitset<32> bitvec(1U); // 32 bits; low-order bit is 1, remaining bits are 0

The size must be a constant expression (§ 2.4.4, p. 65). This statement defines
bitvec as a bitset that holds 32 bits. Just as with the elements of a vector, the
bits in a bitset are not named. Instead, we refer to them positionally. The bits
are numbered starting at 0. Thus, bitvec has bits numbered 0 through 31. The
bits starting at 0 are referred to as the low-order bits, and those ending at 31 are
referred to as high-order bits.

Initializing a bitset from an unsigned Value

When we use an integral value as an initializer for a bitset, that value is con-
verted to unsigned long long and is treated as a bit pattern. The bits in the
bitset are a copy of that pattern. If the size of the bitset is greater than the
number of bits in an unsigned long long, then the remaining high-order bits
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Table 17.2: Ways to Initialize a bitset

bitset<n> b; b has n bits; each bit is 0. This constructor is a constexpr (§ 7.5.6,
p. 299).

bitset<n> b(u); b is a copy of the n low-order bits of unsigned long long value u. If
n is greater than the size of an unsigned long long, the high-order
bits beyond those in the unsigned long long are set to zero. This
constructor is a constexpr (§ 7.5.6, p. 299).

bitset<n> b(s, pos, m, zero, one);
b is a copy of the m characters from the string s starting at position
pos. s may contain only the characters zero and one; if s contains
any other character, throws invalid_argument. The characters are
stored in b as zeor and one, respectively. pos defaults to 0, m defaults
to string::npos, zero defaults to ’0’, and one defaults to ’1’.

bitset<n> b(cp, pos, m, zero, one);
Same as the previous constructor, but copies from the character array
to which cp points. If m is not supplied, then cp must point to a C-style
string. If m is supplied, there must be at least m characters that are zero
or one starting at cp.

The constructors that take a string or character pointer are explicit (§ 7.5.4, p. 296).
The ability to specify alternate characters for 0 and 1 was added in the new standard.

are set to zero. If the size of the bitset is less than that number of bits, then only
the low-order bits from the given value are used; the high-order bits beyond the
size of the bitset object are discarded:

// bitvec1 is smaller than the initializer; high-order bits from the initializer are discarded
bitset<13> bitvec1(0xbeef); // bits are 1111011101111
// bitvec2 is larger than the initializer; high-order bits in bitvec2 are set to zero
bitset<20> bitvec2(0xbeef); // bits are 00001011111011101111
// on machines with 64-bit long long 0ULL is 64 bits of 0, so ~0ULL is 64 ones
bitset<128> bitvec3(~0ULL); // bits 0 . . . 63 are one; 63 . . . 127 are zero

Initializing a bitset from a string

We can initialize a bitset from either a string or a pointer to an element in a
character array. In either case, the characters represent the bit pattern directly. As
usual, when we use strings to represent numbers, the characters with the lowest
indices in the string correspond to the high-order bits, and vice versa:

bitset<32> bitvec4("1100"); // bits 2 and 3 are 1, all others are 0

If the string contains fewer characters than the size of the bitset, the high-
order bits are set to zero.

The indexing conventions of strings and bitsets are inversely re-
lated: The character in the stringwith the highest subscript (the right-
most character) is used to initialize the low-order bit in the bitset (the
bit with subscript 0). When you initialize a bitset from a string, it
is essential to remember this difference.
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We need not use the entire string as the initial value for the bitset. Instead,
we can use a substring as the initializer:

string str("1111111000000011001101");
bitset<32> bitvec5(str, 5, 4); // four bits starting at str[5], 1100
bitset<32> bitvec6(str, str.size()-4); // use last four characters

Here bitvec5 is initialized by the substring in str starting at str[5] and con-
tinuing for four positions. As usual, the right-most character of the substring
represents the lowest-order bit. Thus, bitvec5 is initialized with bit positions 3
through 0 set to 1100 and the remaining bits set to 0. The initializer for bitvec6
passes a string and a starting point, so bitvec6 is initialized from the characters
in str starting four from the end of str. The remainder of the bits in bitvec6
are initialized to zero. We can view these initializations as

str
1 1 1 1 1 1

str[5]

elements copied
from str︷ ︸︸ ︷
�

(first element)

1 0 0

str[5+4]

�

(one past last element)

0 0 0 . . .
bitvec5

. . . 0 0 0 0 0 0 0

bitvec5[4]

initialized
from str︷ ︸︸ ︷
�

1 1 0 0

bitvec5[0]

�

str
. . . 1 0 0 1 1 0 1

str.size()-4

elements copied
from str︷ ︸︸ ︷
�

bitvec6
. . . 0 0 0 0 0 0 0

bitvec6[4]

initialized
from str︷ ︸︸ ︷
�

1 1 0 1

bitvec6[0]

�

EXE R C I S E S SE C TI O N 17.2.1

Exercise 17.9: Explain the bit pattern each of the following bitset objects contains:

(a) bitset<64> bitvec(32);
(b) bitset<32> bv(1010101);
(c) string bstr; cin >> bstr; bitset<8>bv(bstr);

17.2.2 Operations on bitsets
The bitset operations (Table 17.3 (overleaf)) define various ways to test or set one
or more bits. The bitset class also supports the bitwise operators that we covered
in § 4.8 (p. 152). The operators have the same meaning when applied to bitset
objects as the built-in operators have when applied to unsigned operands.
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Table 17.3: bitset Operations

b.any() Is any bit in b on?
b.all() Are all the bits in b on?
b.none() Are no bits in b on?
b.count() Number of bits in b that are on.
b.size() A constexpr function (§ 2.4.4, p. 65) that returns the number of bits in b.
b.test(pos) Returns true if bit at position pos is on, false otherwise.
b.set(pos, v)
b.set()

Sets the bit at position pos to the bool value v. v defaults to true. If no
arguments, turns on all the bits in b.

b.reset(pos)
b.reset()

Turns off the bit at position pos or turns off all the bits in b.

b.flip(pos)
b.flip()

Changes the state of the bit at position pos or of every bit in b.

b[pos] Gives access to the bit in b at position pos; if b is const, then b[pos]
returns a bool value true if the bit is on, false otherwise.

b.to_ulong()
b.to_ullong()

Returns an unsigned long or an unsigned long long with the same
bits as in b. Throws overflow_error if the bit pattern in b won’t fit in
the indicated result type.

b.to_string(zero, one)
Returns a string representing the bit pattern in b. zero and one
default to ’0’ and ’1’ and are used to represent the bits 0 and 1 in b.

os << b Prints the bits in b as the characters 1 or 0 to the stream os.

is >> b Reads characters from is into b. Reading stops when the next character
is not a 1 or 0 or when b.size() bits have been read.

Several operations—count, size, all, any, and none—take no arguments
and return information about the state of the entire bitset. Others—set, reset,
and flip—change the state of the bitset. The members that change the bitset
are overloaded. In each case, the version that takes no arguments applies the given
operation to the entire set; the versions that take a position apply the operation to
the given bit:

bitset<32> bitvec(1U); // 32 bits; low-order bit is 1, remaining bits are 0
bool is_set = bitvec.any(); // true, one bit is set
bool is_not_set = bitvec.none(); // false, one bit is set
bool all_set = bitvec.all(); // false, only one bit is set
size_t onBits = bitvec.count(); // returns 1
size_t sz = bitvec.size(); // returns 32

bitvec.flip(); // reverses the value of all the bits in bitvec
bitvec.reset(); // sets all the bits to 0
bitvec.set(); // sets all the bits to 1

The any operation returns true if one or more bits of the bitset object are turned
on—that is, are equal to 1. Conversely, none returns true if all the bits are zero.
The new standard introduced the all operation, which returns true if all the bits
are on. The count and size operations return a size_t (§ 3.5.2, p. 116) equal to
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the number of bits that are set, or the total number of bits in the object, respectively.
The size function is a constexpr and so can be used where a constant expression
is required (§ 2.4.4, p. 65).

The flip, set, reset, and test members let us read or write the bit at a
given position:

bitvec.flip(0); // reverses the value of the first bit
bitvec.set(bitvec.size() - 1); // turns on the last bit
bitvec.set(0, 0); // turns off the first bit
bitvec.reset(i); // turns off the ith bit
bitvec.test(0); // returns false because the first bit is off

The subscript operator is overloaded on const. The const version returns
a bool value true if the bit at the given index is on, false otherwise. The
nonconst version returns a special type defined by bitset that lets us manip-
ulate the bit value at the given index position:

bitvec[0] = 0; // turn off the bit at position 0
bitvec[31] = bitvec[0]; // set the last bit to the same value as the first bit
bitvec[0].flip(); // flip the value of the bit at position 0
~bitvec[0]; // equivalent operation; flips the bit at position 0
bool b = bitvec[0]; // convert the value of bitvec[0] to bool

Retrieving the Value of a bitset

The to_ulong and to_ullong operations return a value that holds the same
bit pattern as the bitset object. We can use these operations only if the size of
the bitset is less than or equal to the corresponding size, unsigned long for
to_ulong and unsigned long long for to_ullong:

unsigned long ulong = bitvec3.to_ulong();
cout << "ulong = " << ulong << endl;

These operations throw an overflow_error exception (§ 5.6, p. 193)
if the value in the bitset does not fit in the specified type.

bitset IO Operators

The input operator reads characters from the input stream into a temporary object
of type string. It reads until it has read as many characters as the size of the cor-
responding bitset, or it encounters a character other than 1 or 0, or it encounters
end-of-file or an input error. The bitset is then initialized from that temporary
string (§ 17.2.1, p. 724). If fewer characters are read than the size of the bitset,
the high-order bits are, as usual, set to 0.

The output operator prints the bit pattern in a bitset object:

bitset<16> bits;
cin >> bits; // read up to 16 1 or 0 characters from cin
cout << "bits: " << bits << endl; // print what we just read
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Using bitsets

To illustrate using bitsets, we’ll reimplement the grading code from § 4.8 (p. 154)
that used an unsignedlong to represent the pass/fail quiz results for 30 students:

bool status;
// version using bitwise operators
unsigned long quizA = 0; // this value is used as a collection of bits
quizA |= 1UL << 27; // indicate student number 27 passed
status = quizA & (1UL << 27); // check how student number 27 did
quizA &= ~(1UL << 27); // student number 27 failed

// equivalent actions using the bitset library
bitset<30> quizB; // allocate one bit per student; all bits initialized to 0
quizB.set(27); // indicate student number 27 passed
status = quizB[27]; // check how student number 27 did
quizB.reset(27); // student number 27 failed

EXE R C I S E S SE C TI O N 17.2.2

Exercise 17.10: Using the sequence 1, 2, 3, 5, 8, 13, 21, initialize a bitset that has a
1 bit in each position corresponding to a number in this sequence. Default initialize
another bitset and write a small program to turn on each of the appropriate bits.

Exercise 17.11: Define a data structure that contains an integral object to track re-
sponses to a true/false quiz containing 10 questions. What changes, if any, would
you need to make in your data structure if the quiz had 100 questions?

Exercise 17.12: Using the data structure from the previous question, write a function
that takes a question number and a value to indicate a true/false answer and updates
the quiz results accordingly.

Exercise 17.13: Write an integral object that contains the correct answers for the
true/false quiz. Use it to generate grades on the quiz for the data structure from the
previous two exercises.

17.3 Regular Expressions
A regular expression is a way of describing a sequence of characters. Regular
expressions are a stunningly powerful computational device. However, describing
the languages used to define regular expressions is well beyond the scope of this
Primer. Instead, we’ll focus on how to use the C++ regular-expression library (RE
library), which is part of the new library. The RE library, which is defined in the
regex header, involves several components, listed in Table 17.4.

If you are not already familiar with using regular expressions, you
might want to skim this section to get an idea of the kinds of things
regular expressions can do.
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Table 17.4: Regular Expression Library Components

regex Class that represents a regular expression
regex_match Matches a sequence of characters against a regular expression
regex_search Finds the first subsequence that matches the regular expression
regex_replace Replaces a regular expression using a given format
sregex_iterator Iterator adaptor that calls regex_search to iterate

through the matches in a string
smatch Container class that holds the results of searching a string
ssub_match Results for a matched subexpression in a string

The regex class represents a regular expression. Aside from initialization and
assignment, regex has few operations. The operations on regex are listed in
Table 17.6 (p. 731).

The functions regex_match and regex_search determine whether a given
character sequence matches a given regex. The regex_match function returns
true if the entire input sequence matches the expression; regex_search returns
true if there is a substring in the input sequence that matches. There is also a
regex_replace function that we’ll describe in § 17.3.4 (p. 741).

The arguments to the regex functions are described in Table 17.5 (overleaf).
These functions return a bool and are overloaded: One version takes an additional
argument of type smatch. If present, these functions store additional information
about a successful match in the given smatch object.

17.3.1 Using the Regular Expression Library
As a fairly simple example, we’ll look for words that violate a well-known spelling
rule of thumb, “i before e except after c”:

// find the characters ei that follow a character other than c
string pattern("[^c]ei");
// we want the whole word in which our pattern appears
pattern = "[[:alpha:]]*" + pattern + "[[:alpha:]]*";

regex r(pattern); // construct a regex to find pattern
smatch results; // define an object to hold the results of a search

// define a string that has text that does and doesn’t match pattern
string test_str = "receipt freind theif receive";
// use r to find a match to pattern in test_str
if (regex_search(test_str, results, r)) // if there is a match

cout << results.str() << endl; // print the matching word

We start by defining a string to hold the regular expression we want to find.
The regular expression [^c] says we want any character that is not a ’c’, and
[^c]ei says we want any such letter that is followed by the letters ei. This pat-
tern describes strings containing exactly three characters. We want the entire word
that contains this pattern. To match the word, we need a regular expression that
will match the letters that come before and after our three-letter pattern.
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Table 17.5: Arguments to regex_search and regex_match

Note: These operations return bool indicating whether a match was found.

(seq, m, r, mft)
(seq, r, mft)

Look for the regular expression in the regex object r in the character
sequence seq. seq can be a string, a pair of iterators denoting a range,
or a pointer to a null-terminated character array.
m is a match object, which is used to hold details about the match.
m and seq must have compatible types (see § 17.3.1 (p. 733)).
mft is an optional regex_constants::match_flag_type value.
These values, listed in Table 17.13 (p. 744), affect the match process.

That regular expression consists of zero or more letters followed by our origi-
nal three-letter pattern followed by zero or more additional characters. By default,
the regular-expression language used by regex objects is ECMAScript. In EC-
MAScript, the pattern [[:alpha:]] matches any alphabetic character, and the
symbols + and * signify that we want “one or more” or “zero or more” matches,
respectively. Thus, [[:alpha:]]* will match zero or more characters.

Having stored our regular expression in pattern, we use it to initialize a
regex object named r. We next define a string that we’ll use to test our reg-
ular expression. We initialize test_str with words that match our pattern (e.g.,
“freind” and “theif”) and words (e.g., “receipt” and “receive”) that don’t. We also
define an smatch object named results, which we will pass to regex_search.
If a match is found, resultswill hold the details about where the match occurred.

Next we call regex_search. If regex_search finds a match, it returns
true. We use the str member of results to print the part of test_str that
matched our pattern. The regex_search function stops looking as soon as it
finds a matching substring in the input sequence. Thus, the output will be

freind

§ 17.3.2 (p. 734) will show how to find all the matches in the input.

Specifying Options for a regex Object

When we define a regex or call assign on a regex to give it a new value, we
can specify one or more flags that affect how the regex operates. These flags
control the processing done by that object. The last six flags listed in Table 17.6
indicate the language in which the regular expression is written. Exactly one of
the flags that specify a language must be set. By default, the ECMAScript flag
is set, which causes the regex to use the ECMA-262 specification, which is the
regular expression language that many Web browsers use.

The other three flags let us specify language-independent aspects of the regular-
expression processing. For example, we can indicate that we want the regular ex-
pression to be matched in a case-independent manner.

As one example, we can use the icase flag to find file names that have a
particular file extension. Most operating systems recognize extensions in a case-
independent manner—we can store a C++ program in a file that ends in .cc, or
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Table 17.6: regex (and wregex) Operations

regex r(re)
regex r(re, f)

re represents a regular expression and can be a string, a pair of iterators
denoting a range of characters, a pointer to a null-terminated character
array, a character pointer and a count, or a braced list of characters. f
are flags that specify how the object will execute. f is set from the values
listed below. If f is not specified, it defaults to ECMAScript.

r1 = re Replace the regular expression in r1 with re. re represents a regular
expression and can be another regex, a string, a pointer to a
null-terminated character array, or a braced list of characters.

r1.assign(re, f) Same effect as using the assignment operator (=). re and optional flag f
same as corresponding arguments to regex constructors.

r.mark_count() Number of subexpressions (which we’ll cover in § 17.3.3 (p. 738)) in r.
r.flags() Returns the flags set for r.
Note: Constructors and assignment operations may throw exceptions of type regex_error.

Flags Specified When a regex Is Defined
Defined in regex and regex_constants::syntax_option_type

icase Ignore case during the match
nosubs Don’t store subexpression matches
optimize Favor speed of execution over speed of construction
ECMAScript Use grammar as specified by ECMA-262
basic Use POSIX basic regular-expression grammar
extended Use POSIX extended regular-expression grammar
awk Use grammar from the POSIX version of the awk language
grep Use grammar from the POSIX version of grep
egrep Use grammar from the POSIX version of egrep

.Cc, or .cC, or .CC. We’ll write a regular expression to recognize any of these
along with other common file extensions as follows:

// one or more alphanumeric characters followed by a ’.’ followed by "cpp" or "cxx" or "cc"
regex r("[[:alnum:]]+\\.(cpp|cxx|cc)$", regex::icase);
smatch results;
string filename;
while (cin >> filename)

if (regex_search(filename, results, r))
cout << results.str() << endl; // print the current match

This expression will match a string of one or more letters or digits followed by a
period and followed by one of three file extensions. The regular expression will
match the file extensions regardless of case.

Just as there are special characters in C++ (§ 2.1.3, p. 39), regular-expression
languages typically also have special characters. For example, the dot (.) character
usually matches any character. As we do in C++, we can escape the special nature
of a character by preceding it with a backslash. Because the backslash is also a
special character in C++, we must use a second backslash inside a string literal to
indicate to C++ that we want a backslash. Hence, we must write \\. to represent
a regular expression that will match a period.
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Errors in Specifying or Using a Regular Expression

We can think of a regular expression as itself a “program” in a simple program-
ming language. That language is not interpreted by the C++ compiler. Instead,
a regular expression is “compiled” at run time when a regex object is initialized
with or assigned a new pattern. As with any programming language, it is possible
that the regular expressions we write can have errors.

It is important to realize that the syntactic correctness of a regular ex-
pression is evaluated at run time.

If we make a mistake in writing a regular expression, then at run time the library
will throw an exception (§ 5.6, p. 193) of type regex_error. Like the standard
exception types, regex_error has a what operation that describes the error that
occurred (§ 5.6.2, p. 195). A regex_error also has a member named code that
returns a numeric code corresponding to the type of error that was encountered.
The values code returns are implementation defined. The standard errors that the
RE library can throw are listed in Table 17.7.

For example, we might inadvertently omit a bracket in a pattern:

try {
// error: missing close bracket after alnum; the constructor will throw
regex r("[[:alnum:]+\\.(cpp|cxx|cc)$", regex::icase);

} catch (regex_error e)
{ cout << e.what() << "\ncode: " << e.code() << endl; }

When run on our system, this program generates

regex_error(error_brack):
The expression contained mismatched [ and ].
code: 4

Table 17.7: Regular Expression Error Conditions

Defined in regex and in regex_constants::error_type
error_collate Invalid collating element request
error_ctype Invalid character class
error_escape Invalid escape character or trailing escape
error_backref Invalid back reference
error_brack Mismatched bracket ([ or ])
error_paren Mismatched parentheses (( or ))
error_brace Mismatched brace ({ or })
error_badbrace Invalid range inside a { }
error_range Invalid character range (e.g., [z-a])
error_space Insufficient memory to handle this regular expression
error_badrepeat A repetition character (*, ?, +, or {) was not preceded

by a valid regular expression
error_complexity The requested match is too complex
error_stack Insufficient memory to evaluate a match
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Our compiler defines the code member to return the position of the error as
listed in Table 17.7, counting, as usual, from zero.

ADVICE: AVOID CREATING UNNECESSARY REGULAR EXPRESSIONS

As we’ve seen, the “program” that a regular expression represents is compiled at run
time, not at compile time. Compiling a regular expression can be a surprisingly slow
operation, especially if you’re using the extended regular-expression grammar or are
using complicated expressions. As a result, constructing a regex object and assigning
a new regular expression to an existing regex can be time-consuming. To minimize
this overhead, you should try to avoid creating more regex objects than needed. In
particular, if you use a regular expression in a loop, you should create it outside the
loop rather than recompiling it on each iteration.

Regular Expression Classes and the Input Sequence Type

We can search any of several types of input sequence. The input can be ordi-
nary char data or wchar_t data and those characters can be stored in a library
string or in an array of char (or the wide character versions, wstring or ar-
ray of wchar_t). The RE library defines separate types that correspond to these
differing types of input sequences.

For example, the regex class holds regular expressions of type char. The
library also defines a wregex class that holds type wchar_t and has all the same
operations as regex. The only difference is that the initializers of a wregex must
use wchar_t instead of char.

The match and iterator types (which we will cover in the following sections)
are more specific. These types differ not only by the character type, but also
by whether the sequence is in a library string or an array: smatch represents
string input sequences; cmatch, character array sequences; wsmatch, wide
string (wstring) input; and wcmatch, arrays of wide characters.

Table 17.8: Regular Expression Library Classes

If Input Sequence Has Type Use Regular Expression Classes
string regex, smatch, ssub_match, and sregex_iterator
const char* regex, cmatch, csub_match, and cregex_iterator
wstring wregex, wsmatch, wssub_match, and wsregex_iterator
const wchar_t* wregex, wcmatch, wcsub_match, and wcregex_iterator

The important point is that the RE library types we use must match the type of
the input sequence. Table 17.8 indicates which types correspond to which kinds of
input sequences. For example:

regex r("[[:alnum:]]+\\.(cpp|cxx|cc)$", regex::icase);
smatch results; // will match a string input sequence, but not char*
if (regex_search("myfile.cc", results, r)) // error: char* input

cout << results.str() << endl;
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The (C++) compiler will reject this code because the type of the match argument
and the type of the input sequence do not match. If we want to search a character
array, then we must use a cmatch object:

cmatch results; // will match character array input sequences
if (regex_search("myfile.cc", results, r))

cout << results.str() << endl; // print the current match

In general, our programs will use string input sequences and the correspond-
ing string versions of the RE library components.

EXE R C I S E S SE C TI O N 17.3.1

Exercise 17.14: Write several regular expressions designed to trigger various errors.
Run your program to see what output your compiler generates for each error.

Exercise 17.15: Write a program using the pattern that finds words that violate the “i
before e except after c” rule. Have your program prompt the user to supply a word
and indicate whether the word is okay or not. Test your program with words that do
and do not violate the rule.

Exercise 17.16: What would happen if your regex object in the previous program
were initialized with "[^c]ei"? Test your program using that pattern to see whether
your expectations were correct.

17.3.2 The Match and Regex Iterator Types
The program on page 729 that found violations of the “i before e except after c”
grammar rule printed only the first match in its input sequence. We can get all the
matches by using an sregex_iterator. The regex iterators are iterator adaptors
(§ 9.6, p. 368) that are bound to an input sequence and a regex object. As described
in Table 17.8 (on the previous page), there are specific regex iterator types that cor-
respond to each of the different types of input sequences. The iterator operations
are described in Table 17.9 (p. 736).

When we bind an sregex_iterator to a string and a regex object, the
iterator is automatically positioned on the first match in the given string. That
is, the sregex_iterator constructor calls regex_search on the given string
and regex. When we dereference the iterator, we get an smatch object corre-
sponding to the results from the most recent search. When we increment the itera-
tor, it calls regex_search to find the next match in the input string.

Using an sregex_iterator

As an example, we’ll extend our program to find all the violations of the “i before
e except after c” grammar rule in a file of text. We’ll assume that the string
named file holds the entire contents of the input file that we want to search. This
version of the program will use the same pattern as our original one, but will
use a sregex_iterator to do the search:
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// find the characters ei that follow a character other than c
string pattern("[^c]ei");
// we want the whole word in which our pattern appears
pattern = "[[:alpha:]]*" + pattern + "[[:alpha:]]*";

regex r(pattern, regex::icase); // we’ll ignore case in doing the match

// it will repeatedly call regex_search to find all matches in file
for (sregex_iterator it(file.begin(), file.end(), r), end_it;

it != end_it; ++it)
cout << it->str() << endl; // matched word

The for loop iterates through each match to r inside file. The initializer in the
for defines it and end_it. When we define it, the sregex_iterator con-
structor calls regex_search to position it on the first match in file. The empty
sregex_iterator, end_it, acts as the off-the-end iterator. The increment in the
for “advances” the iterator by calling regex_search. When we dereference the
iterator, we get an smatch object representing the current match. We call the str
member of the match to print the matching word.

We can think of this loop as jumping from match to match as illustrated in
Figure 17.1.

Figure 17.1: Using an sregex_iterator

match1 match2 . . . matchi . . . matchn

file.begin()

�

file.end()

�

sregex_iterator it(file.begin(), file.end(), r)

it initialized to first match

�

last match

�

Using the Match Data

If we run this loop on test_str from our original program, the output would be

freind
theif

However, finding just the words that match our expression is not so useful. If
we ran the program on a larger input sequence—for example, on the text of this
chapter—we’d want to see the context within which the word occurs, such as

hey read or write according to the type
>>> being <<<

handled. The input operators ignore whi

In addition to letting us print the part of the input string that was matched, the
match classes give us more detailed information about the match. The operations
on these types are listed in Table 17.10 (p. 737) and Table 17.11 (p. 741).
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Table 17.9: sregex_iterator Operations

These operations also apply to cregex_iterator,
wsregex_iterator, and wcregex_iterator

sregex_iterator it(b, e, r); it is an sregx_iterator that iterates through the
string denoted by iterators b and e. Calls
regex_search(b, e, r) to position it on the first
match in the input.

sregex_iterator end; Off-the-end iterator for sregex_iterator.

*it
it->

Returns a reference to the smatch object or a pointer to the smatch object
from the most recent call to regex_search.

++it
it++

Calls regex_search on the input sequence starting just after the current
match. The prefix version returns a reference to the incremented iterator;
postfix returns the old value.

it1 == it2
it1 != it2

Two sregex_iterators are equal if they are both the off-the-end iterator.
Two non-end iterators are equal if they are constructed from the same input
sequence and regex object.

We’ll have more to say about the smatch and ssub_match types in the next
section. For now, what we need to know is that these types let us see the con-
text of a match. The match types have members named prefix and suffix,
which return a ssub_match object representing the part of the input sequence
ahead of and after the current match, respectively. A ssub_match object has
members named str and length, which return the matched string and size
of that string, respectively. We can use these operations to rewrite the loop of
our grammar program:

// same for loop header as before
for (sregex_iterator it(file.begin(), file.end(), r), end_it;

it != end_it; ++it) {
auto pos = it->prefix().length(); // size of the prefix
pos = pos > 40 ? pos - 40 : 0; // we want up to 40 characters
cout << it->prefix().str().substr(pos) // last part of the prefix

<< "\n\t\t>>> " << it->str() << " <<<\n" // matched word
<< it->suffix().str().substr(0, 40) // first part of the suffix
<< endl;

}

The loop itself operates the same way as our previous program. What’s changed
is the processing inside the for, which is illustrated in Figure 17.2.

We call prefix, which returns an ssub_match object that represents the part
of file ahead of the current match. We call length on that ssub_match to find
out how many characters are in the part of file ahead of the match. Next we
adjust pos to be the index of the character 40 from the end of the prefix. If the
prefix has fewer than 40 characters, we set pos to 0, which means we’ll print the
entire prefix. We use substr (§ 9.5.1, p. 361) to print from the given position to
the end of the prefix.
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Figure 17.2: The smatch Object Representing a Particular Match

when it refers to the ith smatch object

it->str()

�

it->prefix().str() xxxeixxx it->suffix().str()

Having printed the characters that precede the match, we next print the match
itself with some additional formatting so that the matched word will stand out
in the output. After printing the matched portion, we print (up to) the first 40
characters in the part of file that comes after this match.

Table 17.10: smatch Operations

These operations also apply to the cmatch, wsmatch, wcmatch and the
corresponding csub_match, wssub_match, and wcsub_match types.

m.ready() true if m has been set by a call to regex_search or regex_match;
false otherwise. Operations on m are undefined if ready returns
false.

m.size() Zero if the match failed; otherwise, one plus the number of
subexpressions in the most recently matched regular expression.

m.empty() true if m.size() is zero.
m.prefix() An ssub_match representing the sequence before the match.
m.suffix() An ssub_match representing the part after the end of the match.
m.format(...) See Table 17.12 (p. 742).

In the operations that take an index, n defaults to zero and must be less than m.size().
The first submatch (the one with index 0) represents the overall match.

m.length(n) Size of the nth matched subexpression.
m.position(n) Distance of the nth subexpression from the start of the sequence.
m.str(n) The matched string for the nth subexpression.
m[n] ssub_match object corresponding to the nth subexpression.

m.begin(), m.end()
m.cbegin(), m.cend()

Iterators across the sub_match elements in m. As usual, cbegin
and cend return const_iterators.

EXE R C I S E S SE C TI O N 17.3.2

Exercise 17.17: Update your program so that it finds all the words in an input se-
quence that violiate the “ei” grammar rule.

Exercise 17.18: Revise your program to ignore words that contain “ei” but are not
misspellings, such as “albeit” and “neighbor.”
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17.3.3 Using Subexpressions
A pattern in a regular expression often contains one or more subexpressions. A
subexpression is a part of the pattern that itself has meaning. Regular-expression
grammars typically use parentheses to denote subexpressions.

As an example, the pattern that we used to match C++ files (§ 17.3.1, p. 730)
used parentheses to group the possible file extensions. Whenever we group al-
ternatives using parentheses, we are also declaring that those alternatives form a
subexpression. We can rewrite that expression so that it gives us access to the file
name, which is the part of the pattern that precedes the period, as follows:

// r has two subexpressions: the first is the part of the file name before the period
// the second is the file extension
regex r("([[:alnum:]]+)\\.(cpp|cxx|cc)$", regex::icase);

Our pattern now has two parenthesized subexpressions:

• ([[:alnum:]]+), which is a sequence of one or more characters

• (cpp| cxx| cc), which is the file extension

We can also rewrite the program from § 17.3.1 (p. 730) to print just the file name by
changing the output statement:

if (regex_search(filename, results, r))
cout << results.str(1) << endl; // print the first subexpression

As in our original program, we call regex_search to look for our pattern r in
the string named filename, and we pass the smatch object results to hold
the results of the match. If the call succeeds, then we print the results. However, in
this program, we print str(1), which is the match for the first subexpression.

In addition to providing information about the overall match, the match objects
provide access to each matched subexpression in the pattern. The submatches
are accessed positionally. The first submatch, which is at position 0, represents
the match for the entire pattern. Each subexpression appears in order thereafter.
Hence, the file name, which is the first subexpression in our pattern, is at position
1, and the file extension is in position 2.

For example, if the file name is foo.cpp, then results.str(0) will hold
foo.cpp; results.str(1) will be foo; and results.str(2) will be cpp. In
this program, we want the part of the name before the period, which is the first
subexpression, so we print results.str(1).

Subexpressions for Data Validation

One common use for subexpressions is to validate data that must match a specific
format. For example, U.S. phone numbers have ten digits, consisting of an area
code and a seven-digit local number. The area code is often, but not always, en-
closed in parentheses. The remaining seven digits can be separated by a dash, a
dot, or a space; or not separated at all. We might want to allow data with any of
these formats and reject numbers in other forms. We’ll do a two-step process: First,
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we’ll use a regular expression to find sequences that might be phone numbers and
then we’ll call a function to complete the validation of the data.

Before we write our phone number pattern, we need to describe a few more
aspects of the ECMAScript regular-expression language:

• \{d} represents a single digit and \{d}{n} represents a sequence of n digits.
(E.g., \{d}{3} matches a sequence of three digits.)

• A collection of characters inside square brackets allows a match to any of
those characters. (E.g., [-. ] matches a dash, a dot, or a space. Note that a
dot has no special meaning inside brackets.)

• A component followed by ’?’ is optional. (E.g., \{d}{3}[-. ]?\{d}{4}
matches three digits followed by an optional dash, period, or space, followed
by four more digits. This pattern would match 555-0132 or 555.0132 or
555 0132 or 5550132.)

• Like C++, ECMAScript uses a backslash to indicate that a character should
represent itself, rather than its special meaning. Because our pattern includes
parentheses, which are special characters in ECMAScript, we must represent
the parentheses that are part of our pattern as \( or \).

Because backslash is a special character in C++, each place that a \ appears in the
pattern, we must use a second backslash to indicate to C++ that we want a back-
slash. Hence, we write \\{d}{3} to represent the regular expression \{d}{3}.

In order to validate our phone numbers, we’ll need access to the components
of the pattern. For example, we’ll want to verify that if a number uses an opening
parenthesis for the area code, it also uses a close parenthesis after the area code.
That is, we’d like to reject a number such as (908.555.1800.

To get at the components of the match, we need to define our regular expression
using subexpressions. Each subexpression is marked by a pair of parentheses:

// our overall expression has seven subexpressions: ( ddd ) separator ddd separator dddd
// subexpressions 1, 3, 4, and 6 are optional; 2, 5, and 7 hold the number
"(\\()?(\\d{3})(\\))?([-. ])?(\\d{3})([-. ]?)(\\d{4})";

Because our pattern uses parentheses, and because we must escape backslashes,
this pattern can be hard to read (and write!). The easiest way to read it is to pick
off each (parenthesized) subexpression:

1. (\\()? an optional open parenthesis for the area code

2. (\\d{3}) the area code

3. (\\))? an optional close parenthesis for the area code

4. ([-. ])? an optional separator after the area code

5. (\\d{3}) the next three digits of the number

6. ([-. ])? another optional separator

7. (\\d{4}) the final four digits of the number
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The following code uses this pattern to read a file and find data that match our
overall phone pattern. It will call a function named valid to check whether the
number has a valid format:

string phone =
"(\\()?(\\d{3})(\\))?([-. ])?(\\d{3})([-. ]?)(\\d{4})";

regex r(phone); // a regex to find our pattern
smatch m;
string s;
// read each record from the input file
while (getline(cin, s)) {

// for each matching phone number
for (sregex_iterator it(s.begin(), s.end(), r), end_it;

it != end_it; ++it)
// check whether the number’s formatting is valid
if (valid(*it))

cout << "valid: " << it->str() << endl;
else

cout << "not valid: " << it->str() << endl;
}

Using the Submatch Operations

We’ll use submatch operations, which are outlined in Table 17.11, to write the
valid function. It is important to keep in mind that our pattern has seven
subexpressions. As a result, eachsmatch object will contain eight ssub_match el-
ements. The element at [0]represents the overall match; the elements [1]. . .[7]
represent each of the corresponding subexpressions.

When we call valid, we know that we have an overall match, but we do not
know which of our optional subexpressions were part of that match. The matched
member of the ssub_match corresponding to a particular subexpression is true
if that subexpression is part of the overall match.

In a valid phone number, the area code is either fully parenthesized or not
parenthesized at all. Therefore, the work valid does depends on whether the
number starts with a parenthesis or not:

bool valid(const smatch& m)
{

// if there is an open parenthesis before the area code
if(m[1].matched)

// the area code must be followed by a close parenthesis
// and followed immediately by the rest of the number or a space
return m[3].matched

&& (m[4].matched == 0 || m[4].str() == " ");
else

// then there can’t be a close after the area code
// the delimiters between the other two components must match
return !m[3].matched

&& m[4].str() == m[6].str();
}
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Table 17.11: Submatch Operations

Note: These operations apply to ssub_match, csub_match, wssub_match, wcsub_match
matched A public bool data member that indicates whether this ssub_match was

matched.
first
second

public data members that are iterators to the start and one past the end of the
matching sequence. If there was no match, then first and second are equal.

length() The size of this match. Returns 0 if matched is false.
str() Returns a string containing the matched portion of the input. Returns the

empty string if matched is false.

s = ssub Convert the ssub_match object ssub to the string s. Equivalent to s =
ssub.str(). The conversion operator is not explicit (§ 14.9.1, p. 581).

We start by checking whether the first subexpression (i.e., the open parenthesis)
matched. That subexpression is in m[1]. If it matched, then the number starts with
an open parenthesis. In this case, the overall number is valid if the subexpression
following the area code also matched (meaning that there was a close parenthesis
after the area code). Moreover, if the number is correctly parenthesized, then the
next character must be a space or the first digit in the next part of the number.

If m[1] didn’t match (i.e., there was no open parenthesis), the subexpression
following the area code must also be empty. If it’s empty, then the number is valid
if the remaining separators are equal and not otherwise.

EXE R C I S E S SE C TI O N 17.3.3

Exercise 17.19: Why is it okay to call m[4].str() without first checking whether
m[4] was matched?

Exercise 17.20: Write your own version of the program to validate phone numbers.

Exercise 17.21: Rewrite your phone number program from § 8.3.2 (p. 323) to use the
valid function defined in this section.

Exercise 17.22: Rewrite your phone program so that it allows any number of white-
space characters to separate the three parts of a phone number.

Exercise 17.23: Write a regular expression to find zip codes. A zip code can have five
or nine digits. The first five digits can be separated from the remaining four by a dash.

17.3.4 Using regex_replace
Regular expressions are often used when we need not only to find a given sequence
but also to replace that sequence with another one. For example, we might want to
translate U.S. phone numbers into the form “ddd.ddd.dddd,” where the area code
and next three digits are separated by a dot.
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When we want to find and replace a regular expression in the input sequence,
we call regex_replace. Like the search functions, regex_replace, which is
described in Table 17.12, takes an input character sequence and a regex object.
We must also pass a string that describes the output we want.

We compose a replacement string by including the characters we want, inter-
mixed with subexpressions from the matched substring. In this case, we want to
use the second, fifth, and seventh subexpressions in our replacement string. We’ll
ignore the first, third, fourth, and sixth, because these were used in the original
formatting of the number but are not part of our replacement format. We refer to a
particular subexpression by using a $ symbol followed by the index number for a
subexpression:

string fmt = "$2.$5.$7"; // reformat numbers to ddd.ddd.dddd

We can use our regular-expression pattern and the replacement string as follows:

regex r(phone); // a regex to find our pattern
string number = "(908) 555-0132";
cout << regex_replace(number, r, fmt) << endl;

The output from this program is

908.555.0132

Table 17.12: Regular Expression Replace Operations

m.format(dest, fmt, mft)
m.format(fmt, mft)

Produces formatted output using the format string fmt, the
match in m, and the optional match_flag_type flags in
mft. The first version writes to the output iterator dest
(§ 10.5.1, p. 410) and takes fmt that is either a string or a
pair of pointers denoting a range in a character array. The
second version returns a string that holds the output and
takes fmt that is a string or a pointer to a null-terminated
character array. mft defaults to format_default.

regex_replace
(dest, seq, r, fmt, mft)
regex_replace
(seq, r, fmt, mft)

Iterates through seq, using regex_search to find successive
matches to regex r. Uses the format string fmt and optional
match_flag_type flags in mft to produce its output. The
first version writes to the output iterator dest, and takes a
pair of iterators to denote seq. The second returns a string
that holds the output and seq can be either a string or a
pointer to a null-terminated character array. In all cases, fmt
can be either a string or a pointer to a null-terminated char-
acter array, and mft defaults to match_default.

Replacing Only Part of the Input Sequence

A more interesting use of our regular-expression processing would be to replace
phone numbers that are embedded in a larger file. For example, we might have a
file of names and phone number that had data like this:
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morgan (201) 555-0168 862-555-0123
drew (973)555.0130
lee (609) 555-0132 2015550175 800.555-0100

that we want to transform to data like this:

morgan 201.555.0168 862.555.0123
drew 973.555.0130
lee 609.555.0132 201.555.0175 800.555.0100

We can generate this transformation with the following program:

int main()
{

string phone =
"(\\()?(\\d{3})(\\))?([-. ])?(\\d{3})([-. ])?(\\d{4})";

regex r(phone); // a regex to find our pattern
smatch m;
string s;
string fmt = "$2.$5.$7"; // reformat numbers to ddd.ddd.dddd
// read each record from the input file
while (getline(cin, s))

cout << regex_replace(s, r, fmt) << endl;
return 0;

}

We read each record into s and hand that record to regex_replace. This func-
tion finds and transforms all the matches in its input sequence.

Flags to Control Matches and Formatting

Just as the library defines flags to direct how to process a regular expression, the
library also defines flags that we can use to control the match process or the format-
ting done during a replacement. These values are listed in Table 17.13 (overleaf).
These flags can be passed to the regex_search or regex_match functions or to
the format members of class smatch.

The match and format flags have type match_flag_type. These values are
defined in a namespace named regex_constants. Like placeholders, which
we used with bind (§ 10.3.4, p. 399), regex_constants is a namespace defined
inside the std namespace. To use a name from regex_constants, we must
qualify that name with the names of both namespaces:

using std::regex_constants::format_no_copy;

This declaration says that when our code uses format_no_copy, we want the ob-
ject of that name from the namespace std::regex_constants. We can instead
provide the alternative form of using that we will cover in § 18.2.2 (p. 792):

using namespace std::regex_constants;
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Table 17.13: Match Flags

Defined in regex_constants::match_flag_type
match_default Equivalent to format_default
match_not_bol Don’t treat the first character as the beginning of the line
match_not_eol Don’t treat the last character as the end of the line
match_not_bow Don’t treat the first character as the beginning of a word
match_not_eow Don’t treat the last character as the end of a word
match_any If there is more than one match, any match can be returned
match_not_null Don’t match an empty sequence
match_continuous The match must begin with the first character in the input
match_prev_avail The input sequence has characters before the first
format_default Replacement string uses the ECMAScript rules
format_sed Replacement string uses the rules from POSIX sed
format_no_copy Don’t output the unmatched parts of the input
format_first_only Replace only the first occurrence

Using Format Flags

By default, regex_replace outputs its entire input sequence. The parts that
don’t match the regular expression are output without change; the parts that do
match are formatted as indicated by the given format string. We can change this
default behavior by specifying format_no_copy in the call to regex_replace:

// generate just the phone numbers: use a new format string
string fmt2 = "$2.$5.$7 "; // put space after the last number as a separator
// tell regex_replace to copy only the text that it replaces
cout << regex_replace(s, r, fmt2, format_no_copy) << endl;

Given the same input, this version of the program generates

201.555.0168 862.555.0123
973.555.0130
609.555.0132 201.555.0175 800.555.0100

EXE R C I S E S SE C TI O N 17.3.4

Exercise 17.24: Write your own version of the program to reformat phone numbers.

Exercise 17.25: Rewrite your phone program so that it writes only the first phone
number for each person.

Exercise 17.26: Rewrite your phone program so that it writes only the second and
subsequent phone numbers for people with more than one phone number.

Exercise 17.27: Write a program that reformats a nine-digit zip code as ddddd-dddd.
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17.4 Random Numbers
Programs often need a source of random numbers. Prior to the new standard,
both C and C++ relied on a simple C library function named rand. That function
produces pseudorandom integers that are uniformly distributed in the range from
0 to a system-dependent maximum value that is at least 32767.

The rand function has several problems: Many, if not most, programs need
random numbers in a different range from the one produced by rand. Some ap-
plications require random floating-point numbers. Some programs need numbers
that reflect a nonuniform distribution. Programmers often introduce nonrandom-
ness when they try to transform the range, type, or distribution of the numbers
generated by rand.

The random-number library, defined in the random header, solves these prob-
lems through a set of cooperating classes: random-number engines and random-
number distribution classes. These clases are described in Table 17.14. An engine
generates a sequence of unsigned random numbers. A distribution uses an en-
gine to generate random numbers of a specified type, in a given range, distributed
according to a particular probability distribution.

C++ programs should not use the library rand function. Instead, they
should use the default_random_engine along with an appropriate
distribution object.

Table 17.14: Random Number Library Components

Engine Types that generate a sequence of random unsigned integers
Distribution Types that use an engine to return numbers according to a

particular probability distribution

17.4.1 Random-Number Engines and Distribution
The random-number engines are function-object classes (§ 14.8, p. 571) that define
a call operator that takes no arguments and returns a random unsigned number.
We can generate raw random numbers by calling an object of a random-number
engine type:

default_random_engine e; // generates random unsigned integers
for (size_t i = 0; i < 10; ++i)

// e() "calls" the object to produce the next random number
cout << e() << " ";

On our system, this program generates:

16807 282475249 1622650073 984943658 1144108930 470211272 ...

Here, we defined an object named e that has type default_random_engine.
Inside the for, we call the object e to obtain the next random number.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

746 Specialized Library Facilities

The library defines several random-number engines that differ in terms of their
performance and quality of randomness. Each compiler designates one of these
engines as the default_random_engine type. This type is intended to be the
engine with the most generally useful properties. Table 17.15 lists the engine oper-
ations and the engine types defined by the standard are listed in § A.3.2 (p. 884).

For most purposes, the output of an engine is not directly usable, which is why
we described them earlier as raw random numbers. The problem is that the num-
bers usually span a range that differs from the one we need. Correctly transforming
the range of a random number is surprisingly hard.

Distribution Types and Engines

To get a number in a specified range, we use an object of a distribution type:

// uniformly distributed from 0 to 9 inclusive
uniform_int_distribution<unsigned> u(0,9);
default_random_engine e; // generates unsigned random integers
for (size_t i = 0; i < 10; ++i)

// u uses e as a source of numbers
// each call returns a uniformly distributed value in the specified range
cout << u(e) << " ";

This code produces output such as

0 1 7 4 5 2 0 6 6 9

Here we define u as a uniform_int_distribution<unsigned>. That type
generates uniformly distributed unsigned values. When we define an object of
this type, we can supply the minimum and maximum values we want. In this
program, u(0,9) says that we want numbers to be in the range 0 to 9 inclusive.
The random number distributions use inclusive ranges so that we can obtain every
possible value of the given integral type.

Like the engine types, the distribution types are also function-object classes.
The distribution types define a call operator that takes a random-number engine as
its argument. The distribution object uses its engine argument to produce random
numbers that the distribution object maps to the specified distribution.

Note that we pass the engine object itself, u(e). Had we written the call as
u(e()), we would have tried to pass the next value generated by e to u, which
would be a compile-time error. We pass the engine, not the next result of the en-
gine, because some distributions may need to call the engine more than once.

When we refer to a random-number generator, we mean the combina-
tion of a distribution object with an engine.

Comparing Random Engines and the rand Function

For readers familiar with the C library rand function, it is worth noting that the
output of calling a default_random_engine object is similar to the output of
rand. Engines deliver unsigned integers in a system-defined range. The range
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for rand is 0 to RAND_MAX. The range for an engine type is returned by calling the
min and max members on an object of that type:

cout << "min: " << e.min() << " max: " << e.max() << endl;

On our system this program produces the following output:

min: 1 max: 2147483646

Table 17.15: Random Number Engine Operations

Engine e; Default constructor; uses the default seed for the engine type
Engine e(s); Uses the integral value s as the seed
e.seed(s) Reset the state of the engine using the seed s

e.min()
e.max()

The smallest and largest numbers this generator will generate

Engine::result_type The unsigned integral type this engine generates

e.discard(u) Advance the engine by u steps; u has type unsigned long long

Engines Generate a Sequence of Numbers

Random number generators have one property that often confuses new users:
Even though the numbers that are generated appear to be random, a given gen-
erator returns the same sequence of numbers each time it is run. The fact that the
sequence is unchanging is very helpful during testing. On the other hand, pro-
grams that use random-number generators have to take this fact into account.

As one example, assume we need a function that will generate a vector of 100
random integers uniformly distributed in the range from 0 to 9. We might think
we’d write this function as follows:

// almost surely the wrong way to generate a vector of random integers
// output from this function will be the same 100 numbers on every call!
vector<unsigned> bad_randVec()
{

default_random_engine e;
uniform_int_distribution<unsigned> u(0,9);
vector<unsigned> ret;
for (size_t i = 0; i < 100; ++i)

ret.push_back(u(e));
return ret;

}

However, this function will return the same vector every time it is called:

vector<unsigned> v1(bad_randVec());
vector<unsigned> v2(bad_randVec());

// will print equal
cout << ((v1 == v2) ? "equal" : "not equal") << endl;
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This code will print equal because the vectors v1 and v2 have the same values.
The right way to write our function is to make the engine and associated distri-

bution objects static (§ 6.1.1, p. 205):

// returns a vector of 100 uniformly distributed random numbers
vector<unsigned> good_randVec()
{

// because engines and distributions retain state, they usually should be
// defined as static so that new numbers are generated on each call
static default_random_engine e;
static uniform_int_distribution<unsigned> u(0,9);
vector<unsigned> ret;
for (size_t i = 0; i < 100; ++i)

ret.push_back(u(e));
return ret;

}

Because e and u are static, they will hold their state across calls to the func-
tion. The first call will use the first 100 random numbers from the sequence u(e)
generates, the second call will get the next 100, and so on.

A given random-number generator always produces the same sequence
of numbers. A function with a local random-number generator should
make that generator (both the engine and distribution objects) static.
Otherwise, the function will generate the identical sequence on each call.

Seeding a Generator

The fact that a generator returns the same sequence of numbers is helpful during
debugging. However, once our program is tested, we often want to cause each run
of the program to generate different random results. We do so by providing a seed.
A seed is a value that an engine can use to cause it to start generating numbers at
a new point in its sequence.

We can seed an engine in one of two ways: We can provide the seed when we
create an engine object, or we can call the engine’s seed member:

default_random_engine e1; // uses the default seed
default_random_engine e2(2147483646); // use the given seed value

// e3 and e4 will generate the same sequence because they use the same seed
default_random_engine e3; // uses the default seed value
e3.seed(32767); // call seed to set a new seed value
default_random_engine e4(32767); // set the seed value to 32767
for (size_t i = 0; i != 100; ++i) {

if (e1() == e2())
cout << "unseeded match at iteration: " << i << endl;

if (e3() != e4())
cout << "seeded differs at iteration: " << i << endl;

}

Here we define four engines. The first two, e1 and e2, have different seeds and
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should generate different sequences. The second two, e3 and e4, have the same
seed value. These two objects will generate the same sequence.

Picking a good seed, like most things about generating good random numbers,
is surprisingly hard. Perhaps the most common approach is to call the system
time function. This function, defined in the ctime header, returns the number
of seconds since a given epoch. The time function takes a single parameter that
is a pointer to a structure into which to write the time. If that pointer is null, the
function just returns the time:

default_random_engine e1(time(0)); // a somewhat random seed

Because time returns time as the number of seconds, this seed is useful only for
applications that generate the seed at second-level, or longer, intervals.

Using time as a seed usually doesn’t work if the program is run repeat-
edly as part of an automated process; it might wind up with the same
seed several times.

EXE R C I S E S SE C TI O N 17.4.1

Exercise 17.28: Write a function that generates and returns a uniformly distributed
random unsigned int each time it is called.

Exercise 17.29: Allow the user to supply a seed as an optional argument to the func-
tion you wrote in the previous exercise.

Exercise 17.30: Revise your function again this time to take a minimum and maxi-
mum value for the numbers that the function should return.

17.4.2 Other Kinds of Distributions
The engines produce unsigned numbers, and each number in the engine’s range
has the same likelihood of being generated. Applications often need numbers of
different types or distributions. The library handles both these needs by defining
different distributions that, when used with an engine, produce the desired results.
Table 17.16 (overleaf) lists the operations supported by the distribution types.

Generating Random Real Numbers

Programs often need a source of random floating-point values. In particular, pro-
grams frequently need random numbers between zero and one.

The most common, but incorrect, way to obtain a random floating-point from
rand is to divide the result of rand() by RAND_MAX, which is a system-defined
upper limit that is the largest random number that rand can return. This technique
is incorrect because random integers usually have less precision than floating-
point numbers, in which case there are some floating-point values that will never
be produced as output.
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With the new library facilities, we can easily obtain a floating-point random
number. We define an object of type uniform_real_distribution and let the
library handle mapping random integers to random floating-point numbers. As
we did for uniform_int_distribution, we specify the minimum and maxi-
mum values when we define the object:

default_random_engine e; // generates unsigned random integers
// uniformly distributed from 0 to 1 inclusive
uniform_real_distribution<double> u(0,1);
for (size_t i = 0; i < 10; ++i)

cout << u(e) << " ";

This code is nearly identical to the previous program that generated unsigned
values. However, because we used a different distribution type, this version gen-
erates different results:

0.131538 0.45865 0.218959 0.678865 0.934693 0.519416 ...

Table 17.16: Distribution Operations

Dist d; Default constructor; makes d ready to use.
Other constructors depend on the type of Dist; see § A.3 (p. 882).
The distribution constructors are explicit (§ 7.5.4, p. 296).

d(e) Successive calls with the same e produce a sequence of random numbers
according to the distribution type of d; e is a random-number engine object.

d.min()
d.max()

Return the smallest and largest numbers d(e) will generate.

d.reset() Reestablish the state of d so that subsequent uses of d don’t depend on values d
has already generated.

Using the Distribution’s Default Result Type

With one exception, which we’ll cover in § 17.4.2 (p. 752), the distribution types
are templates that have a single template type parameter that represents the type
of the numbers that the distribution generates. These types always generate either
a floating-point type or an integral type.

Each distribution template has a default template argument (§ 16.1.3, p. 670).
The distribution types that generate floating-point values generate double by de-
fault. Distributions that generate integral results use int as their default. Because
the distribution types have only one template parameter, when we want to use
the default we must remember to follow the template’s name with empty angle
brackets to signify that we want the default (§ 16.1.3, p. 671):

// empty <> signify we want to use the default result type
uniform_real_distribution<> u(0,1); // generates double by default
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Generating Numbers That Are Not Uniformly Distributed

In addition to correctly generating numbers in a specified range, another advan-
tage of the new library is that we can obtain numbers that are nonuniformly dis-
tributed. Indeed, the library defines 20 distribution types! These types are listed in
§ A.3 (p. 882).

As an example, we’ll generate a series of normally distributed values and plot
the resulting distribution. Because normal_distribution generates floating-
point numbers, our program will use the lround function from the cmath header
to round each result to its nearest integer. We’ll generate 200 numbers centered
around a mean of 4 with a standard deviation of 1.5. Because we’re using a normal
distribution, we can expect all but about 1 percent of the generated numbers to
be in the range from 0 to 8, inclusive. Our program will count how many values
appear that map to the integers in this range:

default_random_engine e; // generates random integers
normal_distribution<> n(4,1.5); // mean 4, standard deviation 1.5
vector<unsigned> vals(9); // nine elements each 0
for (size_t i = 0; i != 200; ++i) {

unsigned v = lround(n(e)); // round to the nearest integer
if (v < vals.size()) // if this result is in range

++vals[v]; // count how often each number appears
}
for (size_t j = 0; j != vals.size(); ++j)

cout << j << ": " << string(vals[j], ’*’) << endl;

We start by defining our random generator objects and a vector named vals.
We’ll use vals to count how often each number in the range 0 . . . 9 occurs. Unlike
most of our programs that use vector, we allocate vals at its desired size. By
doing so, we start out with each element initialized to 0.

Inside the for loop, we call lround(n(e)) to round the value returned by
n(e) to the nearest integer. Having obtained the integer that corresponds to our
floating-point random number, we use that number to index our vector of coun-
ters. Because n(e) can produce a number outside the range 0 to 9, we check that
the number we got is in range before using it to index vals. If the number is in
range, we increment the associated counter.

When the loop completes, we print the contents of vals, which will generate
output such as

0: ***
1: ********
2: ********************
3: **************************************
4: **********************************************************
5: ******************************************
6: ***********************
7: *******
8: *

Here we print a string with as many asterisks as the count of the times the cur-
rent value was returned by our random-number generator. Note that this figure
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is not perfectly symmetrical. If it were, that symmetry should give us reason to
suspect the quality of our random-number generator.

The bernoulli_distributionClass

We noted that there was one distribution that does not take a template parameter.
That distribution is the bernoulli_distribution, which is an ordinary class,
not a template. This distribution always returns a bool value. It returns true
with a given probability. By default that probability is .5.

As an example of this kind of distribution, we might have a program that plays
a game with a user. To play the game, one of the players—either the user or the
program—has to go first. We could use a uniform_int_distribution object
with a range of 0 to 1 to select the first player. Alternatively, we can use a Bernoulli
distribution to make this choice. Assuming that we have a function named play
that plays the game, we might have a loop such as the following to interact with
the user:

string resp;
default_random_engine e; // e has state, so it must be outside the loop!
bernoulli_distribution b; // 50/50 odds by default
do {

bool first = b(e); // if true, the program will go first
cout << (first ? "We go first"

: "You get to go first") << endl;
// play the game passing the indicator of who goes first
cout << ((play(first)) ? "sorry, you lost"

: "congrats, you won") << endl;
cout << "play again? Enter ’yes’ or ’no’" << endl;

} while (cin >> resp && resp[0] == ’y’);

We use a do while (§ 5.4.4, p. 189) to repeatedly prompt the user to play.

Because engines return the same sequence of numbers (§ 17.4.1, p. 747),
it is essential that we declare engines outside of loops. Otherwise, we’d
create a new engine on each iteration and generate the same values on
each iteration. Similarly, distributions may retain state and should also
be defined outside loops.

One reason to use a bernoulli_distribution in this program is that doing
so lets us give the program a better chance of going first:

bernoulli_distribution b(.55); // give the house a slight edge

If we use this definition for b, then the program has 55/45 odds of going first.

17.5 The IO Library Revisited
In Chapter 8 we introduced the basic architecture and most commonly used parts
of the IO library. In this section we’ll look at three of the more specialized features
that the IO library supports: format control, unformatted IO, and random access.
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EXE R C I S E S SE C TI O N 17.4.2

Exercise 17.31: What would happen if we defined b and e inside the do loop of the
game-playing program from this section?

Exercise 17.32: What would happen if we defined resp inside the loop?

Exercise 17.33: Write a version of the word transformation program from § 11.3.6
(p. 440) that allows multiple transformations for a given word and randomly selects
which transformation to apply.

17.5.1 Formatted Input and Output
In addition to its condition state (§ 8.1.2, p. 312), each iostream object also main-
tains a format state that controls the details of how IO is formatted. The format
state controls aspects of formatting such as the notational base for integral values,
the precision of floating-point values, the width of an output element, and so on.

The library defines a set of manipulators (§ 1.2, p. 7), listed in Tables 17.17
(p. 757) and 17.18 (p. 760), that modify the format state of a stream. A manipula-
tor is a function or object that affects the state of a stream and can be used as an
operand to an input or output operator. Like the input and output operators, a
manipulator returns the stream object to which it is applied, so we can combine
manipulators and data in a single statement.

Our programs have already used one manipulator, endl, which we “write” to
an output stream as if it were a value. But endl isn’t an ordinary value; instead, it
performs an operation: It writes a newline and flushes the buffer.

Many Manipulators Change the Format State

Manipulators are used for two broad categories of output control: controlling
the presentation of numeric values and controlling the amount and placement of
padding. Most of the manipulators that change the format state provide set/unset
pairs; one manipulator sets the format state to a new value and the other unsets it,
restoring the normal default formatting.

Manipulators that change the format state of the stream usually leave
the format state changed for all subsequent IO.

The fact that a manipulator makes a persistent change to the format state can be
useful when we have a set of IO operations that want to use the same formatting.
Indeed, some programs take advantage of this aspect of manipulators to reset the
behavior of one or more formatting rules for all its input or output. In such cases,
the fact that a manipulator changes the stream is a desirable property.

However, many programs (and, more importantly, programmers) expect the
state of the stream to match the normal library defaults. In these cases, leaving
the state of the stream in a nonstandard state can lead to errors. As a result, it is
usually best to undo whatever state changes are made as soon as those changes are
no longer needed.
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Controlling the Format of Boolean Values

One example of a manipulator that changes the formatting state of its object is the
boolalphamanipulator. By default, bool values print as 1 or 0. A true value is
written as the integer 1 and a false value as 0. We can override this formatting
by applying the boolalpha manipulator to the stream:

cout << "default bool values: " << true << " " << false
<< "\nalpha bool values: " << boolalpha
<< true << " " << false << endl;

When executed, this program generates the following:

default bool values: 1 0
alpha bool values: true false

Once we “write” boolalpha on cout, we’ve changed how cout will print bool
values from this point on. Subsequent operations that print bools will print them
as either true or false.

To undo the format state change to cout, we apply noboolalpha:

bool bool_val = get_status();
cout << boolalpha // sets the internal state of cout

<< bool_val
<< noboolalpha; // resets the internal state to default formatting

Here we change the format of bool values only to print the value of bool_val.
Once that value is printed, we immediately reset the stream back to its initial state.

Specifying the Base for Integral Values

By default, integral values are written and read in decimal notation. We can change
the notational base to octal or hexadecimal or back to decimal by using the manip-
ulators hex, oct, and dec:

cout << "default: " << 20 << " " << 1024 << endl;
cout << "octal: " << oct << 20 << " " << 1024 << endl;
cout << "hex: " << hex << 20 << " " << 1024 << endl;
cout << "decimal: " << dec << 20 << " " << 1024 << endl;

When compiled and executed, this program generates the following output:

default: 20 1024
octal: 24 2000
hex: 14 400
decimal: 20 1024

Notice that like boolalpha, these manipulators change the format state. They
affect the immediately following output and all subsequent integral output until
the format is reset by invoking another manipulator.

The hex, oct, and dec manipulators affect only integral operands; the
representation of floating-point values is unaffected.
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Indicating Base on the Output

By default, when we print numbers, there is no visual cue as to what notational
base was used. Is 20, for example, really 20, or an octal representation of 16? When
we print numbers in decimal mode, the number is printed as we expect. If we
need to print octal or hexadecimal values, it is likely that we should also use the
showbase manipulator. The showbase manipulator causes the output stream to
use the same conventions as used for specifying the base of an integral constant:

• A leading 0x indicates hexadecimal.

• A leading 0 indicates octal.

• The absence of either indicates decimal.

Here we’ve revised the previous program to use showbase:

cout << showbase; // show the base when printing integral values
cout << "default: " << 20 << " " << 1024 << endl;
cout << "in octal: " << oct << 20 << " " << 1024 << endl;
cout << "in hex: " << hex << 20 << " " << 1024 << endl;
cout << "in decimal: " << dec << 20 << " " << 1024 << endl;
cout << noshowbase; // reset the state of the stream

The revised output makes it clear what the underlying value really is:

default: 20 1024
in octal: 024 02000
in hex: 0x14 0x400
in decimal: 20 1024

The noshowbase manipulator resets cout so that it no longer displays the nota-
tional base of integral values.

By default, hexadecimal values are printed in lowercase with a lowercase x. We
can display the X and the hex digits a–f as uppercase by applying the uppercase
manipulator:

cout << uppercase << showbase << hex
<< "printed in hexadecimal: " << 20 << " " << 1024
<< nouppercase << noshowbase << dec << endl;

This statement generates the following output:

printed in hexadecimal: 0X14 0X400

We apply the nouppercase, noshowbase, and dec manipulators to return the
stream to its original state.

Controlling the Format of Floating-Point Values

We can control three aspects of floating-point output:

• How many digits of precision are printed
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• Whether the number is printed in hexadecimal, fixed decimal, or scientific
notation

• Whether a decimal point is printed for floating-point values that are whole
numbers

By default, floating-point values are printed using six digits of precision; the deci-
mal point is omitted if the value has no fractional part; and they are printed in ei-
ther fixed decimal or scientific notation depending on the value of the number. The
library chooses a format that enhances readability of the number. Very large and
very small values are printed using scientific notation. Other values are printed in
fixed decimal.

Specifying How Much Precision to Print

By default, precision controls the total number of digits that are printed. When
printed, floating-point values are rounded, not truncated, to the current precision.
Thus, if the current precision is four, then 3.14159 becomes 3.142; if the preci-
sion is three, then it is printed as 3.14.

We can change the precision by calling the precisionmember of an IO object
or by using the setprecision manipulator. The precision member is over-
loaded (§ 6.4, p. 230). One version takes an int value and sets the precision to that
new value. It returns the previous precision value. The other version takes no argu-
ments and returns the current precision value. The setprecision manipulator
takes an argument, which it uses to set the precision.

The setprecisionmanipulators and other manipulators that take ar-
guments are defined in the iomanip header.

The following program illustrates the different ways we can control the preci-
sion used to print floating-point values:

// cout.precision reports the current precision value
cout << "Precision: " << cout.precision()

<< ", Value: " << sqrt(2.0) << endl;

// cout.precision(12) asks that 12 digits of precision be printed
cout.precision(12);
cout << "Precision: " << cout.precision()

<< ", Value: " << sqrt(2.0) << endl;

// alternative way to set precision using the setprecision manipulator
cout << setprecision(3);
cout << "Precision: " << cout.precision()

<< ", Value: " << sqrt(2.0) << endl;

When compiled and executed, the program generates the following output:

Precision: 6, Value: 1.41421
Precision: 12, Value: 1.41421356237
Precision: 3, Value: 1.41

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 17.5 The IO Library Revisited 757

Table 17.17: Manipulators Defined in iostream

boolalpha Display true and false as strings
* noboolalpha Display true and false as 0, 1
showbase Generate prefix indicating the numeric base of integral values

* noshowbase Do not generate notational base prefix
showpoint Always display a decimal point for floating-point values

* noshowpoint Display a decimal point only if the value has a fractional part
showpos Display + in nonnegative numbers

* noshowpos Do not display + in nonnegative numbers
uppercase Print 0X in hexadecimal, E in scientific

* nouppercase Print 0x in hexadecimal, e in scientific
* dec Display integral values in decimal numeric base
hex Display integral values in hexadecimal numeric base
oct Display integral values in octal numeric base
left Add fill characters to the right of the value
right Add fill characters to the left of the value
internal Add fill characters between the sign and the value
fixed Display floating-point values in decimal notation
scientific Display floating-point values in scientific notation
hexfloat Display floating-point values in hex (new to C++ 11)
defaultfloat Reset the floating-point format to decimal (new to C++ 11)
unitbuf Flush buffers after every output operation

* nounitbuf Restore normal buffer flushing
* skipws Skip whitespace with input operators
noskipws Do not skip whitespace with input operators
flush Flush the ostream buffer
ends Insert null, then flush the ostream buffer
endl Insert newline, then flush the ostream buffer

* indicates the default stream state

This program calls the library sqrt function, which is found in the cmath header.
The sqrt function is overloaded and can be called on either a float, double, or
long double argument. It returns the square root of its argument.

Specifying the Notation of Floating-Point Numbers

Unless you need to control the presentation of a floating-point number
(e.g., to print data in columns or to print data that represents money or
a percentage), it is usually best to let the library choose the notation.

We can force a stream to use scientific, fixed, or hexadecimal notation by using
the appropriate manipulator. The scientific manipulator changes the stream
to use scientific notation. The fixed manipulator changes the stream to use fixed
decimal.

Under the new library, we can also force floating-point values to use hexadec-
imal format by using hexfloat. The new library provides another manipulator,
named defaultfloat. This manipulator returns the stream to its default state in
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which it chooses a notation based on the value being printed.
These manipulators also change the default meaning of the precision for the

stream. After executing scientific, fixed, or hexfloat, the precision value
controls the number of digits after the decimal point. By default, precision specifies
the total number of digits—both before and after the decimal point. Using fixed
or scientific lets us print numbers lined up in columns, with the decimal point
in a fixed position relative to the fractional part being printed:

cout << "default format: " << 100 * sqrt(2.0) << ’\n’
<< "scientific: " << scientific << 100 * sqrt(2.0) << ’\n’
<< "fixed decimal: " << fixed << 100 * sqrt(2.0) << ’\n’
<< "hexadecimal: " << hexfloat << 100 * sqrt(2.0) << ’\n’
<< "use defaults: " << defaultfloat << 100 * sqrt(2.0)
<< "\n\n";

produces the following output:

default format: 141.421
scientific: 1.414214e+002
fixed decimal: 141.421356
hexadecimal: 0x1.1ad7bcp+7
use defaults: 141.421

By default, the hexadecimal digits and the e used in scientific notation are printed
in lowercase. We can use the uppercase manipulator to show those values in
uppercase.

Printing the Decimal Point

By default, when the fractional part of a floating-point value is 0, the decimal
point is not displayed. The showpoint manipulator forces the decimal point to
be printed:

cout << 10.0 << endl; // prints 10
cout << showpoint << 10.0 // prints 10.0000

<< noshowpoint << endl; // revert to default format for the decimal point

The noshowpoint manipulator reinstates the default behavior. The next output
expression will have the default behavior, which is to suppress the decimal point
if the floating-point value has a 0 fractional part.

Padding the Output

When we print data in columns, we often need fairly fine control over how the data
are formatted. The library provides several manipulators to help us accomplish the
control we might need:

• setw to specify the minimum space for the next numeric or string value.

• left to left-justify the output.

• right to right-justify the output. Output is right-justified by default.
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• internal controls placement of the sign on negative values. internal
left-justifies the sign and right-justifies the value, padding any intervening
space with blanks.

• setfill lets us specify an alternative character to use to pad the output. By
default, the value is a space.

setw, like endl, does not change the internal state of the output stream.
It determines the size of only the next output.

The following program illustrates these manipulators:

int i = -16;
double d = 3.14159;

// pad the first column to use a minimum of 12 positions in the output
cout << "i: " << setw(12) << i << "next col" << ’\n’

<< "d: " << setw(12) << d << "next col" << ’\n’;

// pad the first column and left-justify all columns
cout << left

<< "i: " << setw(12) << i << "next col" << ’\n’
<< "d: " << setw(12) << d << "next col" << ’\n’
<< right; // restore normal justification

// pad the first column and right-justify all columns
cout << right

<< "i: " << setw(12) << i << "next col" << ’\n’
<< "d: " << setw(12) << d << "next col" << ’\n’;

// pad the first column but put the padding internal to the field
cout << internal

<< "i: " << setw(12) << i << "next col" << ’\n’
<< "d: " << setw(12) << d << "next col" << ’\n’;

// pad the first column, using # as the pad character
cout << setfill(’#’)

<< "i: " << setw(12) << i << "next col" << ’\n’
<< "d: " << setw(12) << d << "next col" << ’\n’
<< setfill(’ ’); // restore the normal pad character

When executed, this program generates

i: -16next col
d: 3.14159next col
i: -16 next col
d: 3.14159 next col
i: -16next col
d: 3.14159next col
i: - 16next col
d: 3.14159next col
i: -#########16next col
d: #####3.14159next col
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Table 17.18: Manipulators Defined in iomanip

setfill(ch) Fill whitespace with ch
setprecision(n) Set floating-point precision to n
setw(w) Read or write value to w characters
setbase(b) Output integers in base b

Controlling Input Formatting

By default, the input operators ignore whitespace (blank, tab, newline, formfeed,
and carriage return). The following loop

char ch;
while (cin >> ch)

cout << ch;

given the input sequence

a b c
d

executes four times to read the characters a through d, skipping the intervening
blanks, possible tabs, and newline characters. The output from this program is

abcd

The noskipwsmanipulator causes the input operator to read, rather than skip,
whitespace. To return to the default behavior, we apply the skipws manipulator:

cin >> noskipws; // set cin so that it reads whitespace
while (cin >> ch)

cout << ch;
cin >> skipws; // reset cin to the default state so that it discards whitespace

Given the same input as before, this loop makes seven iterations, reading white-
space as well as the characters in the input. This loop generates

a b c
d

EXE R C I S E S SE C TI O N 17.5.1

Exercise 17.34: Write a program that illustrates the use of each manipulator in Ta-
bles 17.17 (p. 757) and 17.18.

Exercise 17.35: Write a version of the program from page 758, that printed the square
root of 2 but this time print hexadecimal digits in uppercase.

Exercise 17.36: Modify the program from the previous exercise to print the various
floating-point values so that they line up in a column.
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17.5.2 Unformatted Input/Output Operations
So far, our programs have used only formatted IO operations. The input and
output operators (<< and >>) format the data they read or write according to the
type being handled. The input operators ignore whitespace; the output operators
apply padding, precision, and so on.

The library also provides a set of low-level operations that support unformat-
ted IO. These operations let us deal with a stream as a sequence of uninterpreted
bytes.

Single-Byte Operations

Several of the unformatted operations deal with a stream one byte at a time. These
operations, which are described in Table 17.19, read rather than ignore whitespace.
For example, we can use the unformatted IO operations get and put to read and
write the characters one at a time:

char ch;
while (cin.get(ch))

cout.put(ch);

This program preserves the whitespace in the input. Its output is identical to the
input. It executes the same way as the previous program that used noskipws.

Table 17.19: Single-Byte Low-Level IO Operations

is.get(ch) Put the next byte from the istream is in character ch. Returns is.
os.put(ch) Put the character ch onto the ostream os. Returns os.
is.get() Returns next byte from is as an int.
is.putback(ch) Put the character ch back on is; returns is.
is.unget() Move is back one byte; returns is.

is.peek() Return the next byte as an int but doesn’t remove it.

Putting Back onto an Input Stream

Sometimes we need to read a character in order to know that we aren’t ready for
it. In such cases, we’d like to put the character back onto the stream. The library
gives us three ways to do so, each of which has subtle differences from the others:

• peek returns a copy of the next character on the input stream but does not
change the stream. The value returned by peek stays on the stream.

• unget backs up the input stream so that whatever value was last returned
is still on the stream. We can call unget even if we do not know what value
was last taken from the stream.

• putback is a more specialized version of unget: It returns the last value
read from the stream but takes an argument that must be the same as the one
that was last read.
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In general, we are guaranteed to be able to put back at most one value before the
next read. That is, we are not guaranteed to be able to call putback or unget
successively without an intervening read operation.

int Return Values from Input Operations

The peek function and the version of get that takes no argument return a char-
acter from the input stream as an int. This fact can be surprising; it might seem
more natural to have these functions return a char.

The reason that these functions return an int is to allow them to return an
end-of-file marker. A given character set is allowed to use every value in the char
range to represent an actual character. Thus, there is no extra value in that range
to use to represent end-of-file.

The functions that return int convert the character they return to unsigned
char and then promote that value to int. As a result, even if the character set has
characters that map to negative values, the int returned from these operations will
be a positive value (§ 2.1.2, p. 35). The library uses a negative value to represent
end-of-file, which is thus guaranteed to be distinct from any legitimate character
value. Rather than requiring us to know the actual value returned, the cstdio
header defines a const named EOF that we can use to test if the value returned
from get is end-of-file. It is essential that we use an int to hold the return from
these functions:

int ch; // use an int, not a char to hold the return from get()
// loop to read and write all the data in the input
while ((ch = cin.get()) != EOF)

cout.put(ch);

This program operates identically to the one on page 761, the only difference being
the version of get that is used to read the input.

Multi-Byte Operations

Some unformatted IO operations deal with chunks of data at a time. These opera-
tions can be important if speed is an issue, but like other low-level operations, they
are error-prone. In particular, these operations require us to allocate and manage
the character arrays (§ 12.2, p. 476) used to store and retrieve data. The multi-byte
operations are listed in Table 17.20.

The get and getline functions take the same parameters, and their actions
are similar but not identical. In each case, sink is a char array into which the data
are placed. The functions read until one of the following conditions occurs:

• size - 1 characters are read

• End-of-file is encountered

• The delimiter character is encountered

The difference between these functions is the treatment of the delimiter: get leaves
the delimiter as the next character of the istream, whereas getline reads and
discards the delimiter. In either case, the delimiter is not stored in sink.

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 17.5 The IO Library Revisited 763

Table 17.20: Multi-Byte Low-Level IO Operations

is.get(sink, size, delim)
Reads up to size bytes from is and stores them in the character array beginning at
the address pointed to by sink. Reads until encountering the delim character or until
it has read size bytes or encounters end-of-file. If delim is present, it is left on the
input stream and not read into sink.

is.getline(sink, size, delim)
Same behavior as the three-argument version of get but reads and discards delim.

is.read(sink, size)
Reads up to size bytes into the character array sink. Returns is.

is.gcount()
Returns number of bytes read from the stream is by the last call to an unformatted
read operation.

os.write(source, size)
Writes size bytes from the character array source to os. Returns os.

is.ignore(size, delim)
Reads and ignores at most size characters up to and including delim. Unlike the
other unformatted functions, ignore has default arguments: size defaults to 1 and
delim to end-of-file.

It is a common error to intend to remove the delimiter from the stream
but to forget to do so.

Determining How Many Characters Were Read

Several of the read operations read an unknown number of bytes from the input.
We can call gcount to determine how many characters the last unformatted input
operation read. It is essential to call gcount before any intervening unformatted
input operation. In particular, the single-character operations that put characters
back on the stream are also unformatted input operations. If peek, unget, or
putback are called before calling gcount, then the return value will be 0.

17.5.3 Random Access to a Stream
The various stream types generally support random access to the data in their
associated stream. We can reposition the stream so that it skips around, reading
first the last line, then the first, and so on. The library provides a pair of functions
to seek to a given location and to tell the current location in the associated stream.

Random IO is an inherently system-dependent. To understand how to
use these features, you must consult your system’s documentation.

Although these seek and tell functions are defined for all the stream types,
whether they do anything useful depends on the device to which the stream is
bound. On most systems, the streams bound to cin, cout, cerr, and clog do
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CAUTION: LOW-LEVEL ROUTINES ARE ERROR-PRONE

In general, we advocate using the higher-level abstractions provided by the library.
The IO operations that return int are a good example of why.

It is a common programming error to assign the return, from get or peek to a char
rather than an int. Doing so is an error, but an error the compiler will not detect.
Instead, what happens depends on the machine and on the input data. For example,
on a machine in which chars are implemented as unsigned chars, this loop will run
forever:

char ch; // using a char here invites disaster!

// the return from cin.get is converted to char and then compared to an int
while ((ch = cin.get()) != EOF)

cout.put(ch);

The problem is that when get returns EOF, that value will be converted to an
unsigned char value. That converted value is no longer equal to the int value of
EOF, and the loop will continue forever. Such errors are likely to be caught in testing.

On machines for which chars are implemented as signed chars, we can’t say
with confidence what the behavior of the loop might be. What happens when an
out-of-bounds value is assigned to a signed value is up to the compiler. On many
machines, this loop will appear to work, unless a character in the input matches the
EOF value. Although such characters are unlikely in ordinary data, presumably low-
level IO is necessary only when we read binary values that do not map directly to
ordinary characters and numeric values. For example, on our machine, if the input
contains a character whose value is ’\377’, then the loop terminates prematurely.
’\377’ is the value on our machine to which −1 converts when used as a signed
char. If the input has this value, then it will be treated as the (premature) end-of-file
indicator.

Such bugs do not happen when we read and write typed values. If you can use the
more type-safe, higher-level operations supported by the library, do so.

EXE R C I S E S SE C TI O N 17.5.2

Exercise 17.37: Use the unformatted version of getline to read a file a line at a time.
Test your program by giving it a file that contains empty lines as well as lines that are
longer than the character array that you pass to getline.

Exercise 17.38: Extend your program from the previous exercise to print each word
you read onto its own line.

not support random access—after all, what would it mean to jump back ten places
when we’re writing directly to cout? We can call the seek and tell functions, but
these functions will fail at run time, leaving the stream in an invalid state.

Because the istream and ostream types usually do not support ran-
dom access, the remainder of this section should be considered as appli-
cable to only the fstream and sstream types.
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Seek and Tell Functions

To support random access, the IO types maintain a marker that determines where
the next read or write will happen. They also provide two functions: One repo-
sitions the marker by seeking to a given position; the second tells us the current
position of the marker. The library actually defines two pairs of seek and tell func-
tions, which are described in Table 17.21. One pair is used by input streams, the
other by output streams. The input and output versions are distinguished by a suf-
fix that is either a g or a p. The g versions indicate that we are “getting” (reading)
data, and the p functions indicate that we are “putting” (writing) data.

Table 17.21: Seek and Tell Functions

tellg()
tellp()

Return the current position of the marker in an input stream (tellg)
or an output stream (tellp).

seekg(pos)
seekp(pos)

Reposition the marker in an input or output stream to the given abso-
lute address in the stream. pos is usually a value returned by a previ-
ous call to the corresponding tellg or tellp function.

seekp(off, from)
seekg(off, from)

Reposition the marker for an input or output stream integral number
off characters ahead or behind from. from can be one of

• beg, seek relative to the beginning of the stream

• cur, seek relative to the current position of the stream

• end, seek relative to the end of the stream

Logically enough, we can use only the g versions on an istream and on the
types ifstream and istringstream that inherit from istream (§ 8.1, p. 311).
We can use only the p versions on an ostream and on the types that inherit from
it, ofstream and ostringstream. An iostream, fstream, or stringstream
can both read and write the associated stream; we can use either the g or p versions
on objects of these types.

There Is Only One Marker

The fact that the library distinguishes between the “putting” and “getting” ver-
sions of the seek and tell functions can be misleading. Even though the library
makes this distinction, it maintains only a single marker in a stream—there is not
a distinct read marker and write marker.

When we’re dealing with an input-only or output-only stream, the distinction
isn’t even apparent. We can use only the g or only the p versions on such streams.
If we attempt to call tellp on an ifstream, the compiler will complain. Simi-
larly, it will not let us call seekg on an ostringstream.

The fstream and stringstream types can read and write the same stream.
In these types there is a single buffer that holds data to be read and written and a
single marker denoting the current position in the buffer. The library maps both
the g and p positions to this single marker.
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Because there is only a single marker, we must do a seek to reposition
the marker whenever we switch between reading and writing.

Repositioning the Marker

There are two versions of the seek functions: One moves to an “absolute” address
within the file; the other moves to a byte offset from a given position:

// set the marker to a fixed position
seekg(new_position); // set the read marker to the given pos_type location
seekp(new_position); // set the write marker to the given pos_type location

// offset some distance ahead of or behind the given starting point
seekg(offset, from); // set the read marker offset distance from from
seekp(offset, from); // offset has type off_type

The possible values for from are listed in Table 17.21 (on the previous page).
The arguments, new_position and offset, have machine-dependent types

named pos_type and off_type, respectively. These types are defined in both
istream and ostream. pos_type represents a file position and off_type rep-
resents an offset from that position. A value of type off_type can be positive or
negative; we can seek forward or backward in the file.

Accessing the Marker

The tellg or tellp functions return a pos_type value denoting the current
position of the stream. The tell functions are usually used to remember a location
so that we can subsequently seek back to it:

// remember the current write position in mark
ostringstream writeStr; // output stringstream
ostringstream::pos_type mark = writeStr.tellp();

// . . .
if (cancelEntry)

// return to the remembered position
writeStr.seekp(mark);

Reading and Writing to the Same File

Let’s look at a programming example. Assume we are given a file to read. We are
to write a newline at the end of the file that contains the relative position at which
each line begins. For example, given the following file,

abcd
efg
hi
j

the program should produce the following modified file:
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abcd
efg
hi
j
5 9 12 14

Note that our program need not write the offset for the first line—it always occurs
at position 0. Also note that the offset counts must include the invisible newline
character that ends each line. Finally, note that the last number in the output is
the offset for the line on which our output begins. By including this offset in our
output, we can distinguish our output from the file’s original contents. We can
read the last number in the resulting file and seek to the corresponding offset to
get to the beginning of our output.

Our program will read the file a line at a time. For each line, we’ll increment a
counter, adding the size of the line we just read. That counter is the offset at which
the next line starts:

int main()
{

// open for input and output and preposition file pointers to end-of-file
// file mode argument see § 8.4 (p. 319)
fstream inOut("copyOut",

fstream::ate | fstream::in | fstream::out);
if (!inOut) {

cerr << "Unable to open file!" << endl;
return EXIT_FAILURE; // EXIT_FAILURE see § 6.3.2 (p. 227)

}

// inOut is opened in ate mode, so it starts out positioned at the end
auto end_mark = inOut.tellg();// remember original end-of-file position
inOut.seekg(0, fstream::beg); // reposition to the start of the file
size_t cnt = 0; // accumulator for the byte count
string line; // hold each line of input

// while we haven’t hit an error and are still reading the original data
while (inOut && inOut.tellg() != end_mark

&& getline(inOut, line)) { // and can get another line of input
cnt += line.size() + 1; // add 1 to account for the newline
auto mark = inOut.tellg(); // remember the read position
inOut.seekp(0, fstream::end); // set the write marker to the end
inOut << cnt; // write the accumulated length
// print a separator if this is not the last line
if (mark != end_mark) inOut << " ";
inOut.seekg(mark); // restore the read position

}
inOut.seekp(0, fstream::end); // seek to the end
inOut << "\n"; // write a newline at end-of-file
return 0;

}

Our program opens its fstream using the in, out, and ate modes (§ 8.4, p. 319).
The first two modes indicate that we intend to read and write the same file. Speci-
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fying ate positions the read and write markers at the end of the file. As usual, we
check that the open succeeded, and exit if it did not (§ 6.3.2, p. 227).

Because our program writes to its input file, we can’t use end-of-file to signal
when it’s time to stop reading. Instead, our loop must end when it reaches the
point at which the original input ended. As a result, we must first remember the
original end-of-file position. Because we opened the file in ate mode, inOut is al-
ready positioned at the end. We store the current (i.e., the original end) position in
end_mark. Having remembered the end position, we reposition the read marker
at the beginning of the file by seeking to the position 0 bytes from the beginning of
the file.

The while loop has a three-part condition: We first check that the stream is
valid; if so, we check whether we’ve exhausted our original input by comparing
the current read position (returned by tellg) with the position we remembered in
end_mark. Finally, assuming that both tests succeeded, we call getline to read
the next line of input. If getline succeeds, we perform the body of the loop.

The loop body starts by remembering the current position in mark. We save
that position in order to return to it after writing the next relative offset. The call
to seekp repositions the write marker to the end of the file. We write the counter
value and then seekg back to the position we remembered in mark. Having re-
stored the marker, we’re ready to repeat the condition in the while.

Each iteration of the loop writes the offset of the next line. Therefore, the last
iteration of the loop takes care of writing the offset of the last line. However, we
still need to write a newline at the end of the file. As with the other writes, we call
seekp to position the file at the end before writing the newline.

EXE R C I S E S SE C TI O N 17.5.3

Exercise 17.39: Write your own version of the seek program presented in this section.
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CH A P T E R SU M M A R Y
This chapter covered additional IO operations and four library types: tuple,
bitset, regular expressions, and random numbers.

A tuple is a template that allows us to bundle together members of disparate
types into a single object. Each tuple contains a specified number of members,
but the library imposes no limit on the number of members we can define for a
given tuple type.

A bitset lets us define collections of bits of a specified size. The size of a
bitset is not constrained to match any of the integral types, and can even ex-
ceed them. In addition to supporting the normal bitwise operators (§ 4.8, p. 152),
bitset defines a number of named operations that let us manipulate the state of
particular bits in the bitset.

The regular-expression library provides a collection of classes and functions:
The regex class manages regular expressions written in one of several common
regular-expression languages. The match classes hold information about a spe-
cific match. These classes are used by the regex_search and regex_match
functions. These functions take a regex object and a character sequence and de-
tect whether the regular expression in that regex matches the given character se-
quence. The regex iterator types are iterator adaptors that use regex_search to
iterate through an input sequence and return each matching subsequence. There
is also a regex_replace function that lets us replace the matched part of a given
input sequence with a specified alternative.

The random-number library is a collection of random-number engines and dis-
tribution classes. A random-number engine returns a sequence of uniformly dis-
tributed integral values. The library defines several engines that have different
performance characteristics. The default_random_engine is defined as the en-
gine that should be suitable for most casual uses. The library also defines 20 distri-
bution types. These distribution types use an engine to deliver random numbers
of a specified type in a given range that are distributed according to a specified
probability distribution.

DEFINED TERMS

bitset Standard library class that holds a
collection of bits of a size that is known at
compile time, and provides operations to
test and set the bits in the collection.

cmatch Container of csub_match objects
that provides information about the match
to a regex on const char* input se-
quences. The first element in the container
describes the overall match results. The
subsequent elements describe the results for
the subexpressions.

cregex_iterator Like sregex_iterator

except that it iterates over an array of char.

csub_match Type that holds the results
of a regular expression match to a const
char*. Can represent the entire match or
a subexpression.

default random engine Type alias for the
random number engine intended for nor-
mal use.

formatted IO IO operations that use the
types of the objects being read or written
to define the actions of the operations. For-
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matted input operations perform whatever
transformations are appropriate to the type
being read, such as converting ASCII nu-
meric strings to the indicated arithmetic
type and (by default) ignoring whitespace.
Formatted output routines convert types
to printable character representations, pad
the output, and may perform other, type-
specific transformations.

get Template function that returns the
specified member for a given tuple. For ex-
ample, get<0>(t) returns the first element
from the tuple t.

high-order Bits in a bitset with the
largest indices.

low-order Bits in a bitsetwith the lowest
indices.

manipulator A function-like object that
“manipulates” a stream. Manipulators can
be used as the right-hand operand to the
overloaded IO operators, << and >>. Most
manipulators change the internal state of
the object. Such manipulators often come in
pairs—one to change the state and the other
to return the stream to its default state.

random-number distribution Standard li-
brary type that transforms the output
of a random-number engine according to
its named distribution. For example,
uniform_int_distribution<T> gener-
ates uniformly distributed integers of type
T, normal_distribution<T> generates
normally distributed numbers, and so on.

random-number engine Library type that
generates random unsigned numbers. En-
gines are intended to be used only as inputs
to random-number distributions.

random-number generator Combination
of a random-number engine type and a dis-
tribution type.

regex Class that manages a regular expres-
sion.

regex_error Exception type thrown to in-
dicate a syntactic error in a regular expres-
sion.

regex_match Function that determines
whether the entire input sequence matches
the given regex object.

regex_replace Function that uses a regex
object to replace matching subexpressions
in an input sequence using a given format.

regex_search Function that uses a regex
object to find a matching subsequence of a
given input sequence.

regular expression A way of describing a
sequence of characters.

seed Value supplied to a random-number
engine that causes it to move to a new point
in the sequence of number that it generates.

smatch Container of ssub_match objects
that provides information about the match
to a regex on string input sequences.
The first element in the container describes
the overall match results. The subsequent
elements describe the results for the subex-
pressions.

sregex_iterator Iterator that iterates over
a string using a given regex object to
find matches in the given string. The con-
structor positions the iterator on the first
match by calling regex_search. Incre-
menting the iterator calls regex_search
starting just after the current match in the
given string. Dereferencing the iterator
returns an smatch object describing the
current match.

ssub_match Type that holds results of a
regular expression match to a string. Can
represent the entire match or a subexpres-
sion.

subexpression Parenthesized component
of a regular expression pattern.

tuple Template that generates types that
hold unnamed members of specified types.
There is no fixed limit on the number of
members a tuple can be defined to have.

unformatted IO Operations that treat the
stream as an undifferentiated byte stream.
Unformatted operations place more of the
burden for managing the IO on the user.
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C++ is used on problems small enough to be solved by a single pro-
grammer after a few hours’ work and on problems requiring enor-
mous systems consisting of tens of millions of lines of code devel-
oped and modified by hundreds of programmers over many years.
The facilities that we covered in the earlier parts of this book are
equally useful across this range of programming problems.

The language includes some features that are most useful on sys-
tems that are more complicated than those that a small team can
manage. These features—exception handling, namespaces, and mul-
tiple inheritance—are the topic of this chapter.
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Large-scale programming places greater demands on programming lan-
guages than do the needs of systems that can be developed by small teams of
programmers. Among the needs that distinguish large-scale applications are

• The ability to handle errors across independently developed subsystems

• The ability to use libraries developed more or less independently

• The ability to model more complicated application concepts

This chapter looks at three features in C++ that are aimed at these needs: exception
handling, namespaces, and multiple inheritance.

18.1 Exception Handling
Exception handling allows independently developed parts of a program to com-
municate about and handle problems that arise at run time. Exceptions let us sep-
arate problem detection from problem resolution. One part of the program can
detect a problem and can pass the job of resolving that problem to another part of
the program. The detecting part need not know anything about the handling part,
and vice versa.

In § 5.6 (p. 193) we introduced the basic concepts and mechanics of using ex-
ceptions. In this section we’ll expand our coverage of these basics. Effective use
of exception handling requires understanding what happens when an exception
is thrown, what happens when it is caught, and the meaning of the objects that
communicate what went wrong.

18.1.1 Throwing an Exception
In C++, an exception is raised by throwing an expression. The type of the thrown
expression, together with the current call chain, determines which handler will
deal with the exception. The selected handler is the one nearest in the call chain
that matches the type of the thrown object. The type and contents of that object
allow the throwing part of the program to inform the handling part about what
went wrong.

When a throw is executed, the statement(s) following the throw are not exe-
cuted. Instead, control is transferred from the throw to the matching catch. That
catchmight be local to the same function or might be in a function that directly or
indirectly called the function in which the exception occurred. The fact that control
passes from one location to another has two important implications:

• Functions along the call chain may be prematurely exited.

• When a handler is entered, objects created along the call chain will have been
destroyed.

Because the statements following a throw are not executed, a throw is like a
return: It is usually part of a conditional statement or is the last (or only) state-
ment in a function.
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Stack Unwinding

When an exception is thrown, execution of the current function is suspended and
the search for a matching catch clause begins. If the throw appears inside a try
block, the catch clauses associated with that try are examined. If a matching
catch is found, the exception is handled by that catch. Otherwise, if the trywas
itself nested inside another try, the search continues through the catch clauses of
the enclosing trys. If no matching catch is found, the current function is exited,
and the search continues in the calling function.

If the call to the function that threw is in a try block, then the catch clauses as-
sociated with that try are examined. If a matching catch is found, the exception
is handled. Otherwise, if that try was nested, the catch clauses of the enclosing
trys are searched. If no catch is found, the calling function is also exited. The
search continues in the function that called the just exited one, and so on.

This process, known as stack unwinding, continues up the chain of nested
function calls until a catch clause for the exception is found, or the main function
itself is exited without having found a matching catch.

Assuming a matching catch is found, that catch is entered, and the program
continues by executing the code inside that catch. When the catch completes,
execution continues at the point immediately after the last catch clause associated
with that try block.

If no matching catch is found, the program is exited. Exceptions are intended
for events that prevent the program from continuing normally. Therefore, once
an exception is raised, it cannot remain unhandled. If no matching catch is
found, the program calls the library terminate function. As its name implies,
terminate stops execution of the program.

An exception that is not caught terminates the program.

Objects Are Automatically Destroyed during Stack Unwinding

During stack unwinding, blocks in the call chain may be exited prematurely. In
general, these blocks will have created local objects. Ordinarily, local objects are
destroyed when the block in which they are created is exited. Stack unwinding
is no exception. When a block is exited during stack unwinding, the compiler
guarantees that objects created in that block are properly destroyed. If a local object
is of class type, the destructor for that object is called automatically. As usual, the
compiler does no work to destroy objects of built-in type.

If an exception occurs in a constructor, then the object under construction might
be only partially constructed. Some of its members might have been initialized,
but others might not have been initialized before the exception occurred. Even
if the object is only partially constructed, we are guaranteed that the constructed
members will be properly destroyed.

Similarly, an exception might occur during initialization of the elements of an
array or a library container type. Again, we are guaranteed that the elements (if
any) that were constructed before the exception occurred will be destroyed.
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Destructors and Exceptions

The fact that destructors are run—but code inside a function that frees a resource
may be bypassed—affects how we structure our programs. As we saw in § 12.1.4
(p. 467), if a block allocates a resource, and an exception occurs before the code that
frees that resource, the code to free the resource will not be executed. On the other
hand, resources allocated by an object of class type generally will be freed by their
destructor. By using classes to control resource allocation, we ensure that resources
are properly freed, whether a function ends normally or via an exception.

The fact that destructors are run during stack unwinding affects how we write
destructors. During stack unwinding, an exception has been raised but is not yet
handled. If a new exception is thrown during stack unwinding and not caught
in the function that threw it, terminate is called. Because destructors may be
invoked during stack unwinding, they should never throw exceptions that the de-
structor itself does not handle. That is, if a destructor does an operation that might
throw, it should wrap that operation in a try block and handle it locally to the
destructor.

In practice, because destructors free resources, it is unlikely that they will throw
exceptions. All of the standard library types guarantee that their destructors will
not raise an exception.

During stack unwinding, destructors are run on local objects of class
type. Because destructors are run automatically, they should not throw.
If, during stack unwinding, a destructor throws an exception that it does
not also catch, the program will be terminated.

The Exception Object

The compiler uses the thrown expression to copy initialize (§ 13.1.1, p. 497) a spe-
cial object known as the exception object. As a result, the expression in a throw
must have a complete type (§ 7.3.3, p. 278). Moreover, if the expression has class
type, that class must have an accessible destructor and an accessible copy or move
constructor. If the expression has an array or function type, the expression is con-
verted to its corresponding pointer type.

The exception object resides in space, managed by the compiler, that is guar-
anteed to be accessible to whatever catch is invoked. The exception object is
destroyed after the exception is completely handled.

As we’ve seen, when an exception is thrown, blocks along the call chain are
exited until a matching handler is found. When a block is exited, the memory
used by the local objects in that block is freed. As a result, it is almost certainly an
error to throw a pointer to a local object. It is an error for the same reasons that it
is an error to return a pointer to a local object (§ 6.3.2, p. 225) from a function. If
the pointer points to an object in a block that is exited before the catch, then that
local object will have been destroyed before the catch.

When we throw an expression, the static, compile-time type (§ 15.2.3, p. 601) of
that expression determines the type of the exception object. This point is essential
to keep in mind, because many applications throw expressions whose type comes
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from an inheritance hierarchy. If a throw expression dereferences a pointer to a
base-class type, and that pointer points to a derived-type object, then the thrown
object is sliced down (§ 15.2.3, p. 603); only the base-class part is thrown.

Throwing a pointer requires that the object to which the pointer points
exist wherever the corresponding handler resides.

EXE R C I S E S SE C TI O N 18.1.1

Exercise 18.1: What is the type of the exception object in the following throws?

(a) range_error r("error"); (b) exception *p = &r;
throw r; throw *p;

What would happen if the throw in (b) were written as throw p?

Exercise 18.2: Explain what happens if an exception occurs at the indicated point:

void exercise(int *b, int *e)
{

vector<int> v(b, e);
int *p = new int[v.size()];
ifstream in("ints");
// exception occurs here

}

Exercise 18.3: There are two ways to make the previous code work correctly if an
exception is thrown. Describe them and implement them.

18.1.2 Catching an Exception
The exception declaration in a catch clause looks like a function parameter list
with exactly one parameter. As in a parameter list, we can omit the name of the
catch parameter if the catch has no need to access the thrown expression.

The type of the declaration determines what kinds of exceptions the handler
can catch. The type must be a complete type (§ 7.3.3, p. 278). The type can be an
lvalue reference but may not be an rvalue reference (§ 13.6.1, p. 532).

When a catch is entered, the parameter in its exception declaration is initial-
ized by the exception object. As with function parameters, if the catch parameter
has a nonreference type, then the parameter in the catch is a copy of the excep-
tion object; changes made to the parameter inside the catch are made to a local
copy, not to the exception object itself. If the parameter has a reference type, then
like any reference parameter, the catch parameter is just another name for the
exception object. Changes made to the parameter are made to the exception object.

Also like a function parameter, a catch parameter that has a base-class type
can be initialized by an exception object that has a type derived from the parameter
type. If the catch parameter has a nonreference type, then the exception object
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will be sliced down (§ 15.2.3, p. 603), just as it would be if such an object were
passed to an ordinary function by value. On the other hand, if the parameter is a
reference to a base-class type, then the parameter is bound to the exception object
in the usual way.

Again, as with a function parameter, the static type of the exception declaration
determines the actions that the catch may perform. If the catch parameter has
a base-class type, then the catch cannot use any members that are unique to the
derived type.

Ordinarily, a catch that takes an exception of a type related by inheri-
tance ought to define its parameter as a reference.

Finding a Matching Handler

During the search for a matching catch, the catch that is found is not necessarily
the one that matches the exception best. Instead, the selected catch is the first one
that matches the exception at all. As a consequence, in a list of catch clauses, the
most specialized catch must appear first.

Because catch clauses are matched in the order in which they appear, pro-
grams that use exceptions from an inheritance hierarchy must order their catch
clauses so that handlers for a derived type occur before a catch for its base type.

The rules for when an exception matches a catch exception declaration are
much more restrictive than the rules used for matching arguments with parame-
ter types. Most conversions are not allowed—the types of the exception and the
catch declaration must match exactly with only a few possible differences:

• Conversions from nonconst to const are allowed. That is, a throw of a
nonconst object can match a catch specified to take a reference to const.

• Conversions from derived type to base type are allowed.

• An array is converted to a pointer to the type of the array; a function is con-
verted to the appropriate pointer to function type.

No other conversions are allowed to match a catch. In particular, neither the stan-
dard arithmetic conversions nor conversions defined for class types are permitted.

Multiple catch clauses with types related by inheritance must be or-
dered from most derived type to least derived.

Rethrow

Sometimes a single catch cannot completely handle an exception. After some
corrective actions, a catch may decide that the exception must be handled by a
function further up the call chain. A catch passes its exception out to another
catch by rethrowing the exception. A rethrow is a throw that is not followed by
an expression:

throw;
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An empty throw can appear only in a catch or in a function called (directly or
indirectly) from a catch. If an empty throw is encountered when a handler is not
active, terminate is called.

A rethrow does not specify an expression; the (current) exception object is
passed up the chain.

In general, a catch might change the contents of its parameter. If, after chang-
ing its parameter, the catch rethrows the exception, then those changes will be
propagated only if the catch’s exception declaration is a reference:

catch (my_error &eObj) { // specifier is a reference type
eObj.status = errCodes::severeErr; // modifies the exception object
throw; // the status member of the exception object is severeErr

} catch (other_error eObj) { // specifier is a nonreference type
eObj.status = errCodes::badErr; // modifies the local copy only
throw; // the status member of the exception object is unchanged

}

The Catch-All Handler

Sometimes we want to catch any exception that might occur, regardless of type.
Catching every possible exception can be a problem: Sometimes we don’t know
what types might be thrown. Even when we do know all the types, it may be
tedious to provide a specific catch clause for every possible exception. To catch
all exceptions, we use an ellipsis for the exception declaration. Such handlers,
sometimes known as catch-all handlers, have the form catch(...). A catch-all
clause matches any type of exception.

A catch(...) is often used in combination with a rethrow expression. The
catch does whatever local work can be done and then rethrows the exception:

void manip() {
try {

// actions that cause an exception to be thrown
}
catch (...) {

// work to partially handle the exception
throw;

}
}

A catch(...) clause can be used by itself or as one of several catch clauses.

If a catch(...) is used in combination with other catch clauses, it
must be last. Any catch that follows a catch-all can never be matched.

18.1.3 Function try Blocks and Constructors
In general, exceptions can occur at any point in the program’s execution. In par-
ticular, an exception might occur while processing a constructor initializer. Con-
structor initializers execute before the constructor body is entered. A catch inside
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EXE R C I S E S SE C TI O N 18.1.2

Exercise 18.4: Looking ahead to the inheritance hierarchy in Figure 18.1 (p. 783), ex-
plain what’s wrong with the following try block. Correct it.

try {
// use of the C++ standard library

} catch(exception) {
// ...

} catch(const runtime_error &re) {
// ...

} catch(overflow_error eobj) { /* ... */ }

Exercise 18.5: Modify the following main function to catch any of the exception types
shown in Figure 18.1 (p. 783):

int main() {
// use of the C++ standard library

}

The handlers should print the error message associated with the exception before call-
ing abort (defined in the header cstdlib) to terminate main.

Exercise 18.6: Given the following exception types and catch clauses, write a throw
expression that creates an exception object that can be caught by each catch clause:

(a) class exceptionType { };
catch(exceptionType *pet) { }

(b) catch(...) { }
(c) typedef int EXCPTYPE;

catch(EXCPTYPE) { }

the constructor body can’t handle an exception thrown by a constructor initializer
because a try block inside the constructor body would not yet be in effect when
the exception is thrown.

To handle an exception from a constructor initializer, we must write the con-
structor as a function try block. A function try block lets us associate a group
of catch clauses with the initialization phase of a constructor (or the destruction
phase of a destructor) as well as with the constructor’s (or destructor’s) function
body. As an example, we might wrap the Blob constructors (§ 16.1.2, p. 662) in a
function try block:

template <typename T>
Blob<T>::Blob(std::initializer_list<T> il) try :

data(std::make_shared<std::vector<T>>(il)) {
/* empty body */

} catch(const std::bad_alloc &e) { handle_out_of_memory(e); }

Notice that the keyword try appears before the colon that begins the constructor
initializer list and before the curly brace that forms the (in this case empty) con-
structor function body. The catch associated with this try can be used to handle
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exceptions thrown either from within the member initialization list or from within
the constructor body.

It is worth noting that an exception can happen while initializing the construc-
tor’s parameters. Such exceptions are not part of the function try block. The
function try block handles only exceptions that occur once the constructor begins
executing. As with any other function call, if an exception occurs during parame-
ter initialization, that exception is part of the calling expression and is handled in
the caller’s context.

The only way for a constructor to handle an exception from a construc-
tor initializer is to write the constructor as a function try block.

EXE R C I S E S SE C TI O N 18.1.3

Exercise 18.7: Define your Blob and BlobPtr classes from Chapter 16 to use function
try blocks for their constructors.

18.1.4 The noexcept Exception Specification
It can be helpful both to users and to the compiler to know that a function will not
throw any exceptions. Knowing that a function will not throw simplifies the task
of writing code that calls that function. Moreover, if the compiler knows that no
exceptions will be thrown, it can (sometimes) perform optimizations that must be
suppressed if code might throw.

Under the new standard, a function can specify that it does not throw excep-
tions by providing a noexcept specification. The keyword noexcept following
the function parameter list indicates that the function won’t throw:

void recoup(int) noexcept; // won’t throw
void alloc(int); // might throw

These declarations say that recoup will not throw any exceptions and that alloc
might. We say that recoup has a nonthrowing specification.

The noexcept specifier must appear on all of the declarations and the corre-
sponding definition of a function or on none of them. The specifier precedes a
trailing return (§ 6.3.3, p. 229). We may also specify noexcept on the declara-
tion and definition of a function pointer. It may not appear in a typedef or type
alias. In a member function the noexcept specifier follows any const or refer-
ence qualifiers, and it precedes final, override, or = 0 on a virtual function.

Violating the Exception Specification

It is important to understand that the compiler does not check the noexcept spec-
ification at compile time. In fact, the compiler is not permitted to reject a function
with a noexcept specifier merely because it contains a throw or calls a function
that might throw (however, kind compilers will warn about such usages):
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// this function will compile, even though it clearly violates its exception specification
void f() noexcept // promises not to throw any exception
{

throw exception(); // violates the exception specification
}

As a result, it is possible that a function that claims it will not throw will in fact
throw. If a noexcept function does throw, terminate is called, thereby enforc-
ing the promise not to throw at run time. It is unspecified whether the stack is
unwound. As a result, noexcept should be used in two cases: if we are confident
that the function won’t throw, and/or if we don’t know what we’d do to handle
the error anyway.

Specifying that a function won’t throw effectively promises the callers of the
nonthrowing function that they will never need to deal with exceptions. Either
the function won’t throw, or the whole program will terminate; the caller escapes
responsibility either way.

The compiler in general cannot, and does not, verify exception specifi-
cations at compile time.

BACKWARD COMPATIBILITY: EXCEPTION SPECIFICATIONS

Earlier versions of C++ had a more elaborate scheme of exception specifications that
allowed us to specify the types of exceptions that a function might throw. A function
can specify the keyword throw followed by a parenthesized list of types that the func-
tion might throw. The throw specifier appeared in the same place as the noexcept
specifier does in the current language.

This approach was never widely used and has been deprecated in the current stan-
dard. Although these more elaborate specifiers have been deprecated, there is one use
of the old scheme that is in widespread use. A function that is designated by throw()
promises not to throw any exceptions:

void recoup(int) noexcept; // recoup doesn’t throw
void recoup(int) throw(); // equivalent declaration

These declarations of recoup both say that recoup won’t throw.

Arguments to the noexcept Specification

The noexcept specifier takes an optional argument that must be convertible to
bool: If the argument is true, then the function won’t throw; if the argument is
false, then the function might throw:

void recoup(int) noexcept(true); // recoup won’t throw
void alloc(int) noexcept(false); // alloc can throw

The noexcept Operator

Arguments to the noexcept specifier are often composed using the noexcept
operator. The noexcept operator is a unary operator that returns a bool rvalue
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constant expression that indicates whether a given expression might throw. Like
sizeof (§ 4.9, p. 156), noexcept does not evaluate its operand.

For example, this expression yields true:

noexcept(recoup(i)) // true if calling recoup can’t throw, false otherwise

because we declared recoup with a noexcept specifier. More generally,

noexcept(e)

is true if all the functions called by e have nonthrowing specifications and e itself
does not contain a throw. Otherwise, noexcept(e) returns false.

We can use the noexcept operator to form an exception specifier as follows:

void f() noexcept(noexcept(g())); // f has same exception specifier as g

If the function g promises not to throw, then f also is nonthrowing. If g has no
exception specifier, or has an exception specifier that allows exceptions, then f
also might throw.

noexcept has two meanings: It is an exception specifier when it fol-
lows a function’s parameter list, and it is an operator that is often used
as the bool argument to a noexcept exception specifier.

Exception Specifications and Pointers, Virtuals, and Copy Control

Although the noexcept specifier is not part of a function’s type, whether a func-
tion has an exception specification affects the use of that function.

A pointer to function and the function to which that pointer points must have
compatible specifications. That is, if we declare a pointer that has a nonthrowing
exception specification, we can use that pointer only to point to similarly qualified
functions. A pointer that specifies (explicitly or implicitly) that it might throw can
point to any function, even if that function includes a promise not to throw:

// both recoup and pf1 promise not to throw
void (*pf1)(int) noexcept = recoup;

// ok: recoup won’t throw; it doesn’t matter that pf2 might
void (*pf2)(int) = recoup;

pf1 = alloc; // error: alloc might throw but pf1 said it wouldn’t
pf2 = alloc; // ok: both pf2 and alloc might throw

If a virtual function includes a promise not to throw, the inherited virtuals must
also promise not to throw. On the other hand, if the base allows exceptions, it is
okay for the derived functions to be more restrictive and promise not to throw:

class Base {
public:

virtual double f1(double) noexcept; // doesn’t throw
virtual int f2() noexcept(false); // can throw
virtual void f3(); // can throw

};
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class Derived : public Base {
public:

double f1(double); // error: Base::f1 promises not to throw
int f2() noexcept(false); // ok: same specification as Base::f2
void f3() noexcept; // ok: Derived f3 is more restrictive

};

When the compiler synthesizes the copy-control members, it generates an ex-
ception specification for the synthesized member. If all the corresponding opera-
tion for all the members and base classes promise not to throw, then the synthe-
sized member is noexcept. If any function invoked by the synthesized member
can throw, then the synthesized member is noexcept(false). Moreover, if we
do not provide an exception specification for a destructor that we do define, the
compiler synthesizes one for us. The compiler generates the same specification as
it would have generated had it synthesized the destructor for that class.

EXE R C I S E S SE C TI O N 18.1.4

Exercise 18.8: Review the classes you’ve written and add appropriate exception spec-
ifications to their constructors and destructors. If you think one of your destructors
might throw, change the code so that it cannot throw.

18.1.5 Exception Class Hierarchies
The standard-library exception classes (§ 5.6.3, p. 197) form the inheritance hierar-
chy (Chapter 15) as shown in Figure 18.1.

The only operations that the exception types define are the copy construc-
tor, copy-assignment operator, a virtual destructor, and a virtual member named
what. The what function returns a const char* that points to a null-terminated
character array, and is guaranteed not to throw any exceptions.

The exception, bad_cast, and bad_alloc classes also define a default con-
structor. The runtime_error and logic_error classes do not have a default
constructor but do have constructors that take a C-style character string or a library
string argument. Those arguments are intended to give additional information
about the error. In these classes, what returns the message used to initialize the
exception object. Because what is virtual, if we catch a reference to the base-type,
a call to the what function will execute the version appropriate to the dynamic
type of the exception object.

Exception Classes for a Bookstore Application

Applications often extend the exception hierarchy by defining classes derived
from exception (or from one of the library classes derived from exception).
These application-specific classes represent exceptional conditions specific to the
application domain.
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Figure 18.1: Standard exception Class Hierarchy
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If we were building a real bookstore application, our classes would have been
much more complicated than the ones presented in this Primer. One such complex-
ity would be how these classes handled exceptions. In fact, we probably would
have defined our own hierarchy of exceptions to represent application-specific
problems. Our design might include classes such as

// hypothetical exception classes for a bookstore application
class out_of_stock: public std::runtime_error {
public:

explicit out_of_stock(const std::string &s):
std::runtime_error(s) { }

};

class isbn_mismatch: public std::logic_error {
public:

explicit isbn_mismatch(const std::string &s):
std::logic_error(s) { }

isbn_mismatch(const std::string &s,
const std::string &lhs, const std::string &rhs):
std::logic_error(s), left(lhs), right(rhs) { }

const std::string left, right;
};

Our application-specific exception types inherit them from the standard exception
classes. As with any hierarchy, we can think of the exception classes as being
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organized into layers. As the hierarchy becomes deeper, each layer becomes a more
specific exception. For example, the first and most general layer of the hierarchy
is represented by class exception. All we know when we catch an object of type
exception is that something has gone wrong.

The second layer specializes exception into two broad categories: run-time
or logic errors. Run-time errors represent things that can be detected only when
the program is executing. Logic errors are, in principle, errors that we could have
detected in our application.

Our bookstore exception classes further refine these categories. The class named
out_of_stock represents something, particular to our application, that can go
wrong at run time. It would be used to signal that an order cannot be fulfilled. The
class isbn_mismatch represents a more particular form of logic_error. In
principle, a program could prevent and handle this error by comparing the results
of isbn() on the objects.

Using Our Own Exception Types

We use our own exception classes in the same way that we use one of the standard
library classes. One part of the program throws an object of one of these types,
and another part catches and handles the indicated problem. As an example, we
might define the compound addition operator for our Sales_data class to throw
an error of type isbn_mismatch if it detected that the ISBNs didn’t match:

// throws an exception if both objects do not refer to the same book
Sales_data&
Sales_data::operator+=(const Sales_data& rhs)
{

if (isbn() != rhs.isbn())
throw isbn_mismatch("wrong isbns", isbn(), rhs.isbn());

units_sold += rhs.units_sold;
revenue += rhs.revenue;
return *this;

}

Code that uses the compound addition operator (or ordinary addition operator,
which itself uses the compound addition operator) can detect this error, write an
appropriate error message, and continue:

// use the hypothetical bookstore exceptions
Sales_data item1, item2, sum;
while (cin >> item1 >> item2) { // read two transactions

try {
sum = item1 + item2; // calculate their sum
// use sum

} catch (const isbn_mismatch &e) {
cerr << e.what() << ": left isbn(" << e.left

<< ") right isbn(" << e.right << ")" << endl;
}

}

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 18.2 Namespaces 785

EXE R C I S E S SE C TI O N 18.1.5

Exercise 18.9: Define the bookstore exception classes described in this section and
rewrite your Sales_data compound assigment operator to throw an exception.

Exercise 18.10: Write a program that uses the Sales_data addition operator on ob-
jects that have differing ISBNs. Write two versions of the program: one that handles the
exception and one that does not. Compare the behavior of the programs so that you
become familiar with what happens when an uncaught exception occurs.

Exercise 18.11: Why is it important that the what function doesn’t throw?

18.2 Namespaces
Large programs tend to use independently developed libraries. Such libraries also
tend to define a large number of global names, such as classes, functions, and
templates. When an application uses libraries from many different vendors, it is
almost inevitable that some of these names will clash. Libraries that put names
into the global namespace are said to cause namespace pollution.

Traditionally, programmers avoided namespace pollution by using very long
names for the global entities they defined. Those names often contained a prefix
indicating which library defined the name:

class cplusplus_primer_Query { ... };

string cplusplus_primer_make_plural(size_t, string&);

This solution is far from ideal: It can be cumbersome for programmers to write
and read programs that use such long names.

Namespaces provide a much more controlled mechanism for preventing name
collisions. Namespaces partition the global namespace. A namespace is a scope.
By defining a library’s names inside a namespace, library authors (and users) can
avoid the limitations inherent in global names.

18.2.1 Namespace Definitions
A namespace definition begins with the keyword namespace followed by the
namespace name. Following the namespace name is a sequence of declarations
and definitions delimited by curly braces. Any declaration that can appear at
global scope can be put into a namespace: classes, variables (with their initial-
izations), functions (with their definitions), templates, and other namespaces:

namespace cplusplus_primer {
class Sales_data { /* . . . */};
Sales_data operator+(const Sales_data&,

const Sales_data&);
class Query { /* . . . */ };
class Query_base { /* . . . */};

} // like blocks, namespaces do not end with a semicolon
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This code defines a namespace named cplusplus_primer with four members:
three classes and an overloaded + operator.

As with any name, a namespace name must be unique within the scope in
which the namespace is defined. Namespaces may be defined at global scope or
inside another namespace. They may not be defined inside a function or a class.

A namespace scope does not end with a semicolon.

Each Namespace Is a Scope

As is the case for any scope, each name in a namespace must refer to a unique
entity within that namespace. Because different namespaces introduce different
scopes, different namespaces may have members with the same name.

Names defined in a namespace may be accessed directly by other members of
the namespace, including scopes nested within those members. Code outside the
namespace must indicate the namespace in which the name is defined:

cplusplus_primer::Query q =
cplusplus_primer::Query("hello");

If another namespace (say, AddisonWesley) also provides a Query class and
we want to use that class instead of the one defined in cplusplus_primer, we
can do so by modifying our code as follows:

AddisonWesley::Query q = AddisonWesley::Query("hello");

Namespaces Can Be Discontiguous

As we saw in § 16.5 (p. 709), unlike other scopes, a namespace can be defined in
several parts. Writing a namespace definition:

namespace nsp {
// declarations
}

either defines a new namespace named nsp or adds to an existing one. If the name
nsp does not refer to a previously defined namespace, then a new namespace with
that name is created. Otherwise, this definition opens an existing namespace and
adds declarations to that already existing namespace.

The fact that namespace definitions can be discontiguous lets us compose a
namespace from separate interface and implementation files. Thus, a namespace
can be organized in the same way that we manage our own class and function
definitions:

• Namespace members that define classes, and declarations for the functions
and objects that are part of the class interface, can be put into header files.
These headers can be included by files that use those namespace members.

• The definitions of namespace members can be put in separate source files.
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Organizing our namespaces this way also satisfies the requirement that various
entities—non-inline functions, static data members, variables, and so forth—may
be defined only once in a program. This requirement applies equally to names
defined in a namespace. By separating the interface and implementation, we can
ensure that the functions and other names we need are defined only once, but the
same declaration will be seen whenever the entity is used.

Namespaces that define multiple, unrelated types should use separate
files to represent each type (or each collection of related types) that the
namespace defines.

Defining the Primer Namespace

Using this strategy for separating interface and implementation, we might define
the cplusplus_primer library in several separate files. The declarations for
Sales_data and its related functions would be placed in Sales_data.h, those
for the Query classes of Chapter 15 in Query.h, and so on. The corresponding
implementation files would be in files such as Sales_data.cc and Query.cc:

// ---- Sales_data.h ----
// #includes should appear before opening the namespace
#include <string>
namespace cplusplus_primer {

class Sales_data { /* . . . */};
Sales_data operator+(const Sales_data&,

const Sales_data&);
// declarations for the remaining functions in the Sales_data interface

}
// ---- Sales_data.cc ----
// be sure any #includes appear before opening the namespace
#include "Sales_data.h"

namespace cplusplus_primer {
// definitions for Sales_data members and overloaded operators
}

A program using our library would include whichever headers it needed. The
names in those headers are defined inside the cplusplus_primer namespace:

// ---- user.cc ----
// names in the Sales_data.h header are in the cplusplus_primer namespace
#include "Sales_data.h"

int main()
{

using cplusplus_primer::Sales_data;
Sales_data trans1, trans2;
// . . .
return 0;

}

This program organization gives the developers and the users of our library
the needed modularity. Each class is still organized into its own interface and
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implementation files. A user of one class need not compile names related to the
others. We can hide the implementations from our users, while allowing the files
Sales_data.cc and user.cc to be compiled and linked into one program with-
out causing any compile-time or link-time errors. Developers of the library can
work independently on the implementation of each type.

It is worth noting that ordinarily, we do not put a #include inside the name-
space. If we did, we would be attempting to define all the names in that header
as members of the enclosing namespace. For example, if our Sales_data.h file
opened the cplusplus_primer before including the string header our pro-
gram would be in error. It would be attempting to define the std namespace
nested inside cplusplus_primer.

Defining Namespace Members

Assuming the appropriate declarations are in scope, code inside a namespace may
use the short form for names defined in the same (or in an enclosing) namespace:

#include "Sales_data.h"
namespace cplusplus_primer { // reopen cplusplus_primer
// members defined inside the namespace may use unqualified names
std::istream&
operator>>(std::istream& in, Sales_data& s) { /* . . . */}
}

It is also possible to define a namespace member outside its namespace defini-
tion. The namespace declaration of the name must be in scope, and the definition
must specify the namespace to which the name belongs:

// namespace members defined outside the namespace must use qualified names
cplusplus_primer::Sales_data
cplusplus_primer::operator+(const Sales_data& lhs,

const Sales_data& rhs)
{

Sales_data ret(lhs);
// . . .

}

As with class members defined outside a class, once the fully qualified name is
seen, we are in the scope of the namespace. Inside the cplusplus_primername-
space, we can use other namespace member names without qualification. Thus,
even though Sales_data is a member of the cplusplus_primer namespace,
we can use its unqualified name to define the parameters in this function.

Although a namespace member can be defined outside its namespace, such
definitions must appear in an enclosing namespace. That is, we can define the
Sales_data operator+ inside the cplusplus_primer namespace or at global
scope. We cannot define this operator in an unrelated namespace.

Template Specializations

Template specializations must be defined in the same namespace that contains the
original template (§ 16.5, p. 709). As with any other namespace name, so long as
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we have declared the specialization inside the namespace, we can define it outside
the namespace:

// we must declare the specialization as a member of std
namespace std {

template <> struct hash<Sales_data>;
}

// having added the declaration for the specialization to std
// we can define the specialization outside the std namespace
template <> struct std::hash<Sales_data>
{

size_t operator()(const Sales_data& s) const
{ return hash<string>()(s.bookNo) ^

hash<unsigned>()(s.units_sold) ^
hash<double>()(s.revenue); }

// other members as before
};

The Global Namespace

Names defined at global scope (i.e., names declared outside any class, function,
or namespace) are defined inside the global namespace. The global namespace is
implicitly declared and exists in every program. Each file that defines entities at
global scope (implicitly) adds those names to the global namespace.

The scope operator can be used to refer to members of the global namespace.
Because the global namespace is implicit, it does not have a name; the notation

::member_name

refers to a member of the global namespace.

Nested Namespaces

A nested namespace is a namespace defined inside another namespace:

namespace cplusplus_primer {
// first nested namespace: defines the Query portion of the library
namespace QueryLib {

class Query { /* . . . */ };
Query operator&(const Query&, const Query&);
// . . .

}
// second nested namespace: defines the Sales_data portion of the library
namespace Bookstore {

class Quote { /* . . . */ };
class Disc_quote : public Quote { /* . . . */ };
// . . .

}
}

The cplusplus_primer namespace now contains two nested namespaces: the
namespaces named QueryLib and Bookstore.
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A nested namespace is a nested scope—its scope is nested within the name-
space that contains it. Nested namespace names follow the normal rules: Names
declared in an inner namespace hide declarations of the same name in an outer
namespace. Names defined inside a nested namespace are local to that inner name-
space. Code in the outer parts of the enclosing namespace may refer to a name in
a nested namespace only through its qualified name: For example, the name of the
class declared in the nested namespace QueryLib is

cplusplus_primer::QueryLib::Query

Inline Namespaces

The new standard introduced a new kind of nested namespace, an inline name-
space. Unlike ordinary nested namespaces, names in an inline namespace can be
used as if they were direct members of the enclosing namespace. That is, we need
not qualify names from an inline namespace by their namespace name. We can
access them using only the name of the enclosing namespace.

An inline namespace is defined by preceding the keyword namespace with
the keyword inline:

inline namespace FifthEd {
// namespace for the code from the Primer Fifth Edition

}
namespace FifthEd { // implicitly inline

class Query_base { /* . . . */};
// other Query-related declarations

}

The keyword must appear on the first definition of the namespace. If the name-
space is later reopened, the keyword inline need not be, but may be, repeated.

Inline namespaces are often used when code changes from one release of an
application to the next. For example, we can put all the code from the current
edition of the Primer into an inline namespace. Code for previous versions would
be in non-inlined namespaces:

namespace FourthEd {
class Item_base { /* . . . */};
class Query_base { /* . . . */};
// other code from the Fourth Edition

}

The overall cplusplus_primernamespace would include the definitions of both
namespaces. For example, assuming that each namespace was defined in a header
with the corresponding name, we’d define cplusplus_primer as follows:

namespace cplusplus_primer {
#include "FifthEd.h"
#include "FourthEd.h"
}
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Because FifthEd is inline, code that refers to cplusplus_primer::will get the
version from that namespace. If we want the earlier edition code, we can access it
as we would any other nested namespace, by using the names of all the enclosing
namespaces: for example, cplusplus_primer::FourthEd::Query_base.

Unnamed Namespaces

An unnamed namespace is the keyword namespace followed immediately by
a block of declarations delimited by curly braces. Variables defined in an un-
named namespace have static lifetime: They are created before their first use and
destroyed when the program ends.

An unnamed namespace may be discontiguous within a given file but does not
span files. Each file has its own unnamed namespace. If two files contain unnamed
namespaces, those namespaces are unrelated. Both unnamed namespaces can de-
fine the same name; those definitions would refer to different entities. If a header
defines an unnamed namespace, the names in that namespace define different en-
tities local to each file that includes the header.

Unlike other namespaces, an unnamed namespace is local to a particu-
lar file and never spans multiple files.

Names defined in an unnamed namespace are used directly; after all, there is
no namespace name with which to qualify them. It is not possible to use the scope
operator to refer to members of unnamed namespaces.

Names defined in an unnamed namespace are in the same scope as the scope
at which the namespace is defined. If an unnamed namespace is defined at the
outermost scope in the file, then names in the unnamed namespace must differ
from names defined at global scope:

int i; // global declaration for i
namespace {

int i;
}
// ambiguous: defined globally and in an unnested, unnamed namespace
i = 10;

In all other ways, the members of an unnamed namespace are normal program
entities. An unnamed namespace, like any other namespace, may be nested inside
another namespace. If the unnamed namespace is nested, then names in it are
accessed in the normal way, using the enclosing namespace name(s):

namespace local {
namespace {

int i;
}

}
// ok: i defined in a nested unnamed namespace is distinct from global i
local::i = 42;
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UNNAMED NAMESPACES REPLACE FILE STATICS

Prior to the introduction of namespaces, programs declared names as static to make
them local to a file. The use of file statics is inherited from C. In C, a global entity
declared static is invisible outside the file in which it is declared.

The use of file static declarations is deprecated by the C++ standard. File
statics should be avoided and unnamed namespaces used instead.

EXE R C I S E S SE C TI O N 18.2.1

Exercise 18.12: Organize the programs you have written to answer the questions in
each chapter into their own namespaces. That is, namespace chapter15 would con-
tain code for the Query programs and chapter10 would contain the TextQuery
code. Using this structure, compile the Query code examples.

Exercise 18.13: When might you use an unnamed namespace?

Exercise 18.14: Suppose we have the following declaration of the operator* that is
a member of the nested namespace mathLib::MatrixLib:

namespace mathLib {
namespace MatrixLib {

class matrix { /* ... */ };
matrix operator*

(const matrix &, const matrix &);
// ...

}
}

How would you declare this operator in global scope?

18.2.2 Using Namespace Members
Referring to namespace members as namespace_name::member_name is ad-
mittedly cumbersome, especially if the namespace name is long. Fortunately, there
are ways to make it easier to use namespace members. Our programs have used
one of these ways, using declarations (§ 3.1, p. 82). The others, namespace aliases
and using directives, will be described in this section.

Namespace Aliases

A namespace alias can be used to associate a shorter synonym with a namespace
name. For example, a long namespace name such as

namespace cplusplus_primer { /* . . . */ };

can be associated with a shorter synonym as follows:

namespace primer = cplusplus_primer;
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A namespace alias declaration begins with the keyword namespace, followed by
the alias name, followed by the = sign, followed by the original namespace name
and a semicolon. It is an error if the original namespace name has not already been
defined as a namespace.

A namespace alias can also refer to a nested namespace:

namespace Qlib = cplusplus_primer::QueryLib;
Qlib::Query q;

A namespace can have many synonyms, or aliases. All the aliases and
the original namespace name can be used interchangeably.

using Declarations: A Recap

A using declaration introduces only one namespace member at a time. It allows
us to be very specific regarding which names are used in our programs.

Names introduced in a using declaration obey normal scope rules: They are
visible from the point of the using declaration to the end of the scope in which
the declaration appears. Entities with the same name defined in an outer scope are
hidden. The unqualified name may be used only within the scope in which it is
declared and in scopes nested within that scope. Once the scope ends, the fully
qualified name must be used.

A using declaration can appear in global, local, namespace, or class scope. In
class scope, such declarations may only refer to a base class member (§ 15.5, p. 615).

using Directives

A using directive, like a using declaration, allows us to use the unqualified form
of a namespace name. Unlike a using declaration, we retain no control over which
names are made visible—they all are.

A using directive begins with the keyword using, followed by the keyword
namespace, followed by a namespace name. It is an error if the name is not a
previously defined namespace name. A using directive may appear in global,
local, or namespace scope. It may not appear in a class scope.

These directives make all the names from a specific namespace visible without
qualification. The short form names can be used from the point of the using
directive to the end of the scope in which the using directive appears.

Providing a using directive for namespaces, such as std, that our ap-
plication does not control reintroduces all the name collision problems
inherent in using multiple libraries.

using Directives and Scope

The scope of names introduced by a using directive is more complicated than the
scope of names in using declarations. As we’ve seen, a using declaration puts
the name in the same scope as that of the using declaration itself. It is as if the
using declaration declares a local alias for the namespace member.
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A using directive does not declare local aliases. Rather, it has the effect of
lifting the namespace members into the nearest scope that contains both the name-
space itself and the using directive.

This difference in scope between a using declaration and a using directive
stems directly from how these two facilities work. In the case of a using declara-
tion, we are simply making name directly accessible in the local scope. In contrast,
a using directive makes the entire contents of a namespace available In general,
a namespace might include definitions that cannot appear in a local scope. As a
consequence, a using directive is treated as if it appeared in the nearest enclosing
namespace scope.

In the simplest case, assume we have a namespace A and a function f, both
defined at global scope. If f has a using directive for A, then in f it will be as if
the names in A appeared in the global scope prior to the definition of f:

// namespace A and function f are defined at global scope
namespace A {

int i, j;
}

void f()
{

using namespace A; // injects the names from A into the global scope
cout << i * j << endl; // uses i and j from namespace A
// . . .

}

using Directives Example

Let’s look at an example:

namespace blip {
int i = 16, j = 15, k = 23;
// other declarations

}
int j = 0; // ok: j inside blip is hidden inside a namespace

void manip()
{

// using directive; the names in blip are ‘‘added’’ to the global scope
using namespace blip; // clash between ::j and blip::j

// detected only if j is used

++i; // sets blip::i to 17
++j; // error ambiguous: global j or blip::j?

++::j; // ok: sets global j to 1
++blip::j; // ok: sets blip::j to 16

int k = 97; // local k hides blip::k
++k; // sets local k to 98

}

The using directive in manip makes all the names in blip directly accessible;
code inside manip can refer to the names of these members, using their short form.
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The members of blip appear as if they were defined in the scope in which
both blip and manip are defined. Assuming manip is defined at global scope,
then the members of blip appear as if they were declared in global scope.

When a namespace is injected into an enclosing scope, it is possible for names in
the namespace to conflict with other names defined in that (enclosing) scope. For
example, inside manip, the blip member j conflicts with the global object named
j. Such conflicts are permitted, but to use the name, we must explicitly indicate
which version is wanted. Any unqualified use of j within manip is ambiguous.

To use a name such as j, we must use the scope operator to indicate which
name is wanted. We would write ::j to obtain the variable defined in global
scope. To use the j defined in blip, we must use its qualified name, blip::j.

Because the names are in different scopes, local declarations within manipmay
hide some of the namespace member names. The local variable k hides the name-
space member blip::k. Referring to k within manip is not ambiguous; it refers
to the local variable k.

Headers and using Declarations or Directives

A header that has a using directive or declaration at its top-level scope injects
names into every file that includes the header. Ordinarily, headers should define
only the names that are part of its interface, not names used in its own imple-
mentation. As a result, header files should not contain using directives or using
declarations except inside functions or namespaces (§ 3.1, p. 83).

CAUTION: AVOID USING DIRECTIVES

using directives, which inject all the names from a namespace, are deceptively sim-
ple to use: With only a single statement, all the member names of a namespace are
suddenly visible. Although this approach may seem simple, it can introduce its own
problems. If an application uses many libraries, and if the names within these li-
braries are made visible with using directives, then we are back to square one, and
the global namespace pollution problem reappears.

Moreover, it is possible that a working program will fail to compile when a new
version of the library is introduced. This problem can arise if a new version introduces
a name that conflicts with a name that the application is using.

Another problem is that ambiguity errors caused by using directives are detected
only at the point of use. This late detection means that conflicts can arise long after
introducing a particular library. If the program begins using a new part of the library,
previously undetected collisions may arise.

Rather than relying on a using directive, it is better to use a using declaration for
each namespace name used in the program. Doing so reduces the number of names
injected into the namespace. Ambiguity errors caused by using declarations are de-
tected at the point of declaration, not use, and so are easier to find and fix.

One place where using directives are useful is in the implementation
files of the namespace itself.
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EXE R C I S E S SE C TI O N 18.2.2

Exercise 18.15: Explain the differences between using declarations and directives.

Exercise 18.16: Explain the following code assuming using declarations for all the
members of namespace Exercise are located at the location labeled position 1. What
if they appear at position 2 instead? Now answer the same question but replace the
using declarations with a using directive for namespace Exercise.

namespace Exercise {
int ivar = 0;
double dvar = 0;
const int limit = 1000;

}
int ivar = 0;
// position 1
void manip() {

// position 2
double dvar = 3.1416;
int iobj = limit + 1;
++ivar;
++::ivar;

}

Exercise 18.17: Write code to test your answers to the previous question.

18.2.3 Classes, Namespaces, and Scope
Name lookup for names used inside a namespace follows the normal lookup rules:
The search looks outward through the enclosing scopes. An enclosing scope might
be one or more nested namespaces, ending in the all-encompassing global name-
space. Only names that have been declared before the point of use that are in
blocks that are still open are considered:

namespace A {
int i;
namespace B {

int i; // hides A::i within B
int j;
int f1()
{

int j; // j is local to f1 and hides A::B::j
return i; // returns B::i

}
} // namespace B is closed and names in it are no longer visible
int f2() {

return j; // error: j is not defined
}
int j = i; // initialized from A::i

}
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When a class is wrapped in a namespace, the normal lookup still happens:
When a name is used by a member function, look for that name in the member first,
then within the class (including base classes), then look in the enclosing scopes, one
or more of which might be a namespace:

namespace A {
int i;
int k;

class C1 {
public:

C1(): i(0), j(0) { } // ok: initializes C1::i and C1::j
int f1() { return k; } // returns A::k
int f2() { return h; } // error: h is not defined
int f3();

private:
int i; // hides A::i within C1
int j;

};

int h = i; // initialized from A::i
}

// member f3 is defined outside class C1 and outside namespace A
int A::C1::f3() { return h; } // ok: returns A::h

With the exception of member function definitions that appear inside the class
body (§ 7.4.1, p. 283), scopes are always searched upward; names must be declared
before they can be used. Hence, the return in f2 will not compile. It attempts to
reference the name h from namespace A, but h has not yet been defined. Had that
name been defined in A before the definition of C1, the use of h would be legal.
Similarly, the use of h inside f3 is okay, because f3 is defined after A::h.

The order in which scopes are examined to find a name can be inferred
from the qualified name of a function. The qualified name indicates, in
reverse order, the scopes that are searched.

The qualifiers A::C1::f3 indicate the reverse order in which the class scopes
and namespace scopes are to be searched. The first scope searched is that of the
function f3. Then the class scope of its enclosing class C1 is searched. The scope
of the namespace A is searched last before the scope containing the definition of f3
is examined.

Argument-Dependent Lookup and Parameters of Class Type

Consider the following simple program:

std::string s;
std::cin >> s;

As we know, this call is equivalent to (§ 14.1, p. 553):

operator>>(std::cin, s);
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This operator>> function is defined by the string library, which in turn is de-
fined in the std namespace. Yet we can we call operator>> without an std::
qualifier and without a using declaration.

We can directly access the output operator because there is an important excep-
tion to the rule that names defined in a namespace are hidden. When we pass an
object of a class type to a function, the compiler searches the namespace in which
the argument’s class is defined in addition to the normal scope lookup. This excep-
tion also applies for calls that pass pointers or references to a class type.

In this example, when the compiler sees the “call” to operator>>, it looks
for a matching function in the current scope, including the scopes enclosing the
output statement. In addition, because the >> expression has parameters of class
type, the compiler also looks in the namespace(s) in which the types of cin and s
are defined. Thus, for this call, the compiler looks in the std namespace, which
defines the istream and string types. When it searches std, the compiler finds
the string output operator function.

This exception in the lookup rules allows nonmember functions that are con-
ceptually part of the interface to a class to be used without requiring a separate
using declaration. In the absence of this exception to the lookup rules, either we
would have to provide an appropriate using declaration for the output operator:

using std::operator>>; // needed to allow cin >> s

or we would have to use the function-call notation in order to include the name-
space qualifer:

std::operator>>(std::cin, s); // ok: explicitly use std::>>

There would be no way to use operator syntax. Either of these declarations is
awkward and would make simple uses of the IO library more complicated.

Lookup and std::move and std::forward

Many, perhaps even most, C++ programmers never have to think about argument-
dependent lookup. Ordinarily, if an application defines a name that is also defined
in the library, one of two things is true: Either normal overloading determines
(correctly) whether a particular call is intended for the application version or the
one from the library, or the application never intends to use the library function.

Now consider the library move and forward functions. Both of these functions
are template functions, and the library defines versions of them that have a single
rvalue reference function parameter. As we’ve seen, in a function template, an
rvalue reference parameter can match any type (§ 16.2.6, p. 690). If our application
defines a function named move that takes a single parameter, then—no matter
what type the parameter has—the application’s version of move will collide with
the library version. Similarly for forward.

As a result, name collisions with move (and forward) are more likely than
collisions with other library functions. In addition, because move and forward do
very specialized type manipulations, the chances that an application specifically
wants to override the behavior of these functions are pretty small.
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The fact that collisions are more likely—and are less likely to be intentional—
explains why we suggest always using the fully qualified versions of these names
(§ 12.1.5, p. 470). So long as we write std::move rather than move, we know that
we will get the version from the standard library.

Friend Declarations and Argument-Dependent Lookup

Recall that when a class declares a friend, the friend declaration does not make the
friend visible (§ 7.2.1, p. 270). However, an otherwise undeclared class or function
that is first named in a friend declaration is assumed to be a member of the clos-
est enclosing namespace. The combination of this rule and argument-dependent
lookup can lead to surprises:

namespace A {
class C {

// two friends; neither is declared apart from a friend declaration
// these functions implicitly are members of namespace A
friend void f2(); // won’t be found, unless otherwise declared
friend void f(const C&); // found by argument-dependent lookup

};
}

Here, both f and f2 are members of namespace A. Through argument-dependent
lookup, we can call f even if there is no additional declaration for f:

int main()
{

A::C cobj;
f(cobj); // ok: finds A::f through the friend declaration in A::C
f2(); // error: A::f2 not declared

}

Because f takes an argument of a class type, and f is implicitly declared in the
same namespace as C, f is found when called. Because f2 has no parameter, it will
not be found.

EXE R C I S E S SE C TI O N 18.2.3

Exercise 18.18: Given the following typical definition of swap § 13.3 (p. 517), deter-
mine which version of swap is used if mem1 is a string. What if mem1 is an int?
Explain how name lookup works in both cases.

void swap(T v1, T v2)
{

using std::swap;
swap(v1.mem1, v2.mem1);
// swap remaining members of type T

}

Exercise 18.19: What if the call to swap was std::swap(v1.mem1, v2.mem1)?
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18.2.4 Overloading and Namespaces
Namespaces have two impacts on function matching (§ 6.4, p. 233). One of these
should be obvious: A using declaration or directive can add functions to the can-
didate set. The other is much more subtle.

Argument-Dependent Lookup and Overloading

As we saw in the previous section, name lookup for functions that have class-type
arguments includes the namespace in which each argument’s class is defined. This
rule also impacts how we determine the candidate set. Each namespace that de-
fines a class used as an argument (and those that define its base classes) is searched
for candidate functions. Any functions in those namespaces that have the same
name as the called function are added to the candidate set. These functions are
added even though they otherwise are not visible at the point of the call:

namespace NS {
class Quote { /* . . . */ };
void display(const Quote&) { /* . . . */ }

}

// Bulk_item’s base class is declared in namespace NS
class Bulk_item : public NS::Quote { /* . . . */ };

int main() {
Bulk_item book1;

display(book1);
return 0;

}

The argument we passed to display has class type Bulk_item. The candidate
functions for the call to display are not only the functions with declarations
that are in scope where display is called, but also the functions in the name-
space where Bulk_item and its base class, Quote, are declared. The function
display(const Quote&) declared in namespace NS is added to the set of can-
didate functions.

Overloading and using Declarations

To understand the interaction between using declarations and overloading, it is
important to remember that a using declaration declares a name, not a specific
function (§ 15.6, p. 621):

using NS::print(int); // error: cannot specify a parameter list
using NS::print; // ok: using declarations specify names only

When we write a using declaration for a function, all the versions of that function
are brought into the current scope.

A using declaration incorporates all versions to ensure that the interface of
the namespace is not violated. The author of a library provided different functions
for a reason. Allowing users to selectively ignore some but not all of the functions
from a set of overloaded functions could lead to surprising program behavior.
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The functions introduced by a using declaration overload any other decla-
rations of the functions with the same name already present in the scope where
the using declaration appears. If the using declaration appears in a local scope,
these names hide existing declarations for that name in the outer scope. If the
using declaration introduces a function in a scope that already has a function of
the same name with the same parameter list, then the using declaration is in error.
Otherwise, the using declaration defines additional overloaded instances of the
given name. The effect is to increase the set of candidate functions.

Overloading and using Directives

A using directive lifts the namespace members into the enclosing scope. If a
namespace function has the same name as a function declared in the scope at which
the namespace is placed, then the namespace member is added to the overload set:

namespace libs_R_us {
extern void print(int);
extern void print(double);

}

// ordinary declaration
void print(const std::string &);

// this using directive adds names to the candidate set for calls to print:
using namespace libs_R_us;

// the candidates for calls to print at this point in the program are:
// print(int) from libs_R_us
// print(double) from libs_R_us
// print(const std::string &) declared explicitly

void fooBar(int ival)
{

print("Value: "); // calls global print(const string &)
print(ival); // calls libs_R_us::print(int)

}

Differently from how using declarations work, it is not an error if a using di-
rective introduces a function that has the same parameters as an existing function.
As with other conflicts generated by using directives, there is no problem unless
we try to call the function without specifying whether we want the one from the
namespace or from the current scope.

Overloading across Multiple using Directives

If many using directives are present, then the names from each namespace be-
come part of the candidate set:

namespace AW {
int print(int);

}
namespace Primer {

double print(double);
}
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// using directives create an overload set of functions from different namespaces
using namespace AW;
using namespace Primer;

long double print(long double);

int main() {
print(1); // calls AW::print(int)
print(3.1); // calls Primer::print(double)
return 0;

}

The overload set for the function print in global scope contains the functions
print(int), print(double), and print(long double). These functions are
all part of the overload set considered for the function calls in main, even though
these functions were originally declared in different namespace scopes.

EXE R C I S E S SE C TI O N 18.2.4

Exercise 18.20: In the following code, determine which function, if any, matches the
call to compute. List the candidate and viable functions. What type conversions, if
any, are applied to the argument to match the parameter in each viable function?

namespace primerLib {
void compute();
void compute(const void *);

}
using primerLib::compute;
void compute(int);
void compute(double, double = 3.4);
void compute(char*, char* = 0);

void f()
{

compute(0);
}

What would happen if the using declaration were located in main before the call to
compute? Answer the same questions as before.

18.3 Multiple and Virtual Inheritance
Multiple inheritance is the ability to derive a class from more than one direct
base class (§ 15.2.2, p. 600). A multiply derived class inherits the properties of all
its parents. Although simple in concept, the details of intertwining multiple base
classes can present tricky design-level and implementation-level problems.

To explore multiple inheritance, we’ll use a pedagogical example of a zoo an-
imal hierarchy. Our zoo animals exist at different levels of abstraction. There are
the individual animals, distinguished by their names, such as Ling-ling, Mowgli,
and Balou. Each animal belongs to a species; Ling-Ling, for example, is a giant
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panda. Species, in turn, are members of families. A giant panda is a member of
the bear family. Each family, in turn, is a member of the animal kingdom—in this
case, the more limited kingdom of a particular zoo.

We’ll define an abstract ZooAnimal class to hold information that is common
to all the zoo animals and provides the most general interface. The Bear class will
contain information that is unique to the Bear family, and so on.

In addition to the ZooAnimal classes, our application will contain auxiliary
classes that encapsulate various abstractions such as endangered animals. In our
implementation of a Panda class, for example, a Panda is multiply derived from
Bear and Endangered.

18.3.1 Multiple Inheritance
The derivation list in a derived class can contain more than one base class:

class Bear : public ZooAnimal {
class Panda : public Bear, public Endangered { /* . . . */ };

Each base class has an optional access specifier (§ 15.5, p. 612). As usual, if the
access specifier is omitted, the specifier defaults to private if the class keyword
is used and to public if struct is used (§ 15.5, p. 616).

As with single inheritance, the derivation list may include only classes that
have been defined and that were not defined as final (§ 15.2.2, p. 600). There is
no language-imposed limit on the number of base classes from which a class can
be derived. A base class may appear only once in a given derivation list.

Multiply Derived Classes Inherit State from Each Base Class

Under multiple inheritance, an object of a derived class contains a subobject for
each of its base classes (§ 15.2.2, p. 597). For example, as illustrated in Figure 18.2,
a Panda object has a Bear part (which itself contains a ZooAnimal part), an
Endangered class part, and the nonstatic data members, if any, declared within
the Panda class.

Figure 18.2: Conceptual Structure of a Panda Object
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Derived Constructors Initialize All Base Classes

Constructing an object of derived type constructs and initializes all its base sub-
objects. As is the case for inheriting from a single base class (§ 15.2.2, p. 598), a
derived type’s constructor initializer may initialize only its direct base classes:

// explicitly initialize both base classes
Panda::Panda(std::string name, bool onExhibit)

: Bear(name, onExhibit, "Panda"),
Endangered(Endangered::critical) { }

// implicitly uses the Bear default constructor to initialize the Bear subobject
Panda::Panda()

: Endangered(Endangered::critical) { }

The constructor initializer list may pass arguments to each of the direct base classes.
The order in which base classes are constructed depends on the order in which they
appear in the class derivation list. The order in which they appear in the construc-
tor initializer list is irrelevant. A Panda object is initialized as follows:

• ZooAnimal, the ultimate base class up the hierarchy from Panda’s first di-
rect base class, Bear, is initialized first.

• Bear, the first direct base class, is initialized next.

• Endangered, the second direct base, is initialized next.

• Panda, the most derived part, is initialized last.

Inherited Constructors and Multiple Inheritance

Under the new standard, a derived class can inherit its constructors from one or
more of its base classes (§ 15.7.4, p. 628). It is an error to inherit the same construc-
tor (i.e., one with the same parameter list) from more than one base class:

struct Base1 {
Base1() = default;
Base1(const std::string&);
Base1(std::shared_ptr<int>);

};

struct Base2 {
Base2() = default;
Base2(const std::string&);
Base2(int);

};

// error: D1 attempts to inherit D1::D1(const string&) from both base classes
struct D1: public Base1, public Base2 {

using Base1::Base1; // inherit constructors from Base1
using Base2::Base2; // inherit constructors from Base2

};

A class that inherits the same constructor from more than one base class must
define its own version of that constructor:
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struct D2: public Base1, public Base2 {
using Base1::Base1; // inherit constructors from Base1
using Base2::Base2; // inherit constructors from Base2
// D2 must define its own constructor that takes a string
D2(const string &s): Base1(s), Base2(s) { }
D2() = default; // needed once D2 defines its own constructor

};

Destructors and Multiple Inheritance

As usual, the destructor in a derived class is responsible for cleaning up resources
allocated by that class only—the members and all the base class(es) of the derived
class are automatically destroyed. The synthesized destructor has an empty func-
tion body.

Destructors are always invoked in the reverse order from which the construc-
tors are run. In our example, the order in which the destructors are called is
~Panda, ~Endangered, ~Bear, ~ZooAnimal.

Copy and Move Operations for Multiply Derived Classes

As is the case for single inheritance, classes with multiple bases that define their
own copy/move constructors and assignment operators must copy, move, or as-
sign the whole object (§ 15.7.2, p. 623). The base parts of a multiply derived class
are automatically copied, moved, or assigned only if the derived class uses the
synthesized versions of these members. In the synthesized copy-control members,
each base class is implicitly constructed, assigned, or destroyed, using the corre-
sponding member from that base class.

For example, assuming that Panda uses the synthesized members, then the
initialization of ling_ling:

Panda ying_yang("ying_yang");
Panda ling_ling = ying_yang; // uses the copy constructor

will invoke the Bear copy constructor, which in turn runs the ZooAnimal copy
constructor before executing the Bear copy constructor. Once the Bear portion
of ling_ling is constructed, the Endangered copy constructor is run to create
that part of the object. Finally, the Panda copy constructor is run. Similarly, for the
synthesized move constructor.

The synthesized copy-assignment operator behaves similarly to the copy con-
structor. It assigns the Bear (and through Bear, the ZooAnimal) parts of the
object first. Next, it assigns the Endangered part, and finally the Panda part.
Move assignment behaves similarly.

18.3.2 Conversions and Multiple Base Classes
Under single inheritance, a pointer or a reference to a derived class can be con-
verted automatically to a pointer or a reference to an accessible base class (§ 15.2.2,
p. 597, and § 15.5, p. 613). The same holds true with multiple inheritance. A pointer
or reference to any of an object’s (accessible) base classes can be used to point or
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EXE R C I S E S SE C TI O N 18.3.1

Exercise 18.21: Explain the following declarations. Identify any that are in error and
explain why they are incorrect:

(a) class CADVehicle : public CAD, Vehicle { ... };
(b) class DblList: public List, public List { ... };
(c) class iostream: public istream, public ostream { ... };

Exercise 18.22: Given the following class hierarchy, in which each class defines a de-
fault constructor:

class A { ... };
class B : public A { ... };
class C : public B { ... };
class X { ... };
class Y { ... };
class Z : public X, public Y { ... };
class MI : public C, public Z { ... };

what is the order of constructor execution for the following definition?

MI mi;

refer to a derived object. For example, a pointer or reference to ZooAnimal, Bear,
or Endangered can be bound to a Panda object:

// operations that take references to base classes of type Panda
void print(const Bear&);
void highlight(const Endangered&);
ostream& operator<<(ostream&, const ZooAnimal&);

Panda ying_yang("ying_yang");

print(ying_yang); // passes Panda to a reference to Bear
highlight(ying_yang); // passes Panda to a reference to Endangered
cout << ying_yang << endl; // passes Panda to a reference to ZooAnimal

The compiler makes no attempt to distinguish between base classes in terms
of a derived-class conversion. Converting to each base class is equally good. For
example, if there was an overloaded version of print:

void print(const Bear&);
void print(const Endangered&);

an unqualified call to print with a Panda object would be a compile-time error:

Panda ying_yang("ying_yang");
print(ying_yang); // error: ambiguous

Lookup Based on Type of Pointer or Reference

As with single inheritance, the static type of the object, pointer, or reference deter-
mines which members we can use (§ 15.6, p. 617). If we use a ZooAnimal pointer,
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only the operations defined in that class are usable. The Bear-specific, Panda-
specific, and Endangered portions of the Panda interface are invisible. Similarly,
a Bear pointer or reference knows only about the Bear and ZooAnimalmembers;
an Endangered pointer or reference is limited to the Endangered members.

As an example, consider the following calls, which assume that our classes
define the virtual functions listed in Table 18.1:

Bear *pb = new Panda("ying_yang");

pb->print(); // ok: Panda::print()
pb->cuddle(); // error: not part of the Bear interface
pb->highlight(); // error: not part of the Bear interface
delete pb; // ok: Panda::~Panda()

When a Panda is used via an Endangered pointer or reference, the Panda-
specific and Bear portions of the Panda interface are invisible:

Endangered *pe = new Panda("ying_yang");
pe->print(); // ok: Panda::print()
pe->toes(); // error: not part of the Endangered interface
pe->cuddle(); // error: not part of the Endangered interface
pe->highlight(); // ok: Panda::highlight()
delete pe; // ok: Panda::~Panda()

Table 18.1: Virtual Functions in the ZooAnimal/EndangeredClasses

Function Class Defining Own Version

print ZooAnimal::ZooAnimal

Bear::Bear

Endangered::Endangered

Panda::Panda

highlight Endangered::Endangered

Panda::Panda

toes Bear::Bear

Panda::Panda

cuddle Panda::Panda

destructor ZooAnimal::ZooAnimal

Endangered::Endangered

18.3.3 Class Scope under Multiple Inheritance
Under single inheritance, the scope of a derived class is nested within the scope of
its direct and indirect base classes (§ 15.6, p. 617). Lookup happens by searching
up the inheritance hierarchy until the given name is found. Names defined in a
derived class hide uses of that name inside a base.

Under multiple inheritance, this same lookup happens simultaneously among
all the direct base classes. If a name is found through more than one base class,
then use of that name is ambiguous.
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EXE R C I S E S SE C TI O N 18.3.2

Exercise 18.23: Using the hierarchy in exercise 18.22 along with class D defined below,
and assuming each class defines a default constructor, which, if any, of the following
conversions are not permitted?

class D : public X, public C { ... };
D *pd = new D;

(a) X *px = pd; (b) A *pa = pd;
(c) B *pb = pd; (d) C *pc = pd;

Exercise 18.24: On page 807 we presented a series of calls made through a Bear
pointer that pointed to a Panda object. Explain each call assuming we used a
ZooAnimal pointer pointing to a Panda object instead.

Exercise 18.25: Assume we have two base classes, Base1 and Base2, each of which
defines a virtual member named print and a virtual destructor. From these base
classes we derive the following classes, each of which redefines the print function:

class D1 : public Base1 { /* . . . */ };
class D2 : public Base2 { /* . . . */ };
class MI : public D1, public D2 { /* . . . */ };

Using the following pointers, determine which function is used in each call:

Base1 *pb1 = new MI;
Base2 *pb2 = new MI;
D1 *pd1 = new MI;
D2 *pd2 = new MI;

(a) pb1->print(); (b) pd1->print(); (c) pd2->print();
(d) delete pb2; (e) delete pd1; (f) delete pd2;

In our example, if we use a name through a Panda object, pointer, or reference,
both the Endangered and the Bear/ZooAnimal subtrees are examined in par-
allel. If the name is found in more than one subtree, then the use of the name is
ambiguous. It is perfectly legal for a class to inherit multiple members with the
same name. However, if we want to use that name, we must specify which version
we want to use.

When a class has multiple base classes, it is possible for that derived
class to inherit a member with the same name from two or more of its
base classes. Unqualified uses of that name are ambiguous.

For example, if both ZooAnimal and Endangered define a member named
max_weight, and Panda does not define that member, this call is an error:

double d = ying_yang.max_weight();

The derivation of Panda, which results in Panda having two members named
max_weight, is perfectly legal. The derivation generates a potential ambiguity.
That ambiguity is avoided if no Panda object ever calls max_weight. The error
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would also be avoided if each call to max_weight specifically indicated which
version to run—ZooAnimal::max_weightor Endangered::max_weight. An
error results only if there is an ambiguous attempt to use the member.

The ambiguity of the two inherited max_weight members is reasonably obvi-
ous. It might be more surprising to learn that an error would be generated even if
the two inherited functions had different parameter lists. Similarly, it would be an
error even if the max_weight function were private in one class and public or
protected in the other. Finally, if max_weight were defined in Bear and not in
ZooAnimal, the call would still be in error.

As always, name lookup happens before type checking (§ 6.4.1, p. 234). When
the compiler finds max_weight in two different scopes, it generates an error not-
ing that the call is ambiguous.

The best way to avoid potential ambiguities is to define a version of the function
in the derived class that resolves the ambiguity. For example, we should give our
Panda class a max_weight function that resolves the ambiguity:

double Panda::max_weight() const
{

return std::max(ZooAnimal::max_weight(),
Endangered::max_weight());

}

EXE R C I S E S SE C TI O N 18.3.3

Exercise 18.26: Given the hierarchy in the box on page 810, why is the following call to
print an error? Revise MI to allow this call to print to compile and execute correctly.

MI mi;
mi.print(42);

Exercise 18.27: Given the class hierarchy in the box on page 810 and assuming we add
a function named foo to MI as follows:

int ival;
double dval;

void MI::foo(double cval)
{

int dval;
// exercise questions occur here

}

(a) List all the names visible from within MI::foo.
(b) Are any names visible from more than one base class?
(c) Assign to the local instance of dval the sum of the dval member of Base1

and the dval member of Derived.
(d) Assign the value of the last element in MI::dvec to Base2::fval.
(e) Assign cval from Base1 to the first character in sval from Derived.
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CODE FOR EXERCISES TO SECTION 18.3.3

struct Base1 {
void print(int) const; // public by default

protected:
int ival;
double dval;
char cval;

private:
int *id;

};

struct Base2 {
void print(double) const; // public by default

protected:
double fval;

private:
double dval;

};

struct Derived : public Base1 {
void print(std::string) const; // public by default

protected:
std::string sval;
double dval;

};

struct MI : public Derived, public Base2 {
void print(std::vector<double>); // public by default

protected:
int *ival;
std::vector<double> dvec;

};

18.3.4 Virtual Inheritance
Although the derivation list of a class may not include the same base class more
than once, a class can inherit from the same base class more than once. It might
inherit the same base indirectly from two of its own direct base classes, or it might
inherit a particular class directly and indirectly through another of its base classes.

As an example, the IO library istream and ostream classes each inherit from
a common abstract base class named basic_ios. That class holds the stream’s
buffer and manages the stream’s condition state. The class iostream, which
can both read and write to a stream, inherits directly from both istream and
ostream. Because both types inherit from basic_ios, iostream inherits that
base class twice, once through istream and once through ostream.

By default, a derived object contains a separate subpart corresponding to each
class in its derivation chain. If the same base class appears more than once in the
derivation, then the derived object will have more than one subobject of that type.

This default doesn’t work for a class such as iostream. An iostream object
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wants to use the same buffer for both reading and writing, and it wants its condi-
tion state to reflect both input and output operations. If an iostream object has
two copies of its basic_ios class, this sharing isn’t possible.

In C++ we solve this kind of problem by using virtual inheritance. Virtual
inheritance lets a class specify that it is willing to share its base class. The shared
base-class subobject is called a virtual base class. Regardless of how often the same
virtual base appears in an inheritance hierarchy, the derived object contains only
one, shared subobject for that virtual base class.

A Different Panda Class

In the past, there was some debate as to whether panda belongs to the raccoon
or the bear family. To reflect this debate, we can change Panda to inherit from
both Bear and Raccoon. To avoid giving Panda two ZooAnimal base parts,
we’ll define Bear and Raccoon to inherit virtually from ZooAnimal. Figure 18.3
illustrates our new hierarchy.

Looking at our new hierarchy, we’ll notice a nonintuitive aspect of virtual in-
heritance. The virtual derivation has to be made before the need for it appears. For
example, in our classes, the need for virtual inheritance arises only when we de-
fine Panda. However, if Bear and Raccoon had not specified virtual on their
derivation from ZooAnimal, the designer of the Panda class would be out of luck.

In practice, the requirement that an intermediate base class specify its inher-
itance as virtual rarely causes any problems. Ordinarily, a class hierarchy that
uses virtual inheritance is designed at one time either by one individual or by a
single project design group. It is exceedingly rare for a class to be developed in-
dependently that needs a virtual base in one of its base classes and in which the
developer of the new base class cannot change the existing hierarchy.

Virtual derivation affects the classes that subsequently derive from a
class with a virtual base; it doesn’t affect the derived class itself.

Figure 18.3: Virtual Inheritance Panda Hierarchy
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Using a Virtual Base Class

We specify that a base class is virtual by including the keyword virtual in the
derivation list:

// the order of the keywords public and virtual is not significant
class Raccoon : public virtual ZooAnimal { /* . . . */ };
class Bear : virtual public ZooAnimal { /* . . . */ };

Here we’ve made ZooAnimal a virtual base class of both Bear and Raccoon.
The virtual specifier states a willingness to share a single instance of the

named base class within a subsequently derived class. There are no special con-
straints on a class used as a virtual base class.

We do nothing special to inherit from a class that has a virtual base:

class Panda : public Bear,
public Raccoon, public Endangered {

};

Here Panda inherits ZooAnimal through both its Raccoon and Bear base classes.
However, because those classes inherited virtually from ZooAnimal, Panda has
only one ZooAnimal base subpart.

Normal Conversions to Base Are Supported

An object of a derived class can be manipulated (as usual) through a pointer or
a reference to an accessible base-class type regardless of whether the base class is
virtual. For example, all of the following Panda base-class conversions are legal:

void dance(const Bear&);
void rummage(const Raccoon&);
ostream& operator<<(ostream&, const ZooAnimal&);
Panda ying_yang;
dance(ying_yang); // ok: passes Panda object as a Bear
rummage(ying_yang); // ok: passes Panda object as a Raccoon
cout << ying_yang; // ok: passes Panda object as a ZooAnimal

Visibility of Virtual Base-Class Members

Because there is only one shared subobject corresponding to each shared virtual
base, members in that base can be accessed directly and unambiguously. More-
over, if a member from the virtual base is overridden along only one derivation
path, then that overridden member can still be accessed directly. If the member is
overridden by more than one base, then the derived class generally must define its
own version as well.

For example, assume class B defines a member named x; class D1 inherits vir-
tually from B as does class D2; and class D inherits from D1 and D2. From the scope
of D, x is visible through both of its base classes. If we use x through a D object,
there are three possibilities:

• If x is not defined in either D1 or D2 it will be resolved as a member in B;
there is no ambiguity. A D object contains only one instance of x.
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• If x is a member of B and also a member in one, but not both, of D1 and
D2, there is again no ambiguity—the version in the derived class is given
precedence over the shared virtual base class, B.

• If x is defined in both D1 and D2, then direct access to that member is am-
biguous.

As in a nonvirtual multiple inheritance hierarchy, ambiguities of this sort are best
resolved by the derived class providing its own instance of that member.

EXE R C I S E S SE C TI O N 18.3.4

Exercise 18.28: Given the following class hierarchy, which inherited members can be
accessed without qualification from within the VMI class? Which require qualification?
Explain your reasoning.

struct Base {
void bar(int); // public by default

protected:
int ival;

};

struct Derived1 : virtual public Base {
void bar(char); // public by default
void foo(char);

protected:
char cval;

};

struct Derived2 : virtual public Base {
void foo(int); // public by default

protected:
int ival;
char cval;

};

class VMI : public Derived1, public Derived2 { };

18.3.5 Constructors and Virtual Inheritance
In a virtual derivation, the virtual base is initialized by the most derived construc-
tor. In our example, when we create a Panda object, the Panda constructor alone
controls how the ZooAnimal base class is initialized.

To understand this rule, consider what would happen if normal initialization
rules applied. In that case, a virtual base class might be initialized more than once.
It would be initialized along each inheritance path that contains that virtual base.
In our ZooAnimal example, if normal initialization rules applied, both Bear and
Raccoon would initialize the ZooAnimal part of a Panda object.

Of course, each class in the hierarchy might at some point be the “most de-
rived” object. As long as we can create independent objects of a type derived from
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a virtual base, the constructors in that class must initialize its virtual base. For ex-
ample, in our hierarchy, when a Bear (or a Raccoon) object is created, there is no
further derived type involved. In this case, the Bear (or Raccoon) constructors
directly initialize their ZooAnimal base as usual:

Bear::Bear(std::string name, bool onExhibit):
ZooAnimal(name, onExhibit, "Bear") { }

Raccoon::Raccoon(std::string name, bool onExhibit)
: ZooAnimal(name, onExhibit, "Raccoon") { }

When a Panda is created, it is the most derived type and controls initialization
of the shared ZooAnimal base. Even though ZooAnimal is not a direct base of
Panda, the Panda constructor initializes ZooAnimal:

Panda::Panda(std::string name, bool onExhibit)
: ZooAnimal(name, onExhibit, "Panda"),

Bear(name, onExhibit),
Raccoon(name, onExhibit),
Endangered(Endangered::critical),
sleeping_flag(false) { }

How a Virtually Inherited Object Is Constructed

The construction order for an object with a virtual base is slightly modified from
the normal order: The virtual base subparts of the object are initialized first, using
initializers provided in the constructor for the most derived class. Once the virtual
base subparts of the object are constructed, the direct base subparts are constructed
in the order in which they appear in the derivation list.

For example, when a Panda object is created:

• The (virtual base class) ZooAnimal part is constructed first, using the initial-
izers specified in the Panda constructor initializer list.

• The Bear part is constructed next.

• The Raccoon part is constructed next.

• The third direct base, Endangered, is constructed next.

• Finally, the Panda part is constructed.

If the Panda constructor does not explicitly initialize the ZooAnimal base
class, then the ZooAnimal default constructor is used. If ZooAnimaldoesn’t have
a default constructor, then the code is in error.

Virtual base classes are always constructed prior to nonvirtual base
classes regardless of where they appear in the inheritance hierarchy.

Constructor and Destructor Order

A class can have more than one virtual base class. In that case, the virtual subob-
jects are constructed in left-to-right order as they appear in the derivation list. For
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example, in the following whimsical TeddyBear derivation, there are two virtual
base classes: ToyAnimal, a direct virtual base, and ZooAnimal, which is a virtual
base class of Bear:

class Character { /* . . . */ };
class BookCharacter : public Character { /* . . . */ };

class ToyAnimal { /* . . . */ };

class TeddyBear : public BookCharacter,
public Bear, public virtual ToyAnimal
{ /* . . . */ };

The direct base classes are examined in declaration order to determine whether
there are any virtual base classes. If so, the virtual bases are constructed first,
followed by the nonvirtual base-class constructors in declaration order. Thus, to
create a TeddyBear, the constructors are invoked in the following order:

ZooAnimal(); // Bear’s virtual base class
ToyAnimal(); // direct virtual base class
Character(); // indirect base class of first nonvirtual base class
BookCharacter(); // first direct nonvirtual base class
Bear(); // second direct nonvirtual base class
TeddyBear(); // most derived class

The same order is used in the synthesized copy and move constructors, and
members are assigned in this order in the synthesized assignment operators. As
usual, an object is destroyed in reverse order from which it was constructed. The
TeddyBear part will be destroyed first and the ZooAnimal part last.

EXE R C I S E S SE C TI O N 18.3.5

Exercise 18.29: Given the following class hierarchy:

class Class { ... };
class Base : public Class { ... };
class D1 : virtual public Base { ... };
class D2 : virtual public Base { ... };
class MI : public D1, public D2 { ... };
class Final : public MI, public Class { ... };

(a) In what order are constructors and destructors run on a Final object?
(b) A Final object has how many Base parts? How many Class parts?
(c) Which of the following assignments is a compile-time error?

Base *pb; Class *pc; MI *pmi; D2 *pd2;
(a) pb = new Class; (b) pc = new Final;
(c) pmi = pb; (d) pd2 = pmi;

Exercise 18.30: Define a default constructor, a copy constructor, and a constructor that
has an int parameter in Base. Define the same three constructors in each derived
class. Each constructor should use its argument to initialize its Base part.
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CH A P T E R SU M M A R Y
C++ is used to solve a wide range of problems—from those solvable in a few hours’
time to those that take years of development by large teams. Some features in C++
are most applicable in the context of large-scale problems: exception handling,
namespaces, and multiple or virtual inheritance.

Exception handling lets us separate the error-detection part of the program
from the error-handling part. When an exception is thrown, the current executing
function is suspended and a search is started to find the nearest matching catch
clause. Local variables defined inside functions that are exited while searching for
a catch clause are destroyed as part of handling the exception.

Namespaces are a mechanism for managing large, complicated applications
built from code produced by independent suppliers. A namespace is a scope in
which objects, types, functions, templates, and other namespaces may be defined.
The standard library is defined inside the namespace named std.

Conceptually, multiple inheritance is a simple notion: A derived class may in-
herit from more than one direct base class. The derived object consists of the de-
rived part and a base part contributed by each of its base classes. Although concep-
tually simple, the details can be more complicated. In particular, inheriting from
multiple base classes introduces new possibilities for name collisions and resulting
ambiguous references to names from the base part of an object.

When a class inherits directly from more than one base class, it is possible that
those classes may themselves share another base class. In such cases, the interme-
diate classes can opt to make their inheritance virtual, which states a willingness
to share their virtual base class with other classes in the hierarchy that inherit vir-
tually from that same base class. In this way there is only one copy of the shared
virtual base in a subsequently derived class.

DEFINED TERMS

catch-all A catch clause in which the ex-
ception declaration is (...). A catch-all
clause catches an exception of any type. It
is typically used to catch an exception that is
detected locally in order to do local cleanup.
The exception is then rethrown to another
part of the program to deal with the under-
lying cause of the problem.

catch clause Part of the program that han-
dles an exception. A catch clause con-
sists of the keyword catch followed by an
exception declaration and a block of state-
ments. The code inside a catch does what-
ever is necessary to handle an exception of
the type defined in its exception declara-
tion.

constructor order Under nonvirtual in-
heritance, base classes are constructed in the
order in which they are named in the class
derivation list. Under virtual inheritance,
the virtual base class(es) are constructed be-
fore any other bases. They are constructed
in the order in which they appear in the
derivation list of the derived type. Only the
most derived type may initialize a virtual
base; constructor initializers for that base
that appear in the intermediate base classes
are ignored.

exception declaration catch clause dec-
laration that specifies the type of exception
that the catch can handle. The declara-
tion acts like a parameter list, whose sin-
gle parameter is initialized by the exception
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object. If the exception specifier is a non-
reference type, then the exception object is
copied to the catch.

exception handling Language-level sup-
port for managing run-time anomalies. One
independently developed section of code
can detect and “raise” an exception that an-
other independently developed part of the
program can “handle.” The error-detecting
part of the program throws an exception;
the error-handling part handles the excep-
tion in a catch clause of a try block.

exception object Object used to commu-
nicate between the throw and catch sides
of an exception. The object is created at
the point of the throw and is a copy of the
thrown expression. The exception object ex-
ists until the last handler for the exception
completes. The type of the object is the static
type of the thrown expression.

file static Name local to a file that is de-
clared with the static keyword. In C
and pre-Standard versions of C++, file stat-
ics were used to declare objects that could
be used in a single file only. File statics are
deprecated in C++, having been superseded
by the use of unnamed namespaces.

function try block Used to catch excep-
tions from a constructor initializer. The
keyword try appears before the colon that
starts the constructor initializer list (or be-
fore the open curly of the constructor body
if the initizlier list is empty) and closes with
one or more catch clauses that appear after
the close curly of the constructor body.

global namespace The (implicit) name-
space in each program that holds all global
definitions.

handler Synonym for a catch clause.

inline namespace Members of a name-
space designated as inline can be used as
if they were members of an enclosing name-
space.

multiple inheritance Class with more than
one direct base class. The derived class in-
herits the members of all its base classes. A

separate access specifier may be provided
for each base class.

namespace Mechanism for gathering all
the names defined by a library or other
collection of programs into a single scope.
Unlike other scopes in C++, a namespace
scope may be defined in several parts. The
namepsace may be opened and closed and
reopened again in disparate parts of the
program.

namespace alias Mechanism for defining
a synonym for a given namespace:

namespace N1 = N;

defines N1 as another name for the name-
space named N. A namespace can have mul-
tiple aliases; the namespace name or any of
its aliases may be used interchangeably.

namespace pollution Occurs when all the
names of classes and functions are placed in
the global namespace. Large programs that
use code written by multiple independent
parties often encounter collisions among
names if these names are global.

noexcept operator Operator that returns
a bool indicating whether a given expres-
sion might throw an exception. The expres-
sion is unevaluated. The result is a con-
stant expression. Its value is true if the ex-
pression does not contain a throw and calls
only functions designated as nonthrowing;
otherwise the result is false.

noexcept specification Keyword used to
indicate whether a function throws. When
noexcept follows a function’s parame-
ter list, it may be optionally followed by
a parenthesized constant expression that
must be convertible to bool. If the expres-
sion is omitted, or if it is true, the function
throws no exceptions. An expression that is
false or a function that has no exception
specification may throw any exception.
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nonthrowing specification An exception
specification that promises that a function
won’t throw. If a nonthrowing functions
does throw, terminate is called. Non-
throwing specifiers are noexcept without
an argument or with an argument that eval-
uates as true and throw().

raise Often used as a synonym for throw.
C++ programmers speak of “throwing” or
“raising” an exception interchangably.

rethrow A throw that does not specify an
expression. A rethrow is valid only from in-
side a catch clause, or in a function called
directly or indirectly from a catch. Its ef-
fect is to rethrow the exception object that it
received.

stack unwinding The process whereby the
functions are exited in the search for a
catch. Local objects constructed before the
exception are destroyed before entering the
corresponding catch.

terminate Library function that is called if
an exception is not caught or if an excep-
tion occurs while a handler is in process.
terminate ends the program.

throw e Expression that interrupts the cur-
rent execution path. Each throw trans-
fers control to the nearest enclosing catch
clause that can handle the type of exception
that is thrown. The expression e is copied
into the exception object.

try block Block of statements enclosed by
the keyword try and one or more catch
clauses. If the code inside the try block
raises an exception and one of the catch
clauses matches the type of the excep-
tion, then the exception is handled by that
catch. Otherwise, the exception is passed
out of the try to a catch further up the call
chain.

unnamed namespace Namespace that is
defined without a name. Names defined
in an unnamed namespace may be accessed
directly without use of the scope opera-
tor. Each file has its own unique unnamed
namespace. Names in an unnamed name-
space are not visible outside that file.

using declaration Mechanism to inject a
single name from a namespace into the cur-
rent scope:

using std::cout;

makes the name cout from the name-
space std available in the current scope.
The name cout can subseuquently be used
without the std:: qualifier.

using directive Declaration of the form

using NS;

makes all the names in the namespace
named NS available in the nearest scope
containing both the using directive and the
namespace itself.

virtual base class Base class that specifies
virtual in its own derivation list. A vir-
tual base part occurs only once in a derived
object even if the same class appears as a
virtual base more than once in the hierarchy.
In nonvirtual inheritance a constructor may
initialize only its direct base class(es). When
a class is inherited virtually, that class is ini-
tialized by the most derived class, which
therefore should include an initializer for all
of its virtual parent(s).

virtual inheritance Form of multiple in-
heritance in which derived classes share a
single copy of a base that is included in the
hierarchy more than once.

:: operator Scope operator. Used to ac-
cess names from a namespace or a class.
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The first three parts of this book discussed apects of C++ that most
C++ programmers are likely to use at some point. In addition, C++
defines some features that are more specialized. Many programmers
will never (or only rarely) need to use the features presented in this
chapter.

819

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

820 Specialized Tools and Techniques

C++ is intended for use in a wide variety of applications. As a result, it con-
tains features that are particular to some applications and that need never be used
by others. In this chapter we look at some of the less-commonly used features in
the language.

19.1 Controlling Memory Allocation
Some applications have specialized memory allocation needs that cannot be met
by the standard memory management facilities. Such applications need to take
over the details of how memory is allocated, for example, by arranging for new to
put objects into particular kinds of memory. To do so, they can overload the new
and delete operators to control memory allocation.

19.1.1 Overloading new and delete

Although we say that we can “overload new and delete,” overloading these op-
erators is quite different from the way we overload other operators. In order to
understand how we overload these operators, we first need to know a bit more
about how new and delete expressions work.

When we use a new expression:

// new expressions
string *sp = new string("a value"); // allocate and initialize a string
string *arr = new string[10]; // allocate ten default initialized strings

three steps actually happen. First, the expression calls a library function named
operator new (or operator new[]). This function allocates raw, untyped mem-
ory large enough to hold an object (or an array of objects) of the specified type.
Next, the compiler runs the appropriate constructor to construct the object(s) from
the specified initializers. Finally, a pointer to the newly allocated and constructed
object is returned.

When we use a delete expression to delete a dynamically allocated object:

delete sp; // destroy *sp and free the memory to which sp points
delete [] arr; // destroy the elements in the array and free the memory

two steps happen. First, the appropriate destructor is run on the object to which
sp points or on the elements in the array to which arr points. Next, the com-
piler frees the memory by calling a library function named operator delete or
operator delete[], respectively.

Applications that want to take control of memory allocation define their own
versions of the operator new and operator delete functions. Even though the
library contains definitions for these functions, we can define our own versions of
them and the compiler won’t complain about duplicate definitions. Instead, the
compiler will use our version in place of the one defined by the library.
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When we define the global operator new and operator delete
functions, we take over responsibility for all dynamic memory alloca-
tion. These functions must be correct: They form a vital part of all pro-
cessing in the program.

Applications can define operator new and operator delete functions in
the global scope and/or as member functions. When the compiler sees a new
or delete expression, it looks for the corresponding operator function to call.
If the object being allocated (deallocated) has class type, the compiler first looks
in the scope of the class, including any base classes. If the class has a member
operator new or operator delete, that function is used by the new or delete
expression. Otherwise, the compiler looks for a matching function in the global
scope. If the compiler finds a user-defined version, it uses that function to execute
the new or delete expression. Otherwise, the standard library version is used.

We can use the scope operator to force a new or delete expression to bypass a
class-specific function and use the one from the global scope. For example, ::new
will look only in the global scope for a matching operator new function. Simi-
larly for ::delete.

The operator new and operator delete Interface

The library defines eight overloaded versions of operator new and delete func-
tions. The first four support the versions of new that can throw a bad_alloc
exception. The next four support nonthrowing versions of new:

// these versions might throw an exception
void *operator new(size_t); // allocate an object
void *operator new[](size_t); // allocate an array
void *operator delete(void*) noexcept; // free an object
void *operator delete[](void*) noexcept; // free an array

// versions that promise not to throw; see § 12.1.2 (p. 460)
void *operator new(size_t, nothrow_t&) noexcept;
void *operator new[](size_t, nothrow_t&) noexcept;
void *operator delete(void*, nothrow_t&) noexcept;
void *operator delete[](void*, nothrow_t&) noexcept;

The type nothrow_t is a struct defined in the new header. This type has no
members. The new header also defines a const object named nothrow, which
users can pass to signal they want the nonthrowing version of new (§ 12.1.2, p. 460).
Like destructors, an operator delete must not throw an exception (§ 18.1.1,
p. 774). When we overload these operators, we must specify that they will not
throw, which we do through the noexcept exception specifier (§ 18.1.4, p. 779).

An application can define its own version of any of these functions. If it does so,
it must define these functions in the global scope or as members of a class. When
defined as members of a class, these operator functions are implicitly static (§ 7.6,
p. 302). There is no need to declare them static explicitly, although it is legal
to do so. The member new and delete functions must be static because they are
used either before the object is constructed (operator new) or after it has been
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destroyed (operator delete). There are, therefore, no member data for these
functions to manipulate.

An operator new or operator new[] function must have a return type of
void* and its first parameter must have type size_t. That parameter may not
have a default argument. The operator new function is used when we allocate an
object; operator new[] is called when we allocate an array. When the compiler
calls operator new, it initializes the size_t parameter with the number of bytes
required to hold an object of the specified type; when it calls operator new[],
it passes the number of bytes required to store an array of the given number of
elements.

When we define our own operator new function, we can define additional
parameters. A new expression that uses such functions must use the placement
form of new (§ 12.1.2, p. 460) to pass arguments to these additional parameters. Al-
though generally we may define our version of operator new to have whatever
parameters are needed, we may not define a function with the following form:

void *operator new(size_t, void*); // this version may not be redefined

This specific form is reserved for use by the library and may not be redefined.
An operator delete or operator delete[] function must have a void

return type and a first parameter of type void*. Executing a delete expression
calls the appropriate operator function and initializes its void* parameter with
a pointer to the memory to free.

When operator delete or operator delete[] is defined as a class mem-
ber, the function may have a second parameter of type size_t. If present, the
additional parameter is initialized with the size in bytes of the object addressed
by the first parameter. The size_t parameter is used when we delete objects
that are part of an inheritance hierarchy. If the base class has a virtual destructor
(§ 15.7.1, p. 622), then the size passed to operator delete will vary depending
on the dynamic type of the object to which the deleted pointer points. Moreover,
the version of the operator delete function that is run will be the one from the
dynamic type of the object.

TERMINOLOGY: NEW EXPRESSION VERSUS OPERATOR NEW FUNCTION

The library functions operator new and operator delete are misleadingly named.
Unlike other operator functions, such as operator=, these functions do not over-
load the new or delete expressions. In fact, we cannot redefine the behavior of the
new and delete expressions.

A new expression always executes by calling an operator new function to obtain
memory and then constructing an object in that memory. A delete expression always
executes by destroying an object and then calling an operator delete function to
free the memory used by the object.

By providing our own definitions of the operator new and operator delete
functions, we can change how memory is allocated. However, we cannot change this
basic meaning of the new and delete operators.
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The malloc and free Functions

If you define your own global operator new and operator delete, those func-
tions must allocate and deallocate memory somehow. Even if you define these
functions in order to use a specialized memory allocator, it can still be useful for
testing purposes to be able to allocate memory similarly to how the implementa-
tion normally does so.

To this end, we can use functions named malloc and free that C++ inherits
from C. These functions, are defined in cstdlib.

The malloc function takes a size_t that says how many bytes to allocate. It
returns a pointer to the memory that it allocated, or 0 if it was unable to allocate
the memory. The free function takes a void* that is a copy of a pointer that was
returned from malloc and returns the associated memory to the system. Calling
free(0) has no effect.

A simple way to write operator new and operator delete is as follows:

void *operator new(size_t size) {
if (void *mem = malloc(size))

return mem;
else

throw bad_alloc();
}
void operator delete(void *mem) noexcept { free(mem); }

and similarly for the other versions of operator new and operator delete.

EXE R C I S E S SE C TI O N 19.1.1

Exercise 19.1: Write your own operator new(size_t) function using malloc and
use free to write the operator delete(void*) function.

Exercise 19.2: By default, the allocator class uses operator new to obtain storage
and operator delete to free it. Recompile and rerun your StrVec programs (§ 13.5,
p. 526) using your versions of the functions from the previous exercise.

19.1.2 Placement new Expressions
Although the operator new and operator delete functions are intended to be
used by new expressions, they are ordinary functions in the library. As a result,
ordinary code can call these functions directly.

In earlier versions of the language—before the allocator (§ 12.2.2, p. 481)
class was part of the library—applications that wanted to separate allocation from
initialization did so by calling operator new and operator delete. These
functions behave analogously to the allocate and deallocate members of
allocator. Like those members, operator new and operator delete func-
tions allocate and deallocate memory but do not construct or destroy objects.
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Differently from an allocator, there is no construct function we can call
to construct objects in memory allocated by operator new. Instead, we use the
placement new form of new (§ 12.1.2, p. 460) to construct an object. As we’ve seen,
this form of new provides extra information to the allocation function. We can use
placement new to pass an address, in which case the placement new expression
has the form

new (place_address) type
new (place_address) type (initializers)
new (place_address) type [size]
new (place_address) type [size] { braced initializer list }

where place_address must be a pointer and the initializers provide (a possibly empty)
comma-separated list of initializers to use to construct the newly allocated object.

When called with an address and no other arguments, placement new uses
operator new(size_t, void*) to “allocate” its memory. This is the version of
operator new that we are not allowed to redefine (§ 19.1.1, p. 822). This function
does not allocate any memory; it simply returns its pointer argument. The overall
new expression then finishes its work by initializing an object at the given address.
In effect, placement new allows us to construct an object at a specific, preallocated
memory address.

When passed a single argument that is a pointer, a placement new ex-
pression constructs an object but does not allocate memory.

Although in many ways using placement new is analogous to the construct
member of an allocator, there is one important difference. The pointer that we
pass to construct must point to space allocated by the same allocator object.
The pointer that we pass to placement new need not point to memory allocated
by operator new. Indeed, as we’ll see in § 19.6 (p. 851), the pointer passed to a
placement new expression need not even refer to dynamic memory.

Explicit Destructor Invocation

Just as placement new is analogous to using allocate, an explicit call to a de-
structor is analogous to calling destroy. We call a destructor the same way we
call any other member function on an object or through a pointer or reference to
an object:

string *sp = new string("a value"); // allocate and initialize a string
sp->~string();

Here we invoke a destructor directly. The arrow operator dereferences the pointer
sp to obtain the object to which sp points. We then call the destructor, which is the
name of the type preceded by a tilde (~).

Like calling destroy, calling a destructor cleans up the given object but does
not free the space in which that object resides. We can reuse the space if desired.

Calling a destructor destroys an object but does not free the memory.
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19.2 Run-Time Type Identification
Run-time type identification (RTTI) is provided through two operators:

• The typeid operator, which returns the type of a given expression

• The dynamic_cast operator, which safely converts a pointer or reference
to a base type into a pointer or reference to a derived type

When applied to pointers or references to types that have virtual functions, these
operators use the dynamic type (§ 15.2.3, p. 601) of the object to which the pointer
or reference is bound.

These operators are useful when we have a derived operation that we want to
perform through a pointer or reference to a base-class object and it is not possible to
make that operation a virtual function. Ordinarily, we should use virtual functions
if we can. When the operation is virtual, the compiler automatically selects the
right function according to the dynamic type of the object.

However, it is not always possible to define a virtual. If we cannot use a virtual,
we can use one of the RTTI operators. On the other hand, using these operators
is more error-prone than using virtual member functions: The programmer must
know to which type the object should be cast and must check that the cast was
performed successfully.

RTTI should be used with caution. When possible, it is better to define a
virtual function rather than to take over managing the types directly.

19.2.1 The dynamic_cast Operator
A dynamic_cast has the following form:

dynamic_cast<type*>(e)
dynamic_cast<type&>(e)
dynamic_cast<type&&>(e)

where type must be a class type and (ordinarily) names a class that has virtual
functions. In the first case, e must be a valid pointer (§ 2.3.2, p. 52); in the second,
e must be an lvalue; and in the third, e must not be an lvalue.

In all cases, the type of emust be either a class type that is publicly derived from
the target type, a public base class of the target type, or the same as the target type.
If e has one of these types, then the cast will succeed. Otherwise, the cast fails. If
a dynamic_cast to a pointer type fails, the result is 0. If a dynamic_cast to a
reference type fails, the operator throws an exception of type bad_cast.

Pointer-Type dynamic_casts

As a simple example, assume that Base is a class with at least one virtual function
and that class Derived is publicly derived from Base. If we have a pointer to
Base named bp, we can cast it, at run time, to a pointer to Derived as follows:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

826 Specialized Tools and Techniques

if (Derived *dp = dynamic_cast<Derived*>(bp))
{

// use the Derived object to which dp points
} else { // bp points at a Base object

// use the Base object to which bp points
}

If bp points to a Derived object, then the cast will initialize dp to point to the
Derived object to which bp points. In this case, it is safe for the code inside the
if to use Derived operations. Otherwise, the result of the cast is 0. If dp is 0, the
condition in the if fails. In this case, the else clause does processing appropriate
to Base instead.

We can do a dynamic_cast on a null pointer; the result is a null pointer
of the requested type.

It is worth noting that we defined dp inside the condition. By defining the vari-
able in a condition, we do the cast and corresponding check as a single operation.
Moreover, the pointer dp is not accessible outside the if. If the cast fails, then
the unbound pointer is not available for use in subsequent code where we might
forget to check whether the cast succeeded.

Performing a dynamic_cast in a condition ensures that the cast and
test of its result are done in a single expression.

Reference-Type dynamic_casts

A dynamic_cast to a reference type differs from a dynamic_cast to a pointer
type in how it signals that an error occurred. Because there is no such thing as a
null reference, it is not possible to use the same error-reporting strategy for refer-
ences that is used for pointers. When a cast to a reference type fails, the cast throws
a std::bad_cast exception, which is defined in the typeinfo library header.

We can rewrite the previous example to use references as follows:

void f(const Base &b)
{

try {
const Derived &d = dynamic_cast<const Derived&>(b);

// use the Derived object to which b referred
} catch (bad_cast) {

// handle the fact that the cast failed
}

}

19.2.2 The typeid Operator
The second operator provided for RTTI is the typeid operator. The typeid op-
erator allows a program to ask of an expression: What type is your object?
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EXE R C I S E S SE C TI O N 19.2.1

Exercise 19.3: Given the following class hierarchy in which each class defines a
public default constructor and virtual destructor:

class A { /* . . . */ };
class B : public A { /* . . . */ };
class C : public B { /* . . . */ };
class D : public B, public A { /* . . . */ };

which, if any, of the following dynamic_casts fail?

(a) A *pa = new C;
B *pb = dynamic_cast< B* >(pa);

(b) B *pb = new B;
C *pc = dynamic_cast< C* >(pb);

(c) A *pa = new D;
B *pb = dynamic_cast< B* >(pa);

Exercise 19.4: Using the classes defined in the first exercise, rewrite the following code
to convert the expression *pa to the type C&:

if (C *pc = dynamic_cast< C* >(pa))
// use C’s members

} else {
// use A’s members

}

Exercise 19.5: When should you use a dynamic_cast instead of a virtual function?

A typeid expression has the form typeid(e) where e is any expression or
a type name. The result of a typeid operation is a reference to a const object of
a library type named type_info, or a type publicly derived from type_info.
§ 19.2.4 (p. 831) covers this type in more detail. The type_info class is defined in
the typeinfo header.

The typeid operator can be used with expressions of any type. As usual,
top-level const (§ 2.4.3, p. 63) is ignored, and if the expression is a reference,
typeid returns the type to which the reference refers. When applied to an array
or function, however, the standard conversion to pointer (§ 4.11.2, p. 161) is not
done. That is, if we take typeid(a) and a is an array, the result describes an
array type, not a pointer type.

When the operand is not of class type or is a class without virtual functions,
then the typeid operator indicates the static type of the operand. When the oper-
and is an lvalue of a class type that defines at least one virtual function, then the
type is evaluated at run time.

Using the typeid Operator

Ordinarily, we use typeid to compare the types of two expressions or to compare
the type of an expression to a specified type:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

828 Specialized Tools and Techniques

Derived *dp = new Derived;
Base *bp = dp; // both pointers point to a Derived object

// compare the type of two objects at run time
if (typeid(*bp) == typeid(*dp)) {

// bp and dp point to objects of the same type
}

// test whether the run-time type is a specific type
if (typeid(*bp) == typeid(Derived)) {

// bp actually points to a Derived
}

In the first if, we compare the dynamic types of the objects to which bp and dp
point. If both point to the same type, then the condition succeeds. Similarly, the
second if succeeds if bp currently points to a Derived object.

Note that the operands to the typeid are objects—we used *bp, not bp:

// test always fails: the type of bp is pointer to Base
if (typeid(bp) == typeid(Derived)) {

// code never executed
}

This condition compares the type Base* to type Derived. Although the pointer
points at an object of class type that has virtual functions, the pointer itself is not a
class-type object. The type Base* can be, and is, evaluated at compile time. That
type is unequal to Derived, so the condition will always fail regardless of the type
of the object to which bp points.

The typeid of a pointer (as opposed to the object to which the pointer
points) returns the static, compile-time type of the pointer.

Whether typeid requires a run-time check determines whether the expression
is evaluated. The compiler evaluates the expression only if the type has virtual
functions. If the type has no virtuals, then typeid returns the static type of the
expression; the compiler knows the static type without evaluating the expression.

If the dynamic type of the expression might differ from the static type, then
the expression must be evaluated (at run time) to determine the resulting type.
The distinction matters when we evaluate typeid(*p). If p is a pointer to a type
that does not have virtual functions, then p does not need to be a valid pointer.
Otherwise, *p is evaluated at run time, in which case p must be a valid pointer. If
p is a null pointer, then typeid(*p) throws a bad_typeid exception.

19.2.3 Using RTTI
As an example of when RTTI might be useful, consider a class hierarchy for which
we’d like to implement the equality operator (§ 14.3.1, p. 561). Two objects are
equal if they have the same type and same value for a given set of their data mem-
bers. Each derived type may add its own data, which we will want to include
when we test for equality.
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EXE R C I S E S SE C TI O N 19.2.2

Exercise 19.6: Write an expression to dynamically cast a pointer to a Query_base to
a pointer to an AndQuery (§ 15.9.1, p. 636). Test the cast by using objects of AndQuery
and of another query type. Print a statement indicating whether the cast works and be
sure that the output matches your expectations.

Exercise 19.7: Write the same cast, but cast a Query_base object to a reference to
AndQuery. Repeat the test to ensure that your cast works correctly.

Exercise 19.8: Write a typeid expression to see whether two Query_base pointers
point to the same type. Now check whether that type is an AndQuery.

We might think we could solve this problem by defining a set of virtual func-
tions that would perform the equality test at each level in the hierarchy. Given
those virtuals, we would define a single equality operator that operates on refer-
ences to the base type. That operator could delegate its work to a virtual equal
operation that would do the real work.

Unfortunately, this strategy doesn’t quite work. Virtual functions must have
the same parameter type(s) in both the base and derived classes (§ 15.3, p. 605). If
we wanted to define a virtual equal function, that function must have a parameter
that is a reference to the base class. If the parameter is a reference to base, the
equal function could use only members from the base class. equal would have
no way to compare members that are in the derived class but not in the base.

We can write our equality operation by realizing that the equality operator
ought to return false if we attempt to compare objects of differing type. For
example, if we try to compare a object of the base-class type with an object of a
derived type, the == operator should return false.

Given this observation, we can now see that we can use RTTI to solve our prob-
lem. We’ll define an equality operator whose parameters are references to the base-
class type. The equality operator will use typeid to verify that the operands have
the same type. If the operands differ, the == will return false. Otherwise, it will
call a virtual equal function. Each class will define equal to compare the data
elements of its own type. These operators will take a Base& parameter but will
cast the operand to its own type before doing the comparison.

The Class Hierarchy

To make the concept a bit more concrete, we’ll define the following classes:

class Base {
friend bool operator==(const Base&, const Base&);

public:
// interface members for Base

protected:
virtual bool equal(const Base&) const;
// data and other implementation members of Base

};
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class Derived: public Base {
public:

// other interface members for Derived
protected:

bool equal(const Base&) const;
// data and other implementation members of Derived

};

A Type-Sensitive Equality Operator

Next let’s look at how we might define the overall equality operator:

bool operator==(const Base &lhs, const Base &rhs)
{

// returns false if typeids are different; otherwise makes a virtual call to equal
return typeid(lhs) == typeid(rhs) && lhs.equal(rhs);

}

This operator returns false if the operands are different types. If they are the
same type, then it delegates the real work of comparing the operands to the (vir-
tual) equal function. If the operands are Base objects, then Base::equal will
be called. If they are Derived objects, Derived::equal is called.

The Virtual equal Functions

Each class in the hierarchy must define its own version of equal. All of the func-
tions in the derived classes will start the same way: They’ll cast their argument to
the type of the class itself:

bool Derived::equal(const Base &rhs) const
{

// we know the types are equal, so the cast won’t throw
auto r = dynamic_cast<const Derived&>(rhs);
// do the work to compare two Derived objects and return the result

}

The cast should always succeed—after all, the function is called from the equality
operator only after testing that the two operands are the same type. However,
the cast is necessary so that the function can access the derived members of the
right-hand operand.

The Base-Class equal Function

This operation is a bit simpler than the others:

bool Base::equal(const Base &rhs) const
{

// do whatever is required to compare to Base objects
}

There is no need to cast the parameter before using it. Both *this and the param-
eter are Base objects, so all the operations available for this object are also defined
for the parameter type.
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19.2.4 The type_info Class
The exact definition of the type_info class varies by compiler. However, the
standard guarantees that the class will be defined in the typeinfo header and
that the class will provide at least the operations listed in Table 19.1.

The class also provides a public virtual destructor, because it is intended to
serve as a base class. When a compiler wants to provide additional type informa-
tion, it normally does so in a class derived from type_info.

Table 19.1: Operations on type_info

t1 == t2 Returns true if the type_info objects t1 and t2 refer to the same type,
false otherwise.

t1 != t2 Returns true if the type_info objects t1 and t2 refer to different
types, false otherwise.

t.name() Returns a C-style character string that is a printable version of the type
name. Type names are generated in a system-dependent way.

t1.before(t2) Returns a bool that indicates whether t1 comes before t2. The ordering
imposed by before is compiler dependent.

There is no type_info default constructor, and the copy and move construc-
tors and the assignment operators are all defined as deleted (§ 13.1.6, p. 507).
Therefore, we cannot define, copy, or assign objects of type type_info. The only
way to create a type_info object is through the typeid operator.

The name member function returns a C-style character string for the name of
the type represented by the type_info object. The value used for a given type
depends on the compiler and in particular is not required to match the type names
as used in a program. The only guarantee we have about the return from name is
that it returns a unique string for each type. For example:

int arr[10];
Derived d;
Base *p = &d;

cout << typeid(42).name() << ", "
<< typeid(arr).name() << ", "
<< typeid(Sales_data).name() << ", "
<< typeid(std::string).name() << ", "
<< typeid(p).name() << ", "
<< typeid(*p).name() << endl;

This program, when executed on our machine, generates the following output:

i, A10_i, 10Sales_data, Ss, P4Base, 7Derived

The type_info class varies by compiler. Some compilers provide ad-
ditional member functions that provide additional information about
types used in a program. You should consult the reference manual for
your compiler to understand the exact type_info support provided.
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EXE R C I S E S SE C TI O N 19.2.4

Exercise 19.9: Write a program similar to the last one in this section to print the names
your compiler uses for common type names. If your compiler gives output similar to
ours, write a function that will translate those strings to more human-friendly form.

Exercise 19.10: Given the following class hierarchy in which each class defines a
public default constructor and virtual destructor, which type name do the follow-
ing statements print?

class A { /* . . . */ };
class B : public A { /* . . . */ };
class C : public B { /* . . . */ };

(a) A *pa = new C;
cout << typeid(pa).name() << endl;

(b) C cobj;
A& ra = cobj;
cout << typeid(&ra).name() << endl;

(c) B *px = new B;
A& ra = *px;
cout << typeid(ra).name() << endl;

19.3 Enumerations
Enumerations let us group together sets of integral constants. Like classes, each
enumeration defines a new type. Enumerations are literal types (§ 7.5.6, p. 299).

C++ has two kinds of enumerations: scoped and unscoped. The new standard
introduced scoped enumerations. We define a scoped enumeration using the key-
words enum class (or, equivalently, enum struct), followed by the enumera-
tion name and a comma-separated list of enumerators enclosed in curly braces. A
semicolon follows the close curly:

enum class open_modes {input, output, append};

Here we defined an enumeration type named open_modes that has three enumer-
ators: input, output, and append.

We define an unscoped enumeration by omitting the class (or struct) key-
word. The enumeration name is optional in an unscoped enum:

enum color {red, yellow, green}; // unscoped enumeration
// unnamed, unscoped enum
enum {floatPrec = 6, doublePrec = 10, double_doublePrec = 10};

If the enum is unnamed, we may define objects of that type only as part of the
enum definition. As with a class definition, we can provide a comma-separated
list of declarators between the close curly and the semicolon that ends the enum
definition (§ 2.6.1, p. 73).
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Enumerators

The names of the enumerators in a scoped enumeration follow normal scoping
rules and are inaccessible outside the scope of the enumeration. The enumerator
names in an unscoped enumeration are placed into the same scope as the enumer-
ation itself:

enum color {red, yellow, green}; // unscoped enumeration
enum stoplight {red, yellow, green}; // error: redefines enumerators
enum class peppers {red, yellow, green}; // ok: enumerators are hidden

color eyes = green; // ok: enumerators are in scope for an unscoped enumeration
peppers p = green; // error: enumerators from peppers are not in scope

// color::green is in scope but has the wrong type
color hair = color::red; // ok: we can explicitly access the enumerators
peppers p2 = peppers::red; // ok: using red from peppers

By default, enumerator values start at 0 and each enumerator has a value 1
greater than the preceding one. However, we can also supply initializers for one
or more enumerators:

enum class intTypes {
charTyp = 8, shortTyp = 16, intTyp = 16,
longTyp = 32, long_longTyp = 64

};

As we see with the enumerators for intTyp and shortTyp, an enumerator value
need not be unique. When we omit an initializer, the enumerator has a value 1
greater than the preceding enumerator.

Enumerators are const and, if initialized, their initializers must be constant
expressions (§ 2.4.4, p. 65). Consequently, each enumerator is itself a constant
expression. Because the enumerators are constant expressions, we can use them
where a constant expression is required. For example, we can define constexpr
variables of enumeration type:

constexpr intTypes charbits = intTypes::charTyp;

Similarly, we can use an enum as the expression in a switch statement and use the
value of its enumerators as the case labels (§ 5.3.2, p. 178). For the same reason,
we can also use an enumeration type as a nontype template parameter (§ 16.1.1,
p. 654). and can initialize class static data members of enumeration type inside
the class definition (§ 7.6, p. 302).

Like Classes, Enumerations Define New Types

So long as the enum is named, we can define and initialize objects of that type. An
enum object may be initialized or assigned only by one of its enumerators or by
another object of the same enum type:

open_modes om = 2; // error: 2 is not of type open_modes
om = open_modes::input; // ok: input is an enumerator of open_modes
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Objects or enumerators of an unscoped enumeration type are automatically
converted to an integral type. As a result, they can be used where an integral
value is required:

int i = color::red; // ok: unscoped enumerator implicitly converted to int
int j = peppers::red; // error: scoped enumerations are not implicitly converted

Specifying the Size of an enum

Although each enum defines a unique type, it is represented by one of the built-in
integral types. Under the new standard, we may specify that type by following the
enum name with a colon and the name of the type we want to use:

enum intValues : unsigned long long {
charTyp = 255, shortTyp = 65535, intTyp = 65535,
longTyp = 4294967295UL,
long_longTyp = 18446744073709551615ULL

};

If we do not specify the underlying type, then by default scoped enums have int
as the underlying type. There is no default for unscoped enums; all we know is
that the underlying type is large enough to hold the enumerator values. When the
underlying type is specified (including implicitly specified for a scoped enum), it
is an error for an enumerator to have a value that is too large to fit in that type.

Being able to specify the underlying type of an enum lets us control the type
used across different implementations. We can be confident that our program com-
piled under one implementation will generate the same code when we compile it
on another.

Forward Declarations for Enumerations

Under the new standard, we can forward declare an enum. An enum forward
declaration must specify (implicitly or explicitly) the underlying size of the enum:

// forward declaration of unscoped enum named intValues
enum intValues : unsigned long long; // unscoped, must specify a type
enum class open_modes; // scoped enums can use int by default

Because there is no default size for an unscoped enum, every declaration must
include the size of that enum. We can declare a scoped enum without specifying a
size, in which case the size is implicitly defined as int.

As with any declaration, all the declarations and the definition of a given enum
must match one another. In the case of enums, this requirement means that the
size of the enum must be the same across all declarations and the enum definition.
Moreover, we cannot declare a name as an unscoped enum in one context and
redeclare it as a scoped enum later:

// error: declarations and definition must agree whether the enum is scoped or unscoped
enum class intValues;
enum intValues; // error: intValues previously declared as scoped enum
enum intValues : long; // error: intValues previously declared as int
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Parameter Matching and Enumerations

Because an object of enum type may be initialized only by another object of that
enum type or by one of its enumerators (§ 19.3, p. 833), an integral value that hap-
pens to have the same value as an enumerator cannot be used to call a function
expecting an enum argument:

// unscoped enumeration; the underlying type is machine dependent
enum Tokens {INLINE = 128, VIRTUAL = 129};

void ff(Tokens);
void ff(int);

int main() {
Tokens curTok = INLINE;
ff(128); // exactly matches ff(int)
ff(INLINE); // exactly matches ff(Tokens)
ff(curTok); // exactly matches ff(Tokens)
return 0;

}

Although we cannot pass an integral value to an enum parameter, we can pass
an object or enumerator of an unscoped enumeration to a parameter of integral
type. When we do so, the enum value promotes to int or to a larger integral type.
The actual promotion type depends on the underlying type of the enumeration:

void newf(unsigned char);
void newf(int);
unsigned char uc = VIRTUAL;

newf(VIRTUAL); // calls newf(int)
newf(uc); // calls newf(unsigned char)

The enum Tokens has only two enumerators, the larger of which has the value
129. That value can be represented by the type unsigned char, and many com-
pilers will use unsigned char as the underlying type for Tokens. Regardless of
its underlying type, objects and the enumerators of Tokens are promoted to int.
Enumerators and values of an enum type are not promoted to unsigned char,
even if the values of the enumerators would fit.

19.4 Pointer to Class Member
A pointer to member is a pointer that can point to a nonstatic member of a
class. Normally a pointer points to an object, but a pointer to member identifies a
member of a class, not an object of that class. static class members are not part of
any object, so no special syntax is needed to point to a static member. Pointers
to static members are ordinary pointers.

The type of a pointer to member embodies both the type of a class and the type
of a member of that class. We initialize such pointers to point to a specific member
of a class without identifying an object to which that member belongs. When we
use a pointer to member, we supply the object whose member we wish to use.
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To explain pointers to members, we’ll use a version of the Screen class from
§ 7.3.1 (p. 271):

class Screen {
public:

typedef std::string::size_type pos;
char get_cursor() const { return contents[cursor]; }
char get() const;
char get(pos ht, pos wd) const;

private:
std::string contents;
pos cursor;
pos height, width;

};

19.4.1 Pointers to Data Members
As with any pointer, we declare a pointer to member using a * to indicate that the
name we’re declaring is a pointer. Unlike ordinary pointers, a pointer to member
also incorporates the class that contains the member. Hence, we must precede
the * with classname:: to indicate that the pointer we are defining can point to a
member of classname. For example:

// pdata can point to a string member of a const (or nonconst) Screen object
const string Screen::*pdata;

declares that pdata is a “pointer to a member of class Screen that has type const
string.” The data members in a const object are themselves const. By making
our pointer a pointer to const string member, we say that we can use pdata to
point to a member of any Screen object, const or not. In exchange we can use
pdata to read, but not write to, the member to which it points.

When we initialize (or assign to) a pointer to member, we say to which member
it points. For example, we can make pdata point to the contents member of an
unspecified Screen object as follows:

pdata = &Screen::contents;

Here, we apply the address-of operator not to an object in memory but to a member
of the class Screen.

Of course, under the new standard, the easiest way to declare a pointer to mem-
ber is to use auto or decltype:

auto pdata = &Screen::contents;

Using a Pointer to Data Member

It is essential to understand that when we initialize or assign a pointer to member,
that pointer does not yet point to any data. It identifies a specific member but not
the object that contains that member. We supply the object when we dereference
the pointer to member.
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Analogous to the member access operators, . and ->, there are two pointer-to-
member access operators, .* and ->*, that let us supply an object and dereference
the pointer to fetch a member of that object:

Screen myScreen, *pScreen = &myScreen;
// .* dereferences pdata to fetch the contents member from the object myScreen
auto s = myScreen.*pdata;

// ->* dereferences pdata to fetch contents from the object to which pScreen points
s = pScreen->*pdata;

Conceptually, these operators perform two actions: They dereference the pointer to
member to get the member that we want; then, like the member access operators,
they fetch that member from an object (.*) or through a pointer (->*).

A Function Returning a Pointer to Data Member

Normal access controls apply to pointers to members. For example, the contents
member of Screen is private. As a result, the use of pdata above must have
been inside a member or friend of class Screen or it would be an error.

Because data members are typically private, we normally can’t get a pointer
to data member directly. Instead, if a class like Screen wanted to allow access
to its contents member, it would define a function to return a pointer to that
member:

class Screen {
public:

// data is a static member that returns a pointer to member
static const std::string Screen::*data()

{ return &Screen::contents; }
// other members as before

};

Here we’ve added a static member to class Screen that returns a pointer to the
contents member of a Screen. The return type of this function is the same type
as our original pdata pointer. Reading the return type from right to left, we see
that data returns a pointer to a member of class Screen that is a string that is
const. The body of the function applies the address-of operator to the contents
member, so the function returns a pointer to the contents member of Screen.

When we call data, we get a pointer to member:

// data() returns a pointer to the contents member of class Screen
const string Screen::*pdata = Screen::data();

As before, pdata points to a member of class Screen but not to actual data. To
use pdata, we must bind it to an object of type Screen

// fetch the contents of the object named myScreen
auto s = myScreen.*pdata;
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EXE R C I S E S SE C TI O N 19.4.1

Exercise 19.11: What is the difference between an ordinary data pointer and a pointer
to a data member?

Exercise 19.12: Define a pointer to member that can point to the cursor member of
class Screen. Fetch the value of Screen::cursor through that pointer.

Exercise 19.13: Define the type that can represent a pointer to the bookNo member of
the Sales_data class.

19.4.2 Pointers to Member Functions
We can also define a pointer that can point to a member function of a class. As with
pointers to data members, the easiest way to form a pointer to member function is
to use auto to deduce the type for us:

// pmf is a pointer that can point to a Screen member function that is const
// that returns a char and takes no arguments
auto pmf = &Screen::get_cursor;

Like a pointer to data member, a pointer to a function member is declared using
classname::*. Like any other function pointer (§ 6.7, p. 247), a pointer to mem-
ber function specifies the return type and parameter list of the type of function to
which this pointer can point. If the member function is a const member (§ 7.1.2,
p. 258) or a reference member (§ 13.6.3, p. 546), we must include the const or
reference qualifier as well.

As with normal function pointers, if the member is overloaded, we must dis-
tinguish which function we want by declaring the type explicitly (§ 6.7, p. 248).
For example, we can declare a pointer to the two-parameter version of get as

char (Screen::*pmf2)(Screen::pos, Screen::pos) const;
pmf2 = &Screen::get;

The parentheses around Screen::* in this declaration are essential due to prece-
dence. Without the parentheses, the compiler treats the following as an (invalid)
function declaration:

// error: nonmember function p cannot have a const qualifier
char Screen::*p(Screen::pos, Screen::pos) const;

This declaration tries to define an ordinary function named p that returns a pointer
to a member of class Screen that has type char. Because it declares an ordinary
function, the declaration can’t be followed by a const qualifier.

Unlike ordinary function pointers, there is no automatic conversion between a
member function and a pointer to that member:

// pmf points to a Screen member that takes no arguments and returns char
pmf = &Screen::get; // must explicitly use the address-of operator
pmf = Screen::get; // error: no conversion to pointer for member functions
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Using a Pointer to Member Function

As when we use a pointer to a data member, we use the .* or ->* operators to call
a member function through a pointer to member:

Screen myScreen, *pScreen = &myScreen;
// call the function to which pmf points on the object to which pScreen points
char c1 = (pScreen->*pmf)();
// passes the arguments 0, 0 to the two-parameter version of get on the object myScreen
char c2 = (myScreen.*pmf2)(0, 0);

The calls (myScreen->*pmf)() and (pScreen.*pmf2)(0,0) require the
parentheses because the precedence of the call operator is higher than the prece-
dence of the pointer to member operators.

Without the parentheses,

myScreen.*pmf()

would be interpreted to mean

myScreen.*(pmf())

This code says to call the function named pmf and use its return value as the oper-
and of the pointer-to-member operator (.*). However, pmf is not a function, so
this code is in error.

Because of the relative precedence of the call operator, declarations of
pointers to member functions and calls through such pointers must use
parentheses: (C::*p)(parms) and (obj.*p)(args).

Using Type Aliases for Member Pointers

Type aliases or typedefs (§ 2.5.1, p. 67) make pointers to members considerably
easier to read. For example, the following type alias defines Action as an alterna-
tive name for the type of the two-parameter version of get:

// Action is a type that can point to a member function of Screen
// that returns a char and takes two pos arguments
using Action =
char (Screen::*)(Screen::pos, Screen::pos) const;

Action is another name for the type “pointer to a constmember function of class
Screen taking two parameters of type pos and returning char.” Using this alias,
we can simplify the definition of a pointer to get as follows:

Action get = &Screen::get; // get points to the get member of Screen

As with any other function pointer, we can use a pointer-to-member function
type as the return type or as a parameter type in a function. Like any other param-
eter, a pointer-to-member parameter can have a default argument:

// action takes a reference to a Screen and a pointer to a Screen member function
Screen& action(Screen&, Action = &Screen::get);
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action is a function taking two parameters, which are a reference to a Screen
object and a pointer to a member function of class Screen that takes two pos
parameters and returns a char. We can call action by passing it either a pointer
or the address of an appropriate member function in Screen:

Screen myScreen;

// equivalent calls:
action(myScreen); // uses the default argument
action(myScreen, get); // uses the variable get that we previously defined
action(myScreen, &Screen::get); // passes the address explicitly

Type aliases make code that uses pointers to members much easier to
read and write.

Pointer-to-Member Function Tables

One common use for function pointers and for pointers to member functions is
to store them in a function table (§ 14.8.3, p. 577). For a class that has several
members of the same type, such a table can be used to select one from the set of
these members. Let’s assume that our Screen class is extended to contain several
member functions, each of which moves the cursor in a particular direction:

class Screen {
public:

// other interface and implementation members as before
Screen& home(); // cursor movement functions
Screen& forward();
Screen& back();
Screen& up();
Screen& down();

};

Each of these new functions takes no parameters and returns a reference to the
Screen on which it was invoked.

We might want to define a move function that can call any one of these func-
tions and perform the indicated action. To support this new function, we’ll add a
static member to Screen that will be an array of pointers to the cursor move-
ment functions:

class Screen {
public:

// other interface and implementation members as before
// Action is a pointer that can be assigned any of the cursor movement members
using Action = Screen& (Screen::*)();
// specify which direction to move; enum see § 19.3 (p. 832)
enum Directions { HOME, FORWARD, BACK, UP, DOWN };
Screen& move(Directions);

private:
static Action Menu[]; // function table

};
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The array named Menu will hold pointers to each of the cursor movement func-
tions. Those functions will be stored at the offsets corresponding to the enumera-
tors in Directions. The move function takes an enumerator and calls the appro-
priate function:

Screen& Screen::move(Directions cm)
{

// run the element indexed by cm on this object
return (this->*Menu[cm])(); // Menu[cm] points to a member function

}

The call inside move is evaluated as follows: The Menu element indexed by cm is
fetched. That element is a pointer to a member function of the Screen class. We
call the member function to which that element points on behalf of the object to
which this points.

When we call move, we pass it an enumerator that indicates which direction to
move the cursor:

Screen myScreen;

myScreen.move(Screen::HOME); // invokes myScreen.home
myScreen.move(Screen::DOWN); // invokes myScreen.down

What’s left is to define and initialize the table itself:

Screen::Action Screen::Menu[] = { &Screen::home,
&Screen::forward,
&Screen::back,
&Screen::up,
&Screen::down,

};

EXE R C I S E S SE C TI O N 19.4.2

Exercise 19.14: Is the following code legal? If so, what does it do? If not, why?

auto pmf = &Screen::get_cursor;
pmf = &Screen::get;

Exercise 19.15: What is the difference between an ordinary function pointer and a
pointer to a member function?

Exercise 19.16: Write a type alias that is a synonym for a pointer that can point to the
avg_price member of Sales_data.

Exercise 19.17: Define a type alias for each distinct Screen member function type.

19.4.3 Using Member Functions as Callable Objects
As we’ve seen, to make a call through a pointer to member function, we must
use the .* or ->* operators to bind the pointer to a specific object. As a result,
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unlike ordinary function pointers, a pointer to member is not a callable object; these
pointers do not support the function-call operator (§ 10.3.2, p. 388).

Because a pointer to member is not a callable object, we cannot directly pass a
pointer to a member function to an algorithm. As an example, if we wanted to find
the first empty string in a vector of strings, the obvious call won’t work:

auto fp = &string::empty; // fp points to the string empty function
// error: must use .* or ->* to call a pointer to member
find_if(svec.begin(), svec.end(), fp);

The find_if algorithm expects a callable object, but we’ve supplied fp, which is
a pointer to a member function. This call won’t compile, because the code inside
find_if executes a statement something like

// check whether the given predicate applied to the current element yields true
if (fp(*it)) // error: must use ->* to call through a pointer to member

which attempts to call the object it was passed.

Using function to Generate a Callable

One way to obtain a callable from a pointer to member function is by using the
library function template (§ 14.8.3, p. 577):

function<bool (const string&)> fcn = &string::empty;
find_if(svec.begin(), svec.end(), fcn);

Here we tell function that empty is a function that can be called with a string
and returns a bool. Ordinarily, the object on which a member function executes
is passed to the implicit this parameter. When we want to use function to
generate a callable for a member function, we have to “translate” the code to make
that implicit parameter explicit.

When a function object holds a pointer to a member function, the function
class knows that it must use the appropriate pointer-to-member operator to make
the call. That is, we can imagine that find_if will have code something like

// assuming it is the iterator inside find_if, so *it is an object in the given range
if (fcn(*it)) // assuming fcn is the name of the callable inside find_if

which function will execute using the proper pointer-to-member operator. In
essence, the function class will transform this call into something like

// assuming it is the iterator inside find_if, so *it is an object in the given range
if (((*it).*p)()) // assuming p is the pointer to member function inside fcn

When we define a function object, we must specify the function type that is
the signature of the callable objects that object can represent. When the callable is a
member function, the signature’s first parameter must represent the (normally im-
plicit) object on which the member will be run. The signature we give to function
must specify whether the object will be passed as a pointer or a reference.

When we defined fcn, we knew that we wanted to call find_if on a sequence
of string objects. Hence, we asked function to generate a callable that took
string objects. Had our vector held pointers to string, we would have told
function to expect a pointer:

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section 19.5 Nested Classes 843

vector<string*> pvec;
function<bool (const string*)> fp = &string::empty;
// fp takes a pointer to string and uses the ->* to call empty
find_if(pvec.begin(), pvec.end(), fp);

Using mem_fn to Generate a Callable

To use function, we must supply the call signature of the member we want to
call. We can, instead, let the compiler deduce the member’s type by using another
library facility, mem_fn, which, like function, is defined in the functional
header. Like function, mem_fn generates a callable object from a pointer to
member. Unlike function, mem_fn will deduce the type of the callable from
the type of the pointer to member:

find_if(svec.begin(), svec.end(), mem_fn(&string::empty));

Here we used mem_fn(&string::empty) to generate a callable object that takes
a string argument and returns a bool.

The callable generated by mem_fn can be called on either an object or a pointer:

auto f = mem_fn(&string::empty); // f takes a string or a string*
f(*svec.begin()); // ok: passes a string object; f uses .* to call empty
f(&svec[0]); // ok: passes a pointer to string; f uses .-> to call empty

Effectively, we can think of mem_fn as if it generates a callable with an overloaded
function call operator—one that takes a string* and the other a string&.

Using bind to Generate a Callable

For completeness, we can also use bind (§ 10.3.4, p. 397) to generate a callable
from a member function:

// bind each string in the range to the implicit first argument to empty
auto it = find_if(svec.begin(), svec.end(),

bind(&string::empty, _1));

As with function, when we use bind, we must make explicit the member func-
tion’s normally implicit parameter that represents the object on which the member
function will operate. Like mem_fn, the first argument to the callable generated by
bind can be either a pointer or a reference to a string:

auto f = bind(&string::empty, _1);
f(*svec.begin()); // ok: argument is a string f will use .* to call empty
f(&svec[0]); // ok: argument is a pointer to string f will use .-> to call empty

19.5 Nested Classes
A class can be defined within another class. Such a class is a nested class, also
referred to as a nested type. Nested classes are most often used to define im-
plementation classes, such as the QueryResult class we used in our text query
example (§ 12.3, p. 484).
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EXE R C I S E S SE C TI O N 19.4.3

Exercise 19.18: Write a function that uses count_if to count how many empty
strings there are in a given vector.

Exercise 19.19: Write a function that takes a vector<Sales_data> and finds the
first element whose average price is greater than some given amount.

Nested classes are independent classes and are largely unrelated to their enclos-
ing class. In particular, objects of the enclosing and nested classes are independent
from each other. An object of the nested type does not have members defined by
the enclosing class. Similarly, an object of the enclosing class does not have mem-
bers defined by the nested class.

The name of a nested class is visible within its enclosing class scope but not
outside the class. Like any other nested name, the name of a nested class will not
collide with the use of that name in another scope.

A nested class can have the same kinds of members as a nonnested class. Just
like any other class, a nested class controls access to its own members using access
specifiers. The enclosing class has no special access to the members of a nested
class, and the nested class has no special access to members of its enclosing class.

A nested class defines a type member in its enclosing class. As with any other
member, the enclosing class determines access to this type. A nested class defined
in the public part of the enclosing class defines a type that may be used any-
where. A nested class defined in the protected section defines a type that is ac-
cessible only by the enclosing class, its friends, and its derived classes. A private
nested class defines a type that is accessible only to the members and friends of the
enclosing class.

Declaring a Nested Class

The TextQuery class from § 12.3.2 (p. 487) defined a companion class named
QueryResult. The QueryResult class is tightly coupled to our TextQuery
class. It would make little sense to use QueryResult for any other purpose than
to represent the results of a query operation on a TextQuery object. To reflect
this tight coupling, we’ll make QueryResult a member of TextQuery.

class TextQuery {
public:

class QueryResult; // nested class to be defined later
// other members as in § 12.3.2 (p. 487)

};

We need to make only one change to our original TextQuery class—we declare
our intention to define QueryResult as a nested class. Because QueryResult is
a type member (§ 7.4.1, p. 284), we must declare QueryResult before we use it. In
particular, we must declare QueryResult before we use it as the return type for
the query member. The remaining members of our original class are unchanged.
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Defining a Nested Class outside of the Enclosing Class

Inside TextQuerywe declaredQueryResult but did not define it. As with mem-
ber functions, nested classes must be declared inside the class but can be defined
either inside or outside the class.

When we define a nested class outside its enclosing class, we must qualify the
name of the nested class by the name of its enclosing class:

// we’re defining the QueryResult class that is a member of class TextQuery
class TextQuery::QueryResult {

// in class scope, we don’t have to qualify the name of the QueryResult parameters
friend std::ostream&

print(std::ostream&, const QueryResult&);
public:

// no need to define QueryResult::line_no; a nested class can use a member
// of its enclosing class without needing to qualify the member’s name
QueryResult(std::string,

std::shared_ptr<std::set<line_no>>,
std::shared_ptr<std::vector<std::string>>);

// other members as in § 12.3.2 (p. 487)
};

The only change we made compared to our original class is that we no longer
define a line_no member in QueryResult. The members of QueryResult can
access that name directly from TextQuery, so there is no need to define it again.

Until the actual definition of a nested class that is defined outside the
class body is seen, that class is an incomplete type (§ 7.3.3, p. 278).

Defining the Members of a Nested Class

In this version, we did not define the QueryResult constructor inside the class
body. To define the constructor, we must indicate that QueryResult is nested
within the scope of TextQuery. We do so by qualifying the nested class name
with the name of its enclosing class:

// defining the member named QueryResult for the class named QueryResult
// that is nested inside the class TextQuery
TextQuery::QueryResult::QueryResult(string s,

shared_ptr<set<line_no>> p,
shared_ptr<vector<string>> f):

sought(s), lines(p), file(f) { }

Reading the name of the function from right to left, we see that we are defin-
ing the constructor for class QueryResult, which is nested in the scope of class
TextQuery. The code itself just stores the given arguments in the data members
and has no further work to do.

Nested-Class static Member Definitions

If QueryResult had declared a staticmember, its definition would appear out-
side the scope of the TextQuery. For example, assuming QueryResult had a
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static member, its definition would look something like

// defines an int static member of QueryResult
// which is a class nested inside TextQuery
int TextQuery::QueryResult::static_mem = 1024;

Name Lookup in Nested Class Scope

Normal rules apply for name lookup (§ 7.4.1, p. 283) inside a nested class. Of
course, because a nested class is a nested scope, the nested class has additional en-
closing class scopes to search. This nesting of scopes explains why we didn’t define
line_no inside the nested version of QueryResult. Our original QueryResult
class defined this member so that its own members could avoid having to write
TextQuery::line_no. Having nested the definition of our results class inside
TextQuery, we no longer need this typedef. The nested QueryResult class
can access line_no without specifying that line_no is defined in TextQuery.

As we’ve seen, a nested class is a type member of its enclosing class. Members
of the enclosing class can use the name of a nested class the same way it can use
any other type member. Because QueryResult is nested inside TextQuery, the
query member of TextQuery can refer to the name QueryResult directly:

// return type must indicate that QueryResult is now a nested class
TextQuery::QueryResult
TextQuery::query(const string &sought) const
{

// we’ll return a pointer to this set if we don’t find sought
static shared_ptr<set<line_no>> nodata(new set<line_no>);
// use find and not a subscript to avoid adding words to wm!
auto loc = wm.find(sought);
if (loc == wm.end())

return QueryResult(sought, nodata, file); // not found
else

return QueryResult(sought, loc->second, file);
}

As usual, the return type is not yet in the scope of the class (§ 7.4, p. 282), so
we start by noting that our function returns a TextQuery::QueryResult value.
However, inside the body of the function, we can refer to QueryResult directly,
as we do in the return statements.

The Nested and Enclosing Classes Are Independent

Although a nested class is defined in the scope of its enclosing class, it is important
to understand that there is no connection between the objects of an enclosing class
and objects of its nested classe(s). A nested-type object contains only the members
defined inside the nested type. Similarly, an object of the enclosing class has only
those members that are defined by the enclosing class. It does not contain the data
members of any nested classes.

More concretely, the second return statement in TextQuery::query

return QueryResult(sought, loc->second, file);
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uses data members of the TextQuery object on which query was run to ini-
tialize a QueryResult object. We have to use these members to construct the
QueryResult object we return because a QueryResult object does not contain
the members of its enclosing class.

EXE R C I S E S SE C TI ON 19.5

Exercise 19.20: Nest your QueryResult class inside TextQuery and rerun the pro-
grams you wrote to use TextQuery in § 12.3.2 (p. 490).

19.6 union: A Space-Saving Class
A union is a special kind of class. A union may have multiple data members, but
at any point in time, only one of the members may have a value. When a value is
assigned to one member of the union, all other members become undefined. The
amount of storage allocated for a union is at least as much as is needed to contain
its largest data member. Like any class, a union defines a new type.

Some, but not all, class features apply equally to unions. A union cannot
have a member that is a reference, but it can have members of most other types,
including, under the new standard, class types that have constructors or destruc-
tors. A union can specify protection labels to make members public, private,
or protected. By default, like structs, members of a union are public.

A union may define member functions, including constructors and destruc-
tors. However, a union may not inherit from another class, nor may a union be
used as a base class. As a result, a union may not have virtual functions.

Defining a union

unions offer a convenient way to represent a set of mutually exclusive values of
different types. As an example, we might have a process that handles different
kinds of numeric or character data. That process might define a union to hold
these values:

// objects of type Token have a single member, which could be of any of the listed types
union Token {
// members are public by default

char cval;
int ival;
double dval;

};

A union is defined starting with the keyword union, followed by an (optional)
name for the union and a set of member declarations enclosed in curly braces.
This code defines a union named Token that can hold a value that is either a
char, an int, or a double.
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Using a union Type

The name of a union is a type name. Like the built-in types, by default unions
are uninitialized. We can explicitly initialize a union in the same way that we can
explicitly initialize aggregate classes (§ 7.5.5, p. 298) by enclosing the initializer in
a pair of curly braces:

Token first_token = {’a’}; // initializes the cval member
Token last_token; // uninitialized Token object
Token *pt = new Token; // pointer to an uninitialized Token object

If an initializer is present, it is used to initialize the first member. Hence, the ini-
tialization of first_token gives a value to its cval member.

The members of an object of union type are accessed using the normal member
access operators:

last_token.cval = ’z’;
pt->ival = 42;

Assigning a value to a data member of a union object makes the other data mem-
bers undefined. As a result, when we use a union, we must always know what
type of value is currently stored in the union. Depending on the types of the mem-
bers, retrieving or assigning to the value stored in the union through the wrong
data member can lead to a crash or other incorrect program behavior.

Anonymous unions

An anonymous union is an unnamed union that does not include any declara-
tions between the close curly that ends its body and the semicolon that ends the
union definition (§ 2.6.1, p. 73). When we define an anonymous union the com-
piler automatically creates an unnamed object of the newly defined union type:

union { // anonymous union
char cval;
int ival;
double dval;

}; // defines an unnamed object, whose members we can access directly

cval = ’c’; // assigns a new value to the unnamed, anonymous union object
ival = 42; // that object now holds the value 42

The members of an anonymous union are directly accessible in the scope where
the anonymous union is defined.

An anonymous union cannot have private or protected members,
nor can an anonymous union define member functions.

unions with Members of Class Type

Under earlier versions of C++, unions could not have members of a class type
that defined its own constructors or copy-control members. Under the new stan-
dard, this restriction is lifted. However, unions with members that define their
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own constructors and/or copy-control members are more complicated to use than
unions that have members of built-in type.

When a union has members of built-in type, we can use ordinary assignment
to change the value that the union holds. Not so for unions that have members of
nontrivial class types. When we switch the union’s value to and from a member
of class type, we must construct or destroy that member, respectively: When we
switch the union to a member of class type, we must run a constructor for that
member’s type; when we switch from that member, we must run its destructor.

When a union has members of built-in type, the compiler will synthesize the
memberwise versions of the default constructor or copy-control members. The
same is not true for unions that have members of a class type that defines its
own default constructor or one or more of the copy-control members. If a union
member’s type defines one of these members, the compiler synthesizes the corre-
sponding member of the union as deleted (§ 13.1.6, p. 508).

For example, the string class defines all five copy-control members and the
default constructor. If a union contains a string and does not define its own
default constructor or one of the copy-control members, then the compiler will
synthesize that missing member as deleted. If a class has a unionmember that has
a deleted copy-control member, then that corresponding copy-control operation(s)
of the class itself will be deleted as well.

Using a Class to Manage union Members

Because of the complexities involved in constructing and destroying members of
class type, unions with class-type members ordinarily are embedded inside an-
other class. That way the class can manage the state transitions to and from the
member of class type. As an example, we’ll add a string member to our union.
We’ll define our union as an anonymous union and make it a member of a class
named Token. The Token class will manage the union’s members.

To keep track of what type of value the union holds, we usually define a sep-
arate object known as a discriminant. A discriminant lets us discriminate among
the values that the union can hold. In order to keep the union and its discrimi-
nant in sync, we’ll make the discriminant a member of Token as well. Our class
will define a member of an enumeration type (§ 19.3, p. 832) to keep track of the
state of its union member.

The only functions our class will define are the default constructor, the copy-
control members, and a set of assignment operators that can assign a value of one
of our union’s types to the union member:

class Token {
public:

// copy control needed because our class has a union with a string member
// defining the move constructor and move-assignment operator is left as an exercise
Token(): tok(INT), ival{0} { }
Token(const Token &t): tok(t.tok) { copyUnion(t); }
Token &operator=(const Token&);
// if the union holds a string, we must destroy it; see § 19.1.2 (p. 824)
~Token() { if (tok == STR) sval.~string(); }
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// assignment operators to set the differing members of the union
Token &operator=(const std::string&);
Token &operator=(char);
Token &operator=(int);
Token &operator=(double);

private:
enum {INT, CHAR, DBL, STR} tok; // discriminant
union { // anonymous union

char cval;
int ival;
double dval;
std::string sval;

}; // each Token object has an unnamed member of this unnamed union type
// check the discriminant and copy the union member as appropriate
void copyUnion(const Token&);

};

Our class defines a nested, unnamed, unscoped enumeration (§ 19.3, p. 832) that
we use as the type for the member named tok. We defined tok following the close
curly and before the semicolon that ends the definition of the enum, which defines
tok to have this unnamed enum type (§ 2.6.1, p. 73).

We’ll use tok as our discriminant. When the union holds an int value, tok
will have the value INT; if the union has a string, tok will be STR; and so on.

The default constructor initializes the discriminant and the union member to
hold an int value of 0.

Because our union has a member with a destructor, we must define our own
destructor to (conditionally) destroy the string member. Unlike ordinary mem-
bers of a class type, class members that are part of a union are not automatically
destroyed. The destructor has no way to know which type the union holds, so it
cannot know which member to destroy.

Our destructor checks whether the object being destroyed holds a string. If
so, the destructor explicitly calls the string destructor (§ 19.1.2, p. 824) to free
the memory used by that string. The destructor has no work to do if the union
holds a member of any of the built-in types.

Managing the Discriminant and Destroying the string

The assignment operators will set tok and assign the corresponding member of
the union. Like the destructor, these members must conditionally destroy the
string before assigning a new value to the union:

Token &Token::operator=(int i)
{

if (tok == STR) sval.~string(); // if we have a string, free it
ival = i; // assign to the appropriate member
tok = INT; // update the discriminant
return *this;

}

If the current value in the union is a string, we must destroy that string before
assigning a new value to the union. We do so by calling the string destructor.
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Once we’ve cleaned up the string member, we assign the given value to the
member that corresponds to the parameter type of the operator. In this case, our
parameter is an int, so we assign to ival. We update the discriminant and return.

The double and char assignment operators behave identically to the int ver-
sion and are left as an exercise. The string version differs from the others because
it must manage the transition to and from the string type:

Token &Token::operator=(const std::string &s)
{

if (tok == STR) // if we already hold a string, just do an assignment
sval = s;

else
new(&sval) string(s); // otherwise construct a string

tok = STR; // update the discriminant
return *this;

}

In this case, if the union already holds a string, we can use the normal string
assignment operator to give a new value to that string. Otherwise, there is no
existing string object on which to invoke the string assignment operator. In-
stead, we must construct a string in the memory that holds the union. We do
so using placement new (§ 19.1.2, p. 824) to construct a string at the location in
which sval resides. We initialize that string as a copy of our string parameter.
We next update the discriminant and return.

Managing Union Members That Require Copy Control

Like the type-specific assignment operators, the copy constructor and assignment
operators have to test the discriminant to know how to copy the given value. To
do this common work, we’ll define a member named copyUnion.

When we call copyUnion from the copy constructor, the union member will
have been default-initialized, meaning that the first member of the union will
have been initialized. Because our string is not the first member, we know that
the union member doesn’t hold a string. In the assignment operator, it is possi-
ble that the union already holds a string. We’ll handle that case directly in the
assignment operator. That way copyUnion can assume that if its parameter holds
a string, copyUnion must construct its own string:

void Token::copyUnion(const Token &t)
{

switch (t.tok) {
case Token::INT: ival = t.ival; break;
case Token::CHAR: cval = t.cval; break;
case Token::DBL: dval = t.dval; break;
// to copy a string, construct it using placement new; see (§ 19.1.2 (p. 824))
case Token::STR: new(&sval) string(t.sval); break;

}
}

This function uses a switch statement (§ 5.3.2, p. 178) to test the discriminant. For
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the built-in types, we assign the value to the corresponding member; if the member
we are copying is a string, we construct it.

The assignment operator must handle three possibilities for its string mem-
ber: Both the left-hand and right-hand operands might be a string; neither oper-
and might be a string; or one but not both operands might be a string:

Token &Token::operator=(const Token &t)
{

// if this object holds a string and t doesn’t, we have to free the old string
if (tok == STR && t.tok != STR) sval.~string();
if (tok == STR && t.tok == STR)

sval = t.sval; // no need to construct a new string
else

copyUnion(t); // will construct a string if t.tok is STR
tok = t.tok;
return *this;

}

If the union in the left-hand operand holds a string, but the union in the right-
hand does not, then we have to first free the old string before assigning a new
value to the union member. If both unions hold a string, we can use the normal
string assignment operator to do the copy. Otherwise, we call copyUnion to do
the assignment. Inside copyUnion, if the right-hand operand is a string, we’ll
construct a new string in the union member of the left-hand operand. If neither
operand is a string, then ordinary assignment will suffice.

EXE R C I S E S SE C TI ON 19.6

Exercise 19.21: Write your own version of the Token class.

Exercise 19.22: Add a member of type Sales_data to your Token class.

Exercise 19.23: Add a move constructor and move assignment to Token.

Exercise 19.24: Explain what happens if we assign a Token object to itself.

Exercise 19.25: Write assignment operators that take values of each type in the union.

19.7 Local Classes
A class can be defined inside a function body. Such a class is called a local class.
A local class defines a type that is visible only in the scope in which it is defined.
Unlike nested classes, the members of a local class are severely restricted.

All members, including functions, of a local class must be completely
defined inside the class body. As a result, local classes are much less
useful than nested classes.
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In practice, the requirement that members be fully defined within the class lim-
its the complexity of the member functions of a local class. Functions in local
classes are rarely more than a few lines of code. Beyond that, the code becomes
difficult for the reader to understand.

Similarly, a local class is not permitted to declare static data members, there
being no way to define them.

Local Classes May Not Use Variables from the Function’s Scope

The names from the enclosing scope that a local class can access are limited. A
local class can access only type names, static variables (§ 6.1.1, p. 205), and enu-
merators defined within the enclosing local scopes. A local class may not use the
ordinary local variables of the function in which the class is defined:

int a, val;

void foo(int val)
{

static int si;
enum Loc { a = 1024, b };

// Bar is local to foo
struct Bar {

Loc locVal; // ok: uses a local type name
int barVal;

void fooBar(Loc l = a) // ok: default argument is Loc::a
{

barVal = val; // error: val is local to foo
barVal = ::val; // ok: uses a global object
barVal = si; // ok: uses a static local object
locVal = b; // ok: uses an enumerator

}
};
// . . .

}

Normal Protection Rules Apply to Local Classes

The enclosing function has no special access privileges to the private members
of the local class. Of course, the local class could make the enclosing function a
friend. More typically, a local class defines its members as public. The portion
of a program that can access a local class is very limited. A local class is already
encapsulated within the scope of the function. Further encapsulation through in-
formation hiding is often overkill.

Name Lookup within a Local Class

Name lookup within the body of a local class happens in the same manner as for
other classes. Names used in the declarations of the members of the class must be
in scope before the use of the name. Names used in the definition of a member
can appear anywhere in the class. If a name is not found as a class member, then
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the search continues in the enclosing scope and then out to the scope enclosing the
function itself.

Nested Local Classes

It is possible to nest a class inside a local class. In this case, the nested class defi-
nition can appear outside the local-class body. However, the nested class must be
defined in the same scope as that in which the local class is defined.

void foo()
{

class Bar {
public:

// . . .
class Nested; // declares class Nested

};

// definition of Nested
class Bar::Nested {

// . . .
};

}

As usual, when we define a member outside a class, we must indicate the scope
of the name. Hence, we defined Bar::Nested, which says that Nested is a class
defined in the scope of Bar.

A class nested in a local class is itself a local class, with all the attendant re-
strictions. All members of the nested class must be defined inside the body of the
nested class itself.

19.8 Inherently Nonportable Features
To support low-level programming, C++ defines some features that are inherently
nonportable. A nonportable feature is one that is machine specific. Programs that
use nonportable features often require reprogramming when they are moved from
one machine to another. The fact that the sizes of the arithmetic types vary across
machines (§ 2.1.1, p. 32) is one such nonportable feature that we have already used.

In this section we’ll cover two additional nonportable features that C++ inherits
from C: bit-fields and the volatile qualifier. We’ll also cover linkage directives,
which is a nonportable feature that C++ adds to those that it inherits from C.

19.8.1 Bit-fields
A class can define a (nonstatic) data member as a bit-field. A bit-field holds a
specified number of bits. Bit-fields are normally used when a program needs to
pass binary data to another program or to a hardware device.

The memory layout of a bit-field is machine dependent.
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A bit-field must have integral or enumeration type (§ 19.3, p. 832). Ordinarily,
we use an unsigned type to hold a bit-field, because the behavior of a signed
bit-field is implementation defined. We indicate that a member is a bit-field by
following the member name with a colon and a constant expression specifying the
number of bits:

typedef unsigned int Bit;

class File {
Bit mode: 2; // mode has 2 bits
Bit modified: 1; // modified has 1 bit
Bit prot_owner: 3; // prot_owner has 3 bits
Bit prot_group: 3; // prot_group has 3 bits
Bit prot_world: 3; // prot_world has 3 bits
// operations and data members of File

public:
// file modes specified as octal literals; see § 2.1.3 (p. 38)
enum modes { READ = 01, WRITE = 02, EXECUTE = 03 };
File &open(modes);
void close();
void write();
bool isRead() const;
void setWrite();

};

The mode bit-field has two bits, modified only one, and the other members each
have three bits. Bit-fields defined in consecutive order within the class body are,
if possible, packed within adjacent bits of the same integer, thereby providing for
storage compaction. For example, in the preceding declaration, the five bit-fields
will (probably) be stored in a single unsigned int. Whether and how the bits are
packed into the integer is machine dependent.

The address-of operator (&) cannot be applied to a bit-field, so there can be no
pointers referring to class bit-fields.

Ordinarily it is best to make a bit-field an unsigned type. The behavior
of bit-fields stored in a signed type is implementation defined.

Using Bit-fields

A bit-field is accessed in much the same way as the other data members of a class:

void File::write()
{

modified = 1;
// . . .

}

void File::close()
{

if (modified)
// . . . save contents

}
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Bit-fields with more than one bit are usually manipulated using the built-in bitwise
operators (§ 4.8, p. 152):

File &File::open(File::modes m)
{

mode |= READ; // set the READ bit by default
// other processing
if (m & WRITE) // if opening READ and WRITE
// processing to open the file in read/write mode
return *this;

}

Classes that define bit-field members also usually define a set of inline member
functions to test and set the value of the bit-field:

inline bool File::isRead() const { return mode & READ; }
inline void File::setWrite() { mode |= WRITE; }

19.8.2 volatile Qualifier

The precise meaning of volatile is inherently machine dependent
and can be understood only by reading the compiler documentation.
Programs that use volatile usually must be changed when they are
moved to new machines or compilers.

Programs that deal directly with hardware often have data elements whose
value is controlled by processes outside the direct control of the program itself.
For example, a program might contain a variable updated by the system clock. An
object should be declared volatile when its value might be changed in ways
outside the control or detection of the program. The volatile keyword is a di-
rective to the compiler that it should not perform optimizations on such objects.

The volatile qualifier is used in much the same way as the const qualifier.
It is an additional modifier to a type:

volatile int display_register; // int value that might change
volatile Task *curr_task; // curr_task points to a volatile object
volatile int iax[max_size]; // each element in iax is volatile
volatile Screen bitmapBuf; // each member of bitmapBuf is volatile

There is no interaction between the const and volatile type qualifiers. A type
can be both const and volatile, in which case it has the properties of both.

In the same way that a class may define const member functions, it can also
define member functions as volatile. Only volatile member functions may
be called on volatile objects.

§ 2.4.2 (p. 62) described the interactions between the const qualifier and point-
ers. The same interactions exist between the volatile qualifier and pointers. We
can declare pointers that are volatile, pointers to volatile objects, and point-
ers that are volatile that point to volatile objects:
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volatile int v; // v is a volatile int
int *volatile vip; // vip is a volatile pointer to int
volatile int *ivp; // ivp is a pointer to volatile int
// vivp is a volatile pointer to volatile int
volatile int *volatile vivp;

int *ip = &v; // error: must use a pointer to volatile
*ivp = &v; // ok: ivp is a pointer to volatile
vivp = &v; // ok: vivp is a volatile pointer to volatile

As with const, we may assign the address of a volatile object (or copy
a pointer to a volatile type) only to a pointer to volatile. We may use a
volatile object to initialize a reference only if the reference is volatile.

Synthesized Copy Does Not Apply to volatile Objects

One important difference between the treatment of const and volatile is that
the synthesized copy/move and assignment operators cannot be used to initialize
or assign from a volatile object. The synthesized members take parameters that
are references to (nonvolatile) const, and we cannot bind a nonvolatile
reference to a volatile object.

If a class wants to allow volatile objects to be copied, moved, or assigned, it
must define its own versions of the copy or move operation. As one example, we
might write the parameters as const volatile references, in which case we can
copy or assign from any kind of Foo:

class Foo {
public:

Foo(const volatile Foo&); // copy from a volatile object

// assign from a volatile object to a nonvolatile object
Foo& operator=(volatile const Foo&);

// assign from a volatile object to a volatile object
Foo& operator=(volatile const Foo&) volatile;
// remainder of class Foo

};

Although we can define copy and assignment for volatile objects, a deeper
question is whether it makes any sense to copy a volatile object. The answer to
that question depends intimately on the reason for using volatile in any partic-
ular program.

19.8.3 Linkage Directives: extern "C"
C++ programs sometimes need to call functions written in another programming
language. Most often, that other language is C. Like any name, the name of a
function written in another language must be declared. As with any function, that
declaration must specify the return type and parameter list. The compiler checks
calls to functions written in another language in the same way that it handles or-
dinary C++ functions. However, the compiler typically must generate different
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code to call functions written in other languages. C++ uses linkage directives to
indicate the language used for any non-C++ function.

Mixing C++ with code written in any other language, including C, re-
quires access to a compiler for that language that is compatible with
your C++ compiler.

Declaring a Non-C++ Function

A linkage directive can have one of two forms: single or compound. Linkage
directives may not appear inside a class or function definition. The same linkage
directive must appear on every declaration of a function.

As an example, the following declarations shows how some of the C functions
in the cstring header might be declared:

// illustrative linkage directives that might appear in the C++ header <cstring>

// single-statement linkage directive
extern "C" size_t strlen(const char *);

// compound-statement linkage directive
extern "C" {

int strcmp(const char*, const char*);
char *strcat(char*, const char*);

}

The first form of a linkage directive consists of the extern keyword followed by
a string literal, followed by an “ordinary” function declaration.

The string literal indicates the language in which the function is written. A
compiler is required to support linkage directives for C. A compiler may provide
linkage specifications for other languages, for example, extern "Ada", extern
"FORTRAN", and so on.

Linkage Directives and Headers

We can give the same linkage to several functions at once by enclosing their dec-
larations inside curly braces following the linkage directive. These braces serve to
group the declarations to which the linkage directive applies. The braces are oth-
erwise ignored, and the names of functions declared within the braces are visible
as if the functions were declared outside the braces.

The multiple-declaration form can be applied to an entire header file. For ex-
ample, the C++ cstring header might look like

// compound-statement linkage directive
extern "C" {
#include <string.h> // C functions that manipulate C-style strings
}

When a #includedirective is enclosed in the braces of a compound-linkage direc-
tive, all ordinary function declarations in the header file are assumed to be func-
tions written in the language of the linkage directive. Linkage directives can be
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nested, so if a header contains a function with its own linkage directive, the link-
age of that function is unaffected.

The functions that C++ inherits from the C library are permitted to be
defined as C functions but are not required to be C functions—it’s up to
each C++ implementation to decide whether to implement the C library
functions in C or C++.

Pointers to extern "C" Functions

The language in which a function is written is part of its type. Hence, every dec-
laration of a function defined with a linkage directive must use the same linkage
directive. Moreover, pointers to functions written in other languages must be de-
clared with the same linkage directive as the function itself:

// pf points to a C function that returns void and takes an int
extern "C" void (*pf)(int);

When pf is used to call a function, the function call is compiled assuming that the
call is to a C function.

A pointer to a C function does not have the same type as a pointer to a C++
function. A pointer to a C function cannot be initialized or be assigned to point to
a C++ function (and vice versa). As with any other type mismatch, it is an error to
try to assign two pointers with different linkage directives:

void (*pf1)(int); // points to a C++ function
extern "C" void (*pf2)(int); // points to a C function
pf1 = pf2; // error: pf1 and pf2 have different types

Some C++ compilers may accept the preceding assignment as a language
extension, even though, strictly speaking, it is illegal.

Linkage Directives Apply to the Entire Declaration

When we use a linkage directive, it applies to the function and any function point-
ers used as the return type or as a parameter type:

// f1 is a C function; its parameter is a pointer to a C function
extern "C" void f1(void(*)(int));

This declaration says that f1 is a C function that doesn’t return a value. It has one
parameter, which is a pointer to a function that returns nothing and takes a single
int parameter. The linkage directive applies to the function pointer as well as to
f1. When we call f1, we must pass it the name of a C function or a pointer to a C
function.

Because a linkage directive applies to all the functions in a declaration, we must
use a type alias (§ 2.5.1, p. 67) if we wish to pass a pointer to a C function to a C++
function:
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// FC is a pointer to a C function
extern "C" typedef void FC(int);

// f2 is a C++ function with a parameter that is a pointer to a C function
void f2(FC *);

Exporting Our C++ Functions to Other Languages

By using the linkage directive on a function definition, we can make a C++ function
available to a program written in another language:

// the calc function can be called from C programs
extern "C" double calc(double dparm) { /* . . . */ }

When the compiler generates code for this function, it will generate code appro-
priate to the indicated language.

It is worth noting that the parameter and return types in functions that are
shared across languages are often constrained. For example, we can almost surely
not write a function that passes objects of a (nontrivial) C++ class to a C program.
The C program won’t know about the constructors, destructors, or other class-
specific operations.

PREPROCESSOR SUPPORT FOR LINKING TO C

To allow the same source file to be compiled under either C or C++, the preprocessor
defines _ _cplusplus (two underscores) when we compile C++. Using this variable,
we can conditionally include code when we are compiling C++:

#ifdef __cplusplus
// ok: we’re compiling C++
extern "C"
#endif
int strcmp(const char*, const char*);

Overloaded Functions and Linkage Directives

The interaction between linkage directives and function overloading depends on
the target language. If the language supports overloaded functions, then it is likely
that a compiler that implements linkage directives for that language would also
support overloading of these functions from C++.

The C language does not support function overloading, so it should not be a
surprise that a C linkage directive can be specified for only one function in a set of
overloaded functions:

// error: two extern "C" functions with the same name
extern "C" void print(const char*);
extern "C" void print(int);

If one function among a set of overloaded functions is a C function, the other func-
tions must all be C++ functions:
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class SmallInt { /* . . . */ };
class BigNum { /* . . . */ };

// the C function can be called from C and C++ programs
// the C++ functions overload that function and are callable from C++
extern "C" double calc(double);
extern SmallInt calc(const SmallInt&);
extern BigNum calc(const BigNum&);

The C version of calc can be called from C programs and from C++ programs.
The additional functions are C++ functions with class parameters that can be called
only from C++ programs. The order of the declarations is not significant.

EXE R C I S E S SE C TI O N 19.8.3

Exercise 19.26: Explain these declarations and indicate whether they are legal:

extern "C" int compute(int *, int);
extern "C" double compute(double *, double);
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CH A P T E R SU M M A R Y
C++ provides several specialized facilities that are tailored to particular kinds of
problems.

Some applications need to take control of how memory is allocated. They can
do so by defining their own versions—either class specific or global—of the li-
brary operator new and operator delete functions. If the application de-
fines its own versions of these functions, new and delete expressions will use the
application-defined version.

Some programs need to directly interrogate the dynamic type of an object at
run time. Run-time type identification (RTTI) provides language-level support for
this kind of programming. RTTI applies only to classes that define virtual func-
tions; type information for types that do not define virtual functions is available
but reflects the static type.

When we define a pointer to a class member, the pointer type also encapsulates
the type of the class containing the member to which the pointer points. A pointer
to member may be bound to any member of the class that has the appropriate type.
When we dereference a pointer to member, we must supply an object from which
to fetch the member.

C++ defines several additional aggregate types:

• Nested classes, which are classes defined in the scope of another class. Such
classes are often defined as implementation classes of their enclosing class.

• unions are a special kind of class that may define several data members, but
at any point in time, only one member may have a value. unions are most
often nested inside another class type.

• Local classes, which are defined inside a function. All members of a local
class must be defined in the class body. There are no static data members
of a local class.

C++ also supports several inherently nonportable features, including bit-fields
and volatile, which make it easier to interface to hardware, and linkage direc-
tives, which make it easier to interface to programs written in other languages.

DEFINED TERMS

anonymous union Unnamed union that is
not used to define an object. Members of an
anonymous union become members of the
surrounding scope. These unions may not
have member functions and may not have
private or protected members.

bit-field Class member with a integral type
that specifies the number of bits to allocate
to the member. Bit-fields defined in consec-
utive order in the class are, if possible, com-

pacted into a common integral value.

discriminant Programming technique that
uses an object to determine which actual
type is held in a union at any given time.

dynamic_cast Operator that performs a
checked cast from a base type to a derived
type. When the base type has at least one
virtual function, the operator checks the dy-
namic type of the object to which the refer-
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ence or pointer is bound. If the object type is
the same as the type of the cast (or a type de-
rived from that type), then the cast is done.
Otherwise, a zero pointer is returned for a
pointer cast, or an exception is thrown for a
cast to a reference type.

enumeration Type that groups a set of
named integral constants.

enumerator Member of an enumeration.
Enumerators are const and may be used
where integral constant expressions are re-
quired.

free Low-level memory deallocation func-
tion defined in cstdlib. free may be
used only to free memory allocated by
malloc.

linkage directive Mechanism used to al-
low functions written in a different lan-
guage to be called from a C++ program. All
compilers must support calling C and C++
functions. It is compiler dependent whether
any other languages are supported.

local class Class defined inside a function.
A local class is visible only inside the func-
tion in which it is defined. All members of
the class must be defined inside the class
body. There can be no static members of
a local class. Local class members may not
access the nonstatic variables defined in
the enclosing function. They may use type
names, static variables, or enumerators
defined in the enclosing function.

malloc Low-level memory allocation func-
tion defined in cstdlib. Memory allo-
cated by malloc must be freed by free.

mem_fn Library class template that gener-
ates a callable object from a given pointer to
member function.

nested class Class defined inside another
class. A nested class is defined inside its
enclosing scope: Nested-class names must
be unique within the class scope in which
they are defined but can be reused in scopes
outside the enclosing class. Access to the

nested class outside the enclosing class re-
quires use of the scope operator to specify
the scope(s) in which the class is nested.

nested type Synonym for nested class.

nonportable Features that are inherently
machine specific and may require change
when a program is ported to another ma-
chine or compiler.

operator delete Library function that frees
untyped, unconstructed memory allocated
by operator new. The library operator
delete[] frees memory used to hold an
array that was allocated by operator
new[].

operator new Library function that allo-
cates untyped, unconstructed memory of a
given size. The library function operator
new[] allocates raw memory for arrays.
These library functions provide a more
primitive allocation mechanism than the li-
brary allocator class. Modern C++ pro-
grams should use the allocator classes
rather than these library functions.

placement new expression Form of new
that constructs its object in specified mem-
ory. It does no allocation; instead, it takes
an argument that specifies where the ob-
ject should be constructed. It is a lower-
level analog of the behavior provided by
the constructmember of the allocator
class.

pointer to member Pointer that encapsu-
lates the class type as well as the member
type to which the pointer points. The def-
inition of a pointer to member must spec-
ify the class name as well as the type of the
member(s) to which the pointer may point:

T C::*pmem = &C::member;

This statement defines pmem as a pointer
that can point to members of the class
named C that have type T and initializes
pmem to point to the member in C named
member. To use the pointer, we must sup-
ply an object or pointer to type C:

classobj.*pmem;
classptr->*pmem;
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fetches member from the object classobj
of the object pointed to by classptr.

run-time type identification Language
and library facilities that allow the dynamic
type of a reference or pointer to be obtained
at run time. The RTTI operators, typeid
and dynamic_cast, provide the dynamic
type only for references or pointers to class
types with virtual functions. When applied
to other types, the type returned is the static
type of the reference or pointer.

scoped enumeration New-style enumer-
ation in which the enumerator are not ac-
cessible directly in the surrounding scope.

typeid operator Unary operator that re-
turns a reference to an object of the library
type named type_info that describes the
type of the given expression. When the ex-
pression is an object of a type that has vir-
tual functions, then the dynamic type of the
expression is returned; such expressions are
evaluated at run time. If the type is a ref-
erence, pointer, or other type that does not
define virtual functions, then the type re-
turned is the static type of the reference,
pointer, or object; such expressions are not
evaluated.

type_info Library type returned by the
typeid operator. The type_info class
is inherently machine dependent, but must
provide a small set of operations, includ-
ing a name function that returns a char-
acter string representing the type’s name.
type_info objects may not be copied,
moved, or assigned.

union Classlike aggregate type that may
define multiple data members, only one of
which can have a value at any one point.
Unions may have member functions, in-
cluding constructors and destructors. A
union may not serve as a base class. Under
the new standard, unions can have mem-
bers that are class types that define their
own copy-control members. Such unions
obtain deleted copy control if they do not
themselves define the corresponding copy-
control functions.

unscoped enumeration Enumeration in
which the enumerators are accessible in the
surrounding scope.

volatile Type qualifier that signifies to the
compiler that a variable might be changed
outside the direct control of the program. It
is a signal to the compiler that it may not
perform certain optimizations.
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This Appendix contains additional details about the algorithms and
random number parts of the library. We also provide a list of all the
names we used from the standard library along with the name of the
header that defines that name.

In Chapter 10 we used some of the more common algorithms and
described the architecture that underlies the algorithms. In this Ap-
pendix, we list all the algorithms, organized by the kinds of opera-
tions they perform.

In § 17.4 (p. 745) we described the architecture of the random
number library and used several of the library’s distribution types.
The library defines a number or random number engines and 20 dif-
ferent distributions. In this Appendix, we list all the engines and
distributions.
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A.1 Library Names and Headers
Our programs mostly did not show the actual #include directives needed to
compile the program. As a convenience to readers, Table A.1 lists the library names
our programs used and the header in which they may be found.

Table A.1: Standard Library Names and Headers

Name Header
abort <cstdlib>
accumulate <numeric>
allocator <memory>
array <array>
auto_ptr <memory>
back_inserter <iterator>
bad_alloc <new>
bad_array_new_length <new>
bad_cast <typeinfo>
begin <iterator>
bernoulli_distribution <random>
bind <functional>
bitset <bitset>
boolalpha <iostream>
cerr <iostream>
cin <iostream>
cmatch <regex>
copy <algorithm>
count <algorithm>
count_if <algorithm>
cout <iostream>
cref <functional>
csub_match <regex>
dec <iostream>
default_float_engine <iostream>
default_random_engine <random>
deque <deque>
domain_error <stdexcept>
end <iterator>
endl <iostream>
ends <iostream>
equal_range <algorithm>
exception <exception>
fill <algorithm>
fill_n <algorithm>
find <algorithm>
find_end <algorithm>
find_first_of <algorithm>
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Table A.1: Standard Library Names and Headers (continued)

Name Header
find_if <algorithm>
fixed <iostream>
flush <iostream>
for_each <algorithm>
forward <utility>
forward_list <forward_list>
free cstdlib
front_inserter <iterator>
fstream <fstream>
function <functional>
get <tuple>
getline <string>
greater <functional>
hash <functional>
hex <iostream>
hexfloat <iostream>
ifstream <fstream>
initializer_list <initializer_list>
inserter <iterator>
internal <iostream>
ios_base <ios_base>
isalpha <cctype>
islower <cctype>
isprint <cctype>
ispunct <cctype>
isspace <cctype>
istream <iostream>
istream_iterator <iterator>
istringstream <sstream>
isupper <cctype>
left <iostream>
less <functional>
less_equal <functional>
list <list>
logic_error <stdexcept>
lower_bound <algorithm>
lround <cmath>
make_move_iterator <iterator>
make_pair <utility>
make_shared <memory>
make_tuple <tuple>
malloc cstdlib
map <map>

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

868 The Library

Table A.1: Standard Library Names and Headers (continued)

Name Header
max <algorithm>
max_element <algorithm>
mem_fn <functional>
min <algorithm>
move <utility>
multimap <map>
multiset <set>
negate <functional>
noboolalpha <iostream>
normal_distribution <random>
noshowbase <iostream>
noshowpoint <iostream>
noskipws <iostream>
not1 <functional>
nothrow <new>
nothrow_t <new>
nounitbuf <iostream>
nouppercase <iostream>
nth_element <algorithm>
oct <iostream>
ofstream <fstream>
ostream <iostream>
ostream_iterator <iterator>
ostringstream <sstream>
out_of_range <stdexcept>
pair <utility>
partial_sort <algorithm>
placeholders <functional>
placeholders::_1 <functional>
plus <functional>
priority_queue <queue>
ptrdiff_t <cstddef>
queue <queue>
rand <random>
random_device <random>
range_error <stdexcept>
ref <functional>
regex <regex>
regex_constants <regex>
regex_error <regex>
regex_match <regex>
regex_replace <regex>
regex_search <regex>

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

Section A.1 Library Names and Headers 869

Table A.1: Standard Library Names and Headers (continued)

Name Header
remove_pointer <type_traits>
remove_reference <type_traits>
replace <algorithm>
replace_copy <algorithm>
reverse_iterator <iterator>
right <iostream>
runtime_error <stdexcept>
scientific <iostream>
set <set>
set_difference <algorithm>
set_intersection <algorithm>
set_union <algorithm>
setfill <iomanip>
setprecision <iomanip>
setw <iomanip>
shared_ptr <memory>
showbase <iostream>
showpoint <iostream>
size_t <cstddef>
skipws <iostream>
smatch <regex>
sort <algorithm>
sqrt <cmath>
sregex_iterator <regex>
ssub_match <regex>
stable_sort <algorithm>
stack <stack>
stoi <string>
strcmp <cstring>
strcpy <cstring>
string <string>
stringstream <sstream>
strlen <cstring>
strncpy <cstring>
strtod <string>
swap <utility>
terminate <exception>
time <ctime>
tolower <cctype>
toupper <cctype>
transform <algorithm>
tuple <tuple>
tuple_element <tuple>
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Table A.1: Standard Library Names and Headers (continued)

Name Header
tuple_size <tuple>
type_info <typeinfo>
unexpected <exception>
uniform_int_distribution <random>
uniform_real_distribution <random>
uninitialized_copy <memory>
uninitialized_fill <memory>
unique <algorithm>
unique_copy <algorithm>
unique_ptr <memory>
unitbuf <iostream>
unordered_map <unordered_map>
unordered_multimap <unordered_map>
unordered_multiset <unordered_set>
unordered_set <unordered_set>
upper_bound <algorithm>
uppercase <iostream>
vector <vector>
weak_ptr <memory>

A.2 A Brief Tour of the Algorithms
The library defines more than 100 algorithms. Learning to use these algorithms
effectively requires understanding their structure rather than memorizing the de-
tails of each algorithm. Accordingly, in Chapter 10 we concentrated on describing
and understanding that architecture. In this section we’ll briefly describe every
algorithm. In the following descriptions,

• beg and end are iterators that denote a range of elements (§ 9.2.1, p. 331).
Almost all of the algorithms operate on a sequence denoted by beg and end.

• beg2 is an iterator denoting the beginning of a second input sequence. If
present, end2 denotes the end of the second sequence. When there is no
end2, the sequence denoted by beg2 is assumed to be as large as the input
sequence denoted by beg and end. The types of beg and beg2 need not
match. However, it must be possible to apply the specified operation or given
callable object to elements in the two sequences.

• dest is an iterator denoting a destination. The destination sequence must be
able to hold as many elements as necessary given the input sequence.

• unaryPred and binaryPred are unary and binary predicates (§ 10.3.1,
p. 386) that return a type that can be used as a condition and take one and
two arguments, respectively, that are elements in the input range.
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• comp is a binary predicate that meets the ordering requirements for key in
an associative container (§ 11.2.2, p. 425).

• unaryOp and binaryOp are callable objects (§ 10.3.2, p. 388) that can be
called with one and two arguments from the input range, respectively.

A.2.1 Algorithms to Find an Object
These algorithms search an input range for a specific value or sequence of values.

Each algorithm provides two overloaded versions. The first version uses equal-
ity (==) operator of the underlying type to compare elements; the second version
compares elements using the user-supplied unaryPred or binaryPred.

Simple Find Algorithms

These algorithms look for specific values and require input iterators.

find(beg, end, val)
find_if(beg, end, unaryPred)
find_if_not(beg, end, unaryPred)
count(beg, end, val)
count_if(beg, end, unaryPred)
find returns an iterator to the first element in the input range equal to val.
find_if returns an iterator to the first element for which unaryPred succeeds;
find_if_not returns an iterator to the first element for which unaryPred is
false. All three return end if no such element exists.
count returns a count of how many times val occurs; count_if counts elements
for which unaryPred succeeds.

all_of(beg, end, unaryPred)
any_of(beg, end, unaryPred)
none_of(beg, end, unaryPred)
Returns a bool indicating whether the unaryPred succeeded for all of the ele-
ments, any element, or no element respectively. If the sequence is empty, any_of
returns false; all_of and none_of return true.

Algorithms to Find One of Many Values

These algorithms require forward iterators. They look for a repeated elements in
the input sequence.

adjacent_find(beg, end)
adjacent_find(beg, end, binaryPred)
Returns an iterator to the first adjacent pair of duplicate elements. Returns end if
there are no adjacent duplicate elements.

search_n(beg, end, count, val)
search_n(beg, end, count, val, binaryPred)
Returns an iterator to the beginning of a subsequence of count equal elements.
Returns end if no such subsequence exists.
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Algorithms to Find Subsequences

With the exception of find_first_of, these algorithms require two pairs of for-
ward iterators. find_first_of uses input iterators to denote its first sequence
and forward iterators for its second. These algorithms search for subsequences
rather than for a single element.

search(beg1, end1, beg2, end2)
search(beg1, end1, beg2, end2, binaryPred)
Returns an iterator to the first position in the input range at which the second range
occurs as a subsequence. Returns end1 if the subsequence is not found.

find_first_of(beg1, end1, beg2, end2)
find_first_of(beg1, end1, beg2, end2, binaryPred)
Returns an iterator to the first occurrence in the first range of any element from the
second range. Returns end1 if no match is found.

find_end(beg1, end1, beg2, end2)
find_end(beg1, end1, beg2, end2, binaryPred)
Like search, but returns an iterator to the last position in the input range at which
the second range occurs as a subsequence. Returns end1 if the second subsequence
is empty or is not found.

A.2.2 Other Read-Only Algorithms
These algorithms require input iterators for their first two arguments.

The equal and mismatch algorithms also take an additional input iterator
that denotes the start of a second range. They also provide two overloaded ver-
sions. The first version uses equality (==) operator of the underlying type to
compare elements; the second version compares elements using the user-supplied
unaryPred or binaryPred.

for_each(beg, end, unaryOp)
Applies the callable object (§ 10.3.2, p. 388) unaryOp to each element in its input
range. The return value from unaryOp (if any) is ignored. If the iterators allow
writing to elements through the dereference operator, then unaryOp may modify
the elements.

mismatch(beg1, end1, beg2)
mismatch(beg1, end1, beg2, binaryPred)
Compares the elements in two sequences. Returns a pair (§ 11.2.3, p. 426) of
iterators denoting the first elements in each sequence that do not match. If all the
elements match, then the pair returned is end1, and an iterator into beg2 offset
by the size of the first sequence.

equal(beg1, end1, beg2)
equal(beg1, end1, beg2, binaryPred)
Determines whether two sequences are equal. Returns true if each element in the
input range equals the corresponding element in the sequence that begins at beg2.
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A.2.3 Binary Search Algorithms
These algorithms require forward iterators but are optimized so that they execute
much more quickly if they are called with random-access iterators. Technically
speaking, regardless of the iterator type, these algorithms execute a logarithmic
number of comparisons. However, when used with forward iterators, they must
make a linear number of iterator operations to move among the elements in the
sequence.

These algorithms require that the elements in the input sequence are already
in order. These algorithms behave similarly to the associative container mem-
bers of the same name (§ 11.3.5, p. 438). The equal_range, lower_bound, and
upper_bound algorithms return iterators that refer to positions in the sequence
at which the given element can be inserted while still preserving the sequence’s
ordering. If the element is larger than any other in the sequence, then the iterator
that is returned might be the off-the-end iterator.

Each algorithm provides two versions: The first uses the element type’s less-
than operator (<) to test elements; the second uses the given comparison operation.
In the following algorithms, “x is less than y” means x < y or that comp(x, y)
succeeds.

lower_bound(beg, end, val)
lower_bound(beg, end, val, comp)
Returns an iterator denoting the first element such that val is not less than that
element, or end if no such element exists.

upper_bound(beg, end, val)
upper_bound(beg, end, val, comp)
Returns an iterator denoting the first element such that is val is less than that
element, or end if no such element exists.

equal_range(beg, end, val)
equal_range(beg, end, val, comp)
Returns a pair (§ 11.2.3, p. 426) in which the first member is the iterator that
would be returned by lower_bound, and second is the iterator upper_bound
would return.

binary_search(beg, end, val)
binary_search(beg, end, val, comp)
Returns a bool indicating whether the sequence contains an element that is equal
to val. Two values x and y are considered equal if x is not less than y and y is not
less than x.

A.2.4 Algorithms That Write Container Elements
Many algorithms write new values to the elements in the given sequence. These
algorithms can be distinguished from one another both by the kinds of iterators
they use to denote their input sequence and by whether they write elements in the
input range or write to a given destination.
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Algorithms That Write but Do Not Read Elements

These algorithms require an output iterator that denotes a destination. The _n
versions take a second argument that specifies a count and write the given number
of elements to the destination.

fill(beg, end, val)
fill_n(dest, cnt, val)
generate(beg, end, Gen)
generate_n(dest, cnt, Gen)
Assigns a new value to each element in the input sequence. fill assigns the value
val; generate executes the generator object Gen(). A generator is a callable
object (§ 10.3.2, p. 388) that is expected to produce a different return value each
time it is called. fill and generate return void. The _n versions return an
iterator that refers to the position immediately following the last element written
to the output sequence.

Write Algorithms with Input Iterators

Each of these algorithms reads an input sequence and writes to an output se-
quence. They require dest to be an output iterator, and the iterators denoting
the input range must be input iterators.

copy(beg, end, dest)
copy_if(beg, end, dest, unaryPred)
copy_n(beg, n, dest)
Copies from the input range to the sequence denoted by dest. copy copies all ele-
ments, copy_if copies those for which unaryPred succeeds, and copy_n copies
the first n elements. The input sequence must have at least n elements.

move(beg, end, dest)
Calls std::move (§ 13.6.1, p. 533) on each element in the input sequence to move
that element to the sequence beginning at iterator dest.

transform(beg, end, dest, unaryOp)
transform(beg, end, beg2, dest, binaryOp)
Calls the given operation and writes the result of that operation to dest. The first
version applies a unary operation to each element in the input range. The second
applies a binary operation to elements from the two input sequences.

replace_copy(beg, end, dest, old_val, new_val)
replace_copy_if(beg, end, dest, unaryPred, new_val)
Copies each element to dest, replacing the specified elements with new_val. The
first version replaces those elements that are == old_val. The second version
replaces those elements for which unaryPred succeeds.

merge(beg1, end1, beg2, end2, dest)
merge(beg1, end1, beg2, end2, dest, comp)
Both input sequences must be sorted. Writes a merged sequence to dest. The first
version compares elements using the < operator; the second version uses the given
comparison operation.
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Write Algorithms with Forward Iterators

These algorithms require forward iterators because they write to elements in their
input sequence. The iterators must give write access to the elements.

iter_swap(iter1, iter2)
swap_ranges(beg1, end1, beg2)
Swaps the element denoted by iter1 with the one denoted by iter2; or swaps
all of the elements in the input range with those in the second sequence beginning
at beg2. The ranges must not overlap. iter_swap returns void; swap_ranges
returns beg2 incremented to denote the element just after the last one swapped.

replace(beg, end, old_val, new_val)
replace_if(beg, end, unaryPred, new_val)
Replaces each matching element with new_val. The first version uses == to com-
pare elements with old_val; the second version replaces those elements for which
unaryPred succeeds.

Write Algorithms with Bidirectional Iterators

These algorithms require the ability to go backward in the sequence, so they re-
quire bidirectional iterators.

copy_backward(beg, end, dest)
move_backward(beg, end, dest)
Copies or moves elements from the input range to the given destination. Unlike
other algorithms, dest is the off-the-end iterator for the output sequence (i.e., the
destination sequence will end immediately before dest). The last element in the
input range is copied or moved to the last element in the destination, then the
second-to-last element is copied/moved, and so on. Elements in the destination
have the same order as those in the input range. If the range is empty, the return
value is dest; otherwise, the return denotes the element that was copied or moved
from *beg.

inplace_merge(beg, mid, end)
inplace_merge(beg, mid, end, comp)
Merges two sorted subsequences from the same sequence into a single, ordered
sequence. The subsequences from beg to mid and from mid to end are merged
and written back into the original sequence. The first version uses < to compare
elements; the second version uses a given comparison operation. Returns void.

A.2.5 Partitioning and Sorting Algorithms
The sorting and partitioning algorithms provide various strategies for ordering the
elements of a sequence.

Each of the sorting and partitioning algorithms provides stable and unstable
versions (§ 10.3.1, p. 387). A stable algorithm maintains the relative order of equal
elements. The stable algorithms do more work and so may run more slowly and
use more memory than the unstable counterparts.
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Partitioning Algorithms

A partitiondivides elements in the input range into two groups. The first group
consists of those elements that satisfy the specified predicate; the second, those that
do not. For example, we can partition elements in a sequence based on whether
the elements are odd, or on whether a word begins with a capital letter, and so
forth. These algorithms require bidirectional iterators.

is_partitioned(beg, end, unaryPred)
Returns true if all the elements for which unaryPred succeeds precede those for
which unaryPred is false. Also returns true if the sequence is empty.

partition_copy(beg, end, dest1, dest2, unaryPred)
Copies elements for which unaryPred succeeds to dest1 and copies those for
which unaryPred fails to dest2. Returns a pair (§ 11.2.3, p. 426) of iterators.
The first member denotes the end of the elements copied to dest1, and the
second denotes the end of the elements copied to dest2. The input sequence
may not overlap either of the destination sequences.

partition_point(beg, end, unaryPred)
The input sequence must be partitioned by unaryPred. Returns an iterator one
past the subrange for which unaryPred succeeds. If the returned iterator is not
end, then unaryPredmust be false for the returned iterator and for all elements
that follow that point.

stable_partition(beg, end, unaryPred)
partition(beg, end, unaryPred)
Uses unaryPred to partition the input sequence. Elements for which unaryPred
succeeds are put at the beginning of the sequence; those for which the predicate
is false are at the end. Returns an iterator just past the last element for which
unaryPred succeeds, or beg if there are no such elements.

Sorting Algorithms

These algorithms require random-access iterators. Each of the sorting algorithms
provides two overloaded versions. One version uses the element’s operator < to
compare elements; the other takes an extra parameter that specifies an ordering
relation (§ 11.2.2, p. 425). partial_sort_copy returns an iterator into the desti-
nation; the other sorting algorithms return void.

The partial_sort and nth_element algorithms do only part of the job of
sorting the sequence. They are often used to solve problems that might otherwise
be handled by sorting the entire sequence. Because these algorithms do less work,
they typically are faster than sorting the entire input range.

sort(beg, end)
stable_sort(beg, end)
sort(beg, end, comp)
stable_sort(beg, end, comp)
Sorts the entire range.
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is_sorted(beg, end)
is_sorted(beg, end, comp)
is_sorted_until(beg, end)
is_sorted_until(beg, end, comp)
is_sorted returns a bool indicating whether the entire input sequence is sorted.
is_sorted_until finds the longest initial sorted subsequence in the input and
returns an iterator just after the last element of that subsequence.

partial_sort(beg, mid, end)
partial_sort(beg, mid, end, comp)
Sorts a number of elements equal to mid – beg. That is, if mid – beg is equal
to 42, then this function puts the lowest-valued elements in sorted order in the
first 42 positions in the sequence. After partial_sort completes, the elements
in the range from beg up to but not including mid are sorted. No element in the
sorted range is larger than any element in the range after mid. The order among
the unsorted elements is unspecified.

partial_sort_copy(beg, end, destBeg, destEnd)
partial_sort_copy(beg, end, destBeg, destEnd, comp)
Sorts elements from the input range and puts as much of the sorted sequence as
fits into the sequence denoted by the iterators destBeg and destEnd. If the des-
tination range is the same size or has more elements than the input range, then the
entire input range is sorted and stored starting at destBeg. If the destination size
is smaller, then only as many sorted elements as will fit are copied.

Returns an iterator into the destination that refers just past the last element that
was sorted. The returned iterator will be destEnd if that destination sequence is
smaller than or equal in size to the input range.

nth_element(beg, nth, end)
nth_element(beg, nth, end, comp)
The argument nth must be an iterator positioned on an element in the input se-
quence. After nth_element, the element denoted by that iterator has the value
that would be there if the entire sequence were sorted. The elements in the se-
quence are partitioned around nth: Those before nth are all smaller than or equal
to the value denoted by nth, and the ones after it are greater than or equal to it.

A.2.6 General Reordering Operations
Several algorithms reorder the elements of the input sequence. The first two,
remove and unique, reorder the sequence so that the elements in the first part
of the sequence meet some criteria. They return an iterator marking the end of
this subsequence. Others, such as reverse, rotate, and random_shuffle, re-
arrange the entire sequence.

The base versions of these algorithms operate “in place”; they rearrange the
elements in the input sequence itself. Three of the reordering algorithms offer
“copying” versions. These _copy versions perform the same reordering but write
the reordered elements to a specified destination sequence rather than changing
the input sequence. These algorithms require output iterator for the destination.
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Reordering Algorithms Using Forward Iterators

These algorithms reorder the input sequence. They require that the iterators be at
least forward iterators.

remove(beg, end, val)
remove_if(beg, end, unaryPred)
remove_copy(beg, end, dest, val)
remove_copy_if(beg, end, dest, unaryPred)
“Removes” elements from the sequence by overwriting them with elements that
are to be kept. The removed elements are those that are == val or for which
unaryPred succeeds. Returns an iterator just past the last element that was not
removed.

unique(beg, end)
unique(beg, end, binaryPred)
unique_copy(beg, end, dest)
unique_copy_if(beg, end, dest, binaryPred)
Reorders the sequence so that adjacent duplicate elements are “removed” by over-
writing them. Returns an iterator just past the last unique element. The first ver-
sion uses == to determine whether two elements are the same; the second version
uses the predicate to test adjacent elements.

rotate(beg, mid, end)
rotate_copy(beg, mid, end, dest)
Rotates the elements around the element denoted by mid. The element at mid
becomes the first element; elements from mid + 1 up to but not including end
come next, followed by the range from beg up to but not including mid. Returns
an iterator denoting the element that was originally at beg.

Reordering Algorithms Using Bidirectional Iterators

Because these algorithms process the input sequence backward, they require bidi-
rectional iterators.

reverse(beg, end)
reverse_copy(beg, end, dest)
Reverses the elements in the sequence. reverse returns void; reverse_copy
returns an iterator just past the element copied to the destination.

Reordering Algorithms Using Random-Access Iterators

Because these algorithms rearrange the elements in a random order, they require
random-access iterators.

random_shuffle(beg, end)
random_shuffle(beg, end, rand)
shuffle(beg, end, Uniform_rand)
Shuffles the elements in the input sequence. The second version takes a callable
that must take a positive integer value and produce a uniformly distributed ran-
dom integer in the exclusive range from 0 to the given value. The third argument
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to shuffle must meet the requirements of a uniform random number generator
(§ 17.4, p. 745). All three versions return void.

A.2.7 Permutation Algorithms
The permutation algorithms generate lexicographical permutations of a sequence.
These algorithms reorder a permutation to produce the (lexicographically) next or
previous permutation of the given sequence. They return a bool that indicates
whether there was a next or previous permutation.

To understand what is meant by next or previous permutaion, consider the fol-
lowing sequence of three characters: abc. There are six possible permutations on
this sequence: abc, acb, bac, bca, cab, and cba. These permutations are listed
in lexicographical order based on the less-than operator. That is, abc is the first
permutation because its first element is less than or equal to the first element in
every other permutation, and its second element is smaller than any permutation
sharing the same first element. Similarly, acb is the next permutation because it
begins with a, which is smaller than the first element in any remaining permuta-
tion. Permutations that begin with b come before those that begin with c.

For any given permutation, we can say which permutation comes before it and
which after it, assuming a particular ordering between individual elements. Given
the permutation bca, we can say that its previous permutation is bac and that its
next permutation is cab. There is no previous permutation of the sequence abc,
nor is there a next permutation of cba.

These algorithms assume that the elements in the sequence are unique. That is,
the algorithms assume that no two elements in the sequence have the same value.

To produce the permutation, the sequence must be processed both forward and
backward, thus requiring bidirectional iterators.

is_permutation(beg1, end1, beg2)
is_permutation(beg1, end1, beg2, binaryPred)
Returns true if there is a permutation of the second sequence with the same num-
ber of elements as are in the first sequence and for which the elements in the per-
mutation and in the input sequence are equal. The first version compares elements
using ==; the second uses the given binaryPred.

next_permutation(beg, end)
next_permutation(beg, end, comp)
If the sequence is already in its last permutation, then next_permutation re-
orders the sequence to be the lowest permutation and returns false. Otherwise,
it transforms the input sequence into the lexicographically next ordered sequence,
and returns true. The first version uses the element’s < operator to compare ele-
ments; the second version uses the given comparison operation.

prev_permutation(beg, end)
prev_permutation(beg, end, comp)
Like next_permutation, but transforms the sequence to form the previous per-
mutation. If this is the smallest permutation, then it reorders the sequence to be
the largest permutation and returns false.
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A.2.8 Set Algorithms for Sorted Sequences
The set algorithms implement general set operations on a sequence that is in sorted
order. These algorithms are distinct from the library set container and should not
be confused with operations on sets. Instead, these algorithms provide setlike be-
havior on an ordinary sequential container (vector, list, etc.) or other sequence,
such as an input stream.

These algorithms process elements sequentially, requiring input iterators. With
the exception of includes, they also take an output iterator denoting a destina-
tion. These algorithms return their dest iterator incremented to denote the ele-
ment just after the last one that was written to dest.

Each algorithm is overloaded. The first version uses the < operator for the
element type. The second uses a given comparison operation.

includes(beg, end, beg2, end2)
includes(beg, end, beg2, end2, comp)
Returns true if every element in the second sequence is contained in the input
sequence. Returns false otherwise.

set_union(beg, end, beg2, end2, dest)
set_union(beg, end, beg2, end2, dest, comp)
Creates a sorted sequence of the elements that are in either sequence. Elements that
are in both sequences occur in the output sequence only once. Stores the sequence
in dest.

set_intersection(beg, end, beg2, end2, dest)
set_intersection(beg, end, beg2, end2, dest, comp)
Creates a sorted sequence of elements present in both sequences. Stores the se-
quence in dest.

set_difference(beg, end, beg2, end2, dest)
set_difference(beg, end, beg2, end2, dest, comp)
Creates a sorted sequence of elements present in the first sequence but not in the
second.

set_symmetric_difference(beg, end, beg2, end2, dest)
set_symmetric_difference(beg, end, beg2, end2, dest, comp)
Creates a sorted sequence of elements present in either sequence but not in both.

A.2.9 Minimum and Maximum Values
These algorithms use either the < operator for the element type or the given com-
parison operation. The algorithms in the first group operate on values rather than
sequences. The algorithms in the second set take a sequence that is denoted by
input iterators.

min(val1, val2)
min(val1, val2, comp)
min(init_list)
min(init_list, comp)
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max(val1, val2)
max(val1, val2, comp)
max(init_list)
max(init_list, comp)
Returns the minimum/maximum of val1 and val2 or the minimum/maximum
value in the initializer_list. The arguments must have exactly the same
type as each other. Arguments and the return type are both references to const,
meaning that objects are not copied.

minmax(val1, val2)
minmax(val1, val2, comp)
minmax(init_list)
minmax(init_list, comp)
Returns a pair (§ 11.2.3, p. 426) where the first member is the smaller of the
supplied values and the second is the larger. The initializer_list version
returns a pair in which the first member is the smallest value in the list and the
second member is the largest.

min_element(beg, end)
min_element(beg, end, comp)
max_element(beg, end)
max_element(beg, end, comp)
minmax_element(beg, end)
minmax_element(beg, end, comp)
min_element and max_element return iterators referring to the smallest and
largest element in the input sequence, respectively. minmax_element returns a
pair whose first member is the smallest element and whose second member
is the largest.

Lexicographical Comparison

This algorithm compares two sequences based on the first unequal pair of ele-
ments. Uses either the < operator for the element type or the given comparison
operation. Both sequences are denoted by input iterators.

lexicographical_compare(beg1, end1, beg2, end2)
lexicographical_compare(beg1, end1, beg2, end2, comp)
Returns true if the first sequence is lexicographically less than the second. Other-
wise, returns false. If one sequence is shorter than the other and all its elements
match the corresponding elements in the longer sequence, then the shorter se-
quence is lexicographically smaller. If the sequences are the same size and the cor-
responding elements match, then neither is lexicographically less than the other.

A.2.10 Numeric Algorithms
The numeric algorithms are defined in the numeric header. These algorithms
require input iterators; if the algorithm writes output, it uses an output iterator
for the destination.
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accumulate(beg, end, init)
accumulate(beg, end, init, binaryOp)
Returns the sum of all the values in the input range. The summation starts with
the initial value specified by init. The return type is the same type as the type
of init. The first version applies the + operator for the element type; the second
version applies the specified binary operation.

inner_product(beg1, end1, beg2, init)
inner_product(beg1, end1, beg2, init, binOp1, binOp2)
Returns the sum of the elements generated as the product of two sequences. The
two sequences are processed in tandem, and the elements from each sequence are
multiplied. The product of that multiplication is summed. The initial value of the
sum is specified by init. The type of init determines the return type.

The first version uses the element’s multiplication (*) and addition (+) oper-
ators. The second version applies the specified binary operations, using the first
operation in place of addition and the second in place of multiplication.

partial_sum(beg, end, dest)
partial_sum(beg, end, dest, binaryOp)
Writes a new sequence to dest in which the value of each new element repre-
sents the sum of all the previous elements up to and including its position within
the input range. The first version uses the + operator for the element type; the
second version applies the specified binary operation. Returns the dest iterator
incremented to refer just past the last element written.

adjacent_difference(beg, end, dest)
adjacent_difference(beg, end, dest, binaryOp)
Writes a new sequence to dest in which the value of each new element other than
the first represents the difference between the current and previous elements. The
first version uses the element type’s - operation; the second version applies the
specified binary operation.

iota(beg, end, val)
Assigns val to the first element and increments val. Assigns the incremented
value to the next element, and again increments val, and assigns the incremented
value to the next element in the sequence. Continues incrementing val and as-
signing its new value to successive elements in the input sequence.

A.3 Random Numbers
The library defines a collection of random number engine classes and adaptors
that use differing mathematical approaches to generating pseudorandom num-
bers. The library also defines a collection of distribution templates that provide
numbers according to various probability distributions. Both the engines and the
distributions have names that correspond to their mathematical properties.

The specifics of how these classes generate numbers is well beyond the scope
of this Primer. In this section, we’ll list the engine and distribution types, but the
reader will need to consult other resources to learn how to use these types.
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A.3.1 Random Number Distributions
With the exception of the bernouilli_distribution, which always generates
type bool, the distribution types are templates. Each of these templates takes a
single type parameter that names the result type that the distribution will generate.

The distribution classes differ from other class templates we’ve used in that
the distribution types place restrictions on the types we can specify for the tem-
plate type. Some distribution templates can be used to generate only floating-point
numbers; others can be used to generate only integers.

In the following descriptions, we indicate whether a distribution generates
floating-point numbers by specifying the type as template_name<RealT>. For these
templates, we can use float, double, or long double in place of RealT. Simi-
larly, IntT requires one of the built-in integral types, not including bool or any of
the char types. The types that can be used in place of IntT are short, int, long,
long long, unsigned short, unsigned int, unsigned long, or unsigned
long long.

The distribution templates define a default template type parameter (§ 17.4.2,
p. 750). The default for the integral distributions is int; the default for the classes
that generate floating-point numbers is double.

The constructors for each distribution has parameters that are specific to the
kind of distribution. Some of these parameters specify the range of the distribu-
tion. These ranges are always inclusive, unlike iterator ranges.

Uniform Distributions

uniform_int_distribution<IntT> u(m, n);
uniform_real_distribution<RealT> u(x, y);
Generates values of the specified type in the given inclusive range. m (or x) is the
smallest number that can be returned; n (or y) is the largest. m defaults to 0; n
defaults to the maximum value that can be represented in an object of type IntT.
x defaults to 0.0 and y defaults to 1.0.

Bernoulli Distributions

bernoulli_distribution b(p);
Yields true with given probability p; p defaults to 0.5.

binomial_distribution<IntT> b(t, p);
Distribution computed for a sample size that is the integral value t, with probabil-
ity p; t defaults to 1 and p defaults to 0.5.

geometric_distribution<IntT> g(p);
Per-trial probability of success p; p defaults to 0.5.

negative_binomial_distribution<IntT> nb(k, p);
Integral value k trials with probability of success p; k defaults to 1 and p to 0.5.

Poisson Distributions

poisson_distribution<IntT> p(x);
Distribution around double mean x.
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exponential_distribution<RealT> e(lam);
Floating-point valued lambda lam; lam defaults to 1.0.

gamma_distribution<RealT> g(a, b);
With alpha (shape) a and beta (scale) b; both default to 1.0.

weibull_distribution<RealT> w(a, b);
With shape a and scale b; both default to 1.0.

extreme_value_distribution<RealT> e(a, b);
a defaults to 0.0 and b defaults to 1.0.

Normal Distributions

normal_distribution<RealT> n(m, s);
Mean m and standard deviation s; m defaults to 0.0, s to 1.0.

lognormal_distribution<RealT> ln(m, s);
Mean m and standard deviation s; m defaults to 0.0, s to 1.0.

chi_squared_distribution<RealT> c(x);
x degrees of freedom; defaults to 1.0.

cauchy_distribution<RealT> c(a, b);
Location a and scale b default to 0.0 and 1.0, respectively.

fisher_f_distribution<RealT> f(m, n);
m and n degrees of freedom; both default to 1.

student_t_distribution<RealT> s(n);
n degrees of freedom; n defaults to 1.

Sampling Distributions

discrete_distribution<IntT> d(i, j);
discrete_distribution<IntT> d{il};
i and j are input iterators to a sequence of weights; il is a braced list of weights.
The weights must be convertible to double.

piecewise_constant_distribution<RealT> pc(b, e, w);
b, e, and w are input iterators.

piecewise_linear_distribution<RealT> pl(b, e, w);
b, e, and w are input iterators.

A.3.2 Random Number Engines
The library defines three classes that implement different algorithms for gener-
ating random numbers. The library also defines three adaptors that modify the
sequences produced by a given engine. The engine and engine adaptor classes
are templates. Unlike the parameters to the distributions, the parameters to these
engines are complex and require detailed understanding of the math used by the
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particular engine. We list the engines here so that the reader is aware of their ex-
istence, but describing how to generate these types is beyond the scope of this
Primer.

The library also defines several types that are built from the engines or adap-
tors. The default_random_engine type is a type alias for one of the engine
types parameterized by variables designed to yield good performance for casual
use. The library also defines several classes that are fully specialized versions of an
engine or adaptor. The engines and the specializations defined by the library are:

default_random_engine
Type alias for one of the other engines intended to be used for most purposes.

linear_congruential_engine
minstd_rand0Has a multiplier of 16807, a modulus of 2147483647, and an incre-
ment of 0.
minstd_rand Has a multiplier of 48271, a modulus of 2147483647, and an incre-
ment of 0.

mersenne_twister_engine
mt19937 32-bit unsigned Mersenne twister generator.
mt19937_64 64-bit unsigned Mersenne twister generator.

subtract_with_carry_engine
ranlux24_base 32-bit unsigned subtract with carry generator.
ranlux48_base 64-bit unsigned subtract with carry generator.

discard_block_engine
Engine adaptor that discards results from its underlying engine. Parameterized by
the underlying engine to use the block size, and size of the used blocks.
ranlux24 Uses the ranlux24_base engine with a block size of 223 and a used
block size of 23.
ranlux48 Uses the ranlux48_base engine with a block size of 389 and a used
block size of 11.

independent_bits_engine
Engine adaptor that generates numbers with a specified number of bits. Parame-
terized by the underlying engine to use, the number of bits to generate in its results,
and an unsigned integral type to use to hold the generated bits. The number of bits
specified must be less than the number of digits that the specified unsigned type
can hold.

shuffle_order_engine
Engine adaptor that returns the same numbers as its underlying engine but deliv-
ers them in a different sequence. Parameterized by the underlying engine to use
and the number of elements to shuffle.
knuth_b Uses the minstd_rand0 engine with a table size of 256.
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What’s new in C++11
= default, 265, 506
= delete, 507
allocator,construct forwards to any

constructor, 482
array container, 327
auto, 68

for type abbreviation, 88, 129
not with dynamic array, 478
with dynamic object, 459

begin function, 118
bind function, 397
bitset enhancements, 726
constexpr

constructor, 299
function, 239
variable, 66

container
cbegin and cend, 109, 334
emplace members, 345
insert return type, 344
nonmember swap, 339
of container, 97, 329
shrink_to_fit, 357

decltype, 70
function return type, 250

delegating constructor, 291
deleted copy-control, 624
division rounding, 141
end function, 118
enumeration

controlling representation, 834
forward declaration, 834
scoped, 832

explicit conversion operator, 582
explicit instantiation, 675
final class, 600

format control for floating-point, 757
forward function, 694
forward_list container, 327
function interface to callable objects, 577
in-class initializer, 73, 274
inherited constructor, 628, 804
initializer_list, 220
inline namespace, 790
lambda expression, 388
list initialization

= (assignment), 145
container, 336, 423
dynamic array, 478
dynamic object, 459
pair, 431
return value, 226, 427
variable, 43
vector, 98

long long, 33
mem_fn function, 843
move function, 533
move avoids copies, 529
move constructor, 534
move iterator, 543
move-enabled this pointer, 546
noexcept

exception specification, 535, 779
operator, 780

nullptr, 54
random-number library, 745
range for statement, 91, 187

not with dynamic array, 477
regular expression-library, 728
rvalue reference, 532

cast from lvalue, 691
reference collapsing, 688

sizeof data member, 157
sizeof... operator, 700

887
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smart pointer, 450
shared_ptr, 450
unique_ptr, 470
weak_ptr, 473

string
numeric conversions, 367
parameter with IO types, 317

template
function template default template

argument, 670
type alias, 666
type parameter as friend, 666
variadic, 699
varidadics and forwarding, 704

trailing return type, 229
in function template, 684
in lambda expression, 396

tuple, 718
type alias declaration, 68
union member of class type, 848
unordered containers, 443
virtual function

final, 606
override, 596, 606

Symbols
... (ellipsis parameter), 222
/* */ (block comment), 9, 26
// (single-line comment), 9, 26
= default, 265, 306

copy-control members, 506
default constructor, 265

= delete, 507
copy control, 507–508
default constructor, 507
function matching, 508
move operations, 538

_ _DATE_ _ , 242
_ _FILE_ _ , 242
_ _LINE_ _ , 242
_ _TIME_ _ , 242
_ _cplusplus, 860
\0 (null character), 39
\Xnnn (hexadecimal escape sequence), 39
\n (newline character), 39
\t (tab character), 39
\nnn (octal escape sequence), 39
{ } (curly brace), 2, 26
#include, 6, 28

standard header, 6

user-defined header, 21
#define, 77, 80
#endif, 77, 80
#ifdef, 77, 80
#ifndef, 77, 80
~classname, see destructor
; (semicolon), 3

class definition, 73
null statement, 172

++ (increment), 12, 28, 147–149, 170
iterator, 107, 132
overloaded operator, 566–568
pointer, 118
precedence and associativity, 148
reverse iterator, 407
StrBlobPtr, 566

-- (decrement), 13, 28, 147–149, 170
iterator, 107
overloaded operator, 566–568
pointer, 118
precedence and associativity, 148
reverse iterator, 407, 408
StrBlobPtr, 566

* (dereference), 53, 80, 448
iterator, 107
map iterators, 429
overloaded operator, 569
pointer, 53
precedence and associativity, 148
smart pointer, 451
StrBlobPtr, 569

& (address-of), 52, 80
overloaded operator, 554

-> (arrow operator), 110, 132, 150
overloaded operator, 569
StrBlobPtr, 569

. (dot), 23, 28, 150
->* (pointer to member arrow), 837
.* (pointer to member dot), 837
[ ] (subscript), 93

array, 116, 132
array, 347
bitset, 727
deque, 347
does not add elements, 104
map, and unordered_map, 435, 448

adds element, 435
multidimensional array, 127
out-of-range index, 93
overloaded operator, 564
pointer, 121
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string, 93, 132, 347
StrVec, 565
subscript range, 95
vector, 103, 132, 347

() (call operator), 23, 28, 202, 252
absInt, 571
const member function, 573
execution flow, 203
overloaded operator, 571
PrintString, 571
ShorterString, 573
SizeComp, 573

:: (scope operator), 8, 28, 82
base-class member, 607
class type member, 88, 282
container, type members, 333
global namespace, 789, 818
member function, definition, 259
overrides name lookup, 286

= (assignment), 12, 28, 144–147
see also copy assignment
see also move assignment
associativity, 145
base from derived, 603
container, 89, 103, 337
conversion, 145, 159
derived class, 626
in condition, 146
initializer_list, 563
list initialization, 145
low precedence, 146
multiple inheritance, 805
overloaded operator, 500, 563
pointer, 55
to signed, 35
to unsigned, 35
vs. == (equality), 146
vs. initialization, 42

+= (compound assignment), 12, 28, 147
bitwise operators, 155
iterator, 111
overloaded operator, 555, 560
Sales_data, 564

exception version, 784
string, 89

+ (addition), 6, 140
iterator, 111
pointer, 119
Sales_data, 560

exception version, 784
Sales_item, 22

SmallInt, 588
string, 89

- (subtraction), 140
iterator, 111
pointer, 119

* (multiplication), 140
/ (division), 140

rounding, 141
% (modulus), 141

grading program, 176
== (equality), 18, 28

arithmetic conversion, 144
container, 88, 102, 340, 341
iterator, 106, 107
overloaded operator, 561, 562
pointer, 55, 120
Sales_data, 561
string, 88
tuple, 720
unordered container key_type, 443
used in algorithms, 377, 385, 413
vs. = (assignment), 146

!= (inequality), 28
arithmetic conversion, 144
container, 88, 102, 340, 341
iterator, 106, 107
overloaded operator, 562
pointer, 55, 120
Sales_data, 561
string, 88
tuple, 720

< (less-than), 28, 143
container, 88, 340
ordered container key_type, 425
overloaded operator, 562

strict weak ordering, 562
string, 88
tuple, 720
used in algorithms, 378, 385, 413

<= (less-than-or-equal), 12, 28, 143
container, 88, 340
string, 88

> (greater-than), 28, 143
container, 88, 340
string, 88

>= (greater-than-or-equal), 28, 143
container, 88, 340
string, 88

>> (input operator), 8, 28
as condition, 15, 86, 312
chained-input, 8
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istream, 8
istream_iterator, 403
overloaded operator, 558–559
precedence and associativity, 155
Sales_data, 558
Sales_item, 21
string, 85, 132

<< (output operator), 7, 28
bitset, 727
chained output, 7
ostream, 7
ostream_iterator, 405
overloaded operator, 557–558
precedence and associativity, 155
Query, 641
Sales_data, 557
Sales_item, 21
string, 85, 132

>> (right-shift), 153, 170
<< (left-shift), 153, 170
&& (logical AND), 94, 132, 142, 169

order of evaluation, 138
overloaded operator, 554
short-circuit evaluation, 142

|| (logical OR), 142
order of evaluation, 138
overloaded operator, 554
short-circuit evaluation, 142

& (bitwise AND), 154, 169
Query, 638, 644

! (logical NOT), 87, 132, 143, 170
|| (logical OR), 132, 170
| (bitwise OR), 154, 170

Query, 638, 644
^ (bitwise XOR), 154, 170
~ (bitwise NOT), 154, 170

Query, 638, 643
, (comma operator), 157, 169

order of evaluation, 138
overloaded operator, 554

?: (conditional operator), 151, 169
order of evaluation, 138
precdence and associativity, 151

+ (unary plus), 140
- (unary minus), 140
L’c’ (wchar_t literal), 38
ddd.dddL or ddd.dddl (long double lit-

eral), 41
numEnum or numenum (double literal),

39
numF or numf (float literal), 41

numL or numl (long literal), 41
numLL or numll (long long literal), 41
numU or numu (unsigned literal), 41
class member:constant expression, see bit-

field

A
absInt, 571

() (call operator), 571
abstract base class, 610, 649

BinaryQuery, 643
Disc_quote, 610
Query_base, 636

abstract data type, 254, 305
access control, 611–616

class derivation list, 596
default inheritance access, 616
default member access, 268
derived class, 613
derived-to-base conversion, 613
design, 614
inherited members, 612
local class, 853
nested class, 844
private, 268
protected, 595, 611
public, 268
using declaration, 615

access specifier, 268, 305
accessible, 611, 649

derived-to-base conversion, 613
Account, 301
accumulate, 379, 882

bookstore program, 406
Action, 839
adaptor, 372

back_inserter, 402
container, 368, 368–371
front_inserter, 402
inserter, 402
make_move_iterator, 543

add, Sales_data, 261
add_item, Basket, 633
add_to_Folder, Message, 522
address, 33, 78
adjacent_difference, 882
adjacent_find, 871
advice

always initialize a pointer, 54
avoid casts, 165
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avoid undefined behavior, 36
choosing a built-in type, 34
define small utility functions, 277
define variables near first use, 48
don’t create unnecessary regex ob-

jects, 733
forwarding parameter pattern, 706
keep lambda captures simple, 394
managing iterators, 331, 354
prefix vs. postfix operators, 148
rule of five, 541
use move sparingly, 544
use constructor initializer lists, 289
when to use overloading, 233
writing compound expressions, 139

aggregate class, 298, 305
initialization, 298

algorithm header, 376
algorithms, 376, 418

see also Appendix A
architecture
_copy versions, 383, 414
_if versions, 414
naming convention, 413–414
operate on iterators not contain-

ers, 378
overloading pattern, 414
parameter pattern, 412–413
read-only, 379–380
reorder elements, 383–385, 414
write elements, 380–383

associative container and, 430
bind as argument, 397
can’t change container size, 385
element type requirements, 377
function object arguments, 572
istream_iterator, 404
iterator category, 410–412
iterator range, 376
lambda as argument, 391, 396
library function object, 575
ostream_iterator, 404
sort comparison, requires strict weak

ordering, 425
supplying comparison operation, 386,

413
function, 386
lambda, 389, 390

two input ranges, 413
type independence, 377
use element’s == (equality), 385, 413

use element’s < (less-than), 385, 413
accumulate, 379

bookstore program, 406
copy, 382
count, 378
equal_range, 722
equal, 380
fill_n, 381
fill, 380
find_if, 388, 397, 414
find, 376
for_each, 391
replace_copy, 383
replace, 383
set_intersection, 647
sort, 384
stable_sort, 387
transform, 396
unique, 384

alias declaration
namespace, 792, 817
template type, 666
type, 68

all_of, 871
alloc_n_copy, StrVec, 527
allocate, allocator, 481
allocator, 481, 481–483, 491, 524–531

allocate, 481, 527
compared to operator new, 823

construct, 482
forwards to constructor, 527

deallocate, 483, 528
compared to operator delete,

823
destroy, 482, 528

alternative operator name, 46
alternative_sum, program, 682
ambiguous

conversion, 583–589
multiple inheritance, 806

function call, 234, 245, 251
multiple inheritance, 808

overloaded operator, 588
AndQuery, 637

class definition, 644
eval function, 646

anonymous union, 848, 862
any, bitset, 726
any_of, 871
app (file mode), 319
append, string, 362

https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2
https://www.limoonad.com/category/25/%D8%A2%D9%85%D9%88%D8%B2%D8%B4-c++?utm_source=blog&utm_medium=30187&utm_campaign=cat-c%2B%2B&afid=2


ptg11539634

892 Index

argc, 219
argument, 23, 26, 202, 251

array, 214–219
buffer overflow, 215
to pointer conversion, 214

C-style string, 216
conversion, function matching, 234
default, 236
forwarding, 704
initializes parameter, 203
iterator, 216
low-level const, 213
main function, 218
multidimensional array, 218
nonreference parameter, 209
pass by reference, 210, 252
pass by value, 209, 252

uses copy constructor, 498
uses move constructor, 539, 541

passing, 208–212
pointer, 214
reference parameter, 210, 214
reference to const, 211
top-level const, 212

argument list, 202
argument-dependent lookup, 797

move and forward, 798
argv, 219
arithmetic

conversion, 35, 159, 168
in equality and relational opera-

tors, 144
integral promotion, 160, 169
signed to unsigned, 34
to bool, 162

operators, 139
compound assignment (e.g.,+=), 147
function object, 574
overloaded, 560

type, 32, 78
machine-dependent, 32

arithmetic (addition and subtraction)
iterators, 111, 131
pointers, 119, 132

array, 113–130
[ ] (subscript), 116, 132
argument and parameter, 214–219
argument conversion, 214
auto returns pointer, 117
begin function, 118
compound type, 113

conversion to pointer, 117, 161
function arguments, 214
template argument deduction, 679

decltype returns array type, 118
definition, 113
dimension, constant expression, 113
dynamically allocated, 476, 476–484
allocator, 481
can’t use begin and end, 477
can’t use range for statement, 477
delete[], 478
empty array, 478
new[], 477
shared_ptr, 480
unique_ptr, 479

elements and destructor, 502
end function, 118
initialization, 114
initializer of vector, 125
multidimensional, 125–130
no copy or assign, 114
of char initialization, 114
parameter

buffer overflow, 215
converted to pointer, 215
function template, 654
pointer to, 218
reference to, 217

return type, 204
trailing, 229
type alias, 229
decltype, 230

sizeof, 157
subscript range, 116
subscript type, 116
understanding complicated declara-

tions, 115
array

see also container
see also sequential container
[ ] (subscript), 347
= (assignment), 337
assign, 338
copy initialization, 337
default initialization, 336
definition, 336
header, 329
initialization, 334–337
list initialization, 337
overview, 327
random-access iterator, 412
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swap, 339
assert preprocessor macro, 241, 251
assign

array, 338
invalidates iterator, 338
sequential container, 338
string, 362

assignment, vs. initialization, 42, 288
assignment operators, 144–147
associative array, see map
associative container, 420, 447

and library algorithms, 430
initialization, 423, 424
key_type requirements, 425, 445
members
begin, 430
count, 437, 438
emplace, 432
end, 430
equal_range, 439
erase, 434
find, 437, 438
insert, 432
key_type, 428, 447
mapped_type, 428, 448
value_type, 428, 448

override default comparison, 425
override default hash, 446
overview, 423

associativity, 134, 136–137, 168
= (assignment), 145
?: (conditional operator), 151
dot and dereference, 150
increment and dereference, 148
IO operator, 155
overloaded operator, 553

at
deque, 348
map, 435
string, 348
unordered_map, 435
vector, 348

ate (file mode), 319
auto, 68, 78

cbegin, 109, 379
cend, 109, 379
for type abbreviation, 88, 129
of array, 117
of reference, 69
pointer to function, 249
with new, 459

auto_ptr deprecated, 471
automatic object, 205, 251

see also local variable
see also parameter
and destructor, 502

avg_price, Sales_data, 259

B
back

queue, 371
sequential container, 346
StrBlob, 457

back_inserter, 382, 402, 417
requires push_back, 382, 402

bad, 313
bad_alloc, 197, 460
bad_cast, 197, 826
bad_typeid, 828
badbit, 312
base, reverse iterator, 409
base class, 592, 649

see also virtual function
abstract, 610, 649
base-to-derived conversion, not au-

tomatic, 602
can be a derived class, 600
definition, 594
derived-to-base conversion, 597

accessibility, 613
key concepts, 604
multiple inheritance, 805

final, 600
friendship not inherited, 614
initialized or assigned from derived,

603
member hidden by derived, 619
member new and delete, 822
multiple, see multiple inheritance
must be complete type, 600
protected member, 611
scope, 617

inheritance, 617–621
multiple inheritance, 807
virtual function, 620

static members, 599
user of, 614
virtual, see virtual base class
virtual destructor, 622

Basket, 631
add_item, 633
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total, 632
Bear, 803

virtual base class, 812
before_begin, forward_list, 351
begin

associative container, 430
container, 106, 131, 333, 372
function, 118, 131

not with dynamic array, 477
multidimensional array, 129
StrBlob, 475
StrVec, 526

bernoulli_distribution, 752
best match, 234, 251

see also function matching
bidirectional iterator, 412, 417
biggies program, 391
binary (file mode), 319
binary operators, 134, 168

overloaded operator, 552
binary predicate, 386, 417
binary_function deprecated, 579
binary_search, 873
BinaryQuery, 637

abstract base class, 643
bind, 397, 417

check_size, 398
generates callable object, 397

from pointer to member, 843
placeholders, 399
reference parameter, 400

bind1st deprecated, 401
bind2nd deprecated, 401
binops desk calculator, 577
bit-field, 854, 862

access to, 855
constant expression, 854

bitset, 723, 723–728, 769
[ ] (subscript), 727
<< (output operator), 727
any, 726
count, 727
flip, 727
grading program, 728
header, 723
initialization, 723–725

from string, 724
from unsigned, 723

none, 726
reset, 727
set, 727

test, 727
to_ulong, 727

bitwise, bitset, operators, 725
bitwise operators, 152–156

+= (compound assignment), 155
compound assignment (e.g.,+=), 147
grading program, 154
operand requirements, 152

Blob
class template, 659
constructor, 662
initializer_list, 662
iterator parameters, 673

instantiation, 660
member functions, 661–662

block, 2, 12, 26, 173, 199
function, 204
scope, 48, 80, 173
try, 193, 194, 200, 818

block (/* */), comment, 9, 26
book from author program, 438–440
bookstore program

Sales_data, 255
using algorithms, 406

Sales_item, 24
bool, 32

conversion, 35
literal, 41

in condition, 143
boolalpha, manipulator, 754
brace, curly, 2, 26
braced list, see list initialization
break statement, 190, 199

in switch, 179–181
bucket management, unordered container,

444
buffer, 7, 26

flushing, 314
buffer overflow, 105, 116, 131

array parameter, 215
C-style string, 123

buildMap program, 442
built-in type, 2, 26, 32–34

default initialization, 43
Bulk_quote

class definition, 596
constructor, 598, 610
derived from Disc_quote, 610
design, 592
synthesized copy control, 623

byte, 33, 78
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C
.C file, 4
.cc file, 4
.cpp file, 4
.cp file, 4
C library header, 91
C-style cast, 164
C-style string, 114, 122, 122–123, 131

buffer overflow, 123
initialization, 122
parameter, 216
string, 124

c_str, 124
call by reference, 208, 210, 251
call by value, 209, 251

uses copy constructor, 498
uses move constructor, 539

call signature, 576, 590
callable object, 388, 417, 571–572

absInt, 571
bind, 397
call signature, 576
function and function pointers, 388
function objects, 572
pointer to member

and bind, 843
and function, 842
and mem_fn, 843
not callable, 842

PrintString, 571
ShorterString, 573
SizeComp, 573
with function, 576–579
with algorithms, 390

candidate function, 243, 251
see also function matching
function template, 695
namespace, 800
overloaded operator, 587

capacity
string, 356
StrVec, 526
vector, 356

capture list, see lambda expression
case label, 179, 179–182, 199

default, 181
constant expression, 179

case sensitive, string, 365
cassert header, 241
cast, see also named cast, 168

checked, see dynamic_cast
old-style, 164
to rvalue reference, 691

catch, 193, 195, 199, 775, 816
catch(...), 777, 816
exception declaration, 195, 200, 775,

816
exception object, 775
matching, 776
ordering of, 776
runtime_error, 195

catch all (catch(...)), 777, 816
caution

ambiguous conversion operator, 581
conversions to unsigned, 37
dynamic memory pitfalls, 462
exception safety, 196
IO buffers, 315
overflow, 140
overloaded operator misuse, 555
overloaded operators and conversion

operators, 586
smart pointer, pitfalls, 469
uninitialized variables, 45
using directives cause pollution, 795

cbegin
auto, 109, 379
decltype, 109, 379
container, 109, 333, 334, 372

cctype
functions, 91–93
header, 91

cend
auto, 109, 379
decltype, 109, 379
container, 109, 333, 334, 372

cerr, 6, 26
chained input, 8
chained output, 7
char, 32

signed, 34
unsigned, 34
array initialization, 114
literal, 39
representation, 34

char16_t, 33
char32_t, 33
character

newline (\n), 39
nonprintable, 39, 79
null (\0), 39
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tab (\t), 39
character string literal, see string literal
check

StrBlob, 457
StrBlobPtr, 474

check_size, 398
bind, 398

checked cast, see dynamic_cast
children’s story program, 383–391
chk_n_alloc, StrVec, 526
cin, 6, 26

tied to cout, 315
cl, 5
class, 19, 26, 72, 305

see also constructor
see also destructor
see also member function
see also static member
access specifier, 268

default, 268
private, 268, 306
public, 268, 306

aggregate, 298, 305
assignment operator

see copy assignment
see move assignment

base, see base class, 649
data member, 73, 78
const vs. mutable, 274
const, initialization, 289
in-class initializer, 274
initialization, 263, 274
must be complete type, 279
mutable, 274, 306
order of destruction, 502
order of initialization, 289
pointer, not deleted, 503
reference, initialization, 289
sizeof, 157

declaration, 278, 305
default inheritance specifier, 616
definition, 72, 256–267

ends with semicolon, 73
derived, see derived class, 649
exception, 193, 200
final specifier, 600
forward declaration, 279, 306
friend, 269, 280

class, 280
function, 269
member function, 280

overloaded function, 281
scope, 270, 281
template class or function, 664

implementation, 254
interface, 254
literal, 299
local, see local class
member, 73, 78
member access, 282
member new and delete, 822
member:constant expression, see bit-

field
multiple base classes, see multiple in-

heritance
name lookup, 284
nested, see nested class
pointer to member, see pointer to mem-

ber
preventing copies, 507
scope, 73, 282, 282–287, 305
synthesized, copy control, 267, 497,

500, 503, 537
template member, see member tem-

plate
type member, 271
:: (scope operator), 282

user of, 255
valuelike, 512
without move constructor, 540

class
compared to typename, 654
default access specifier, 268
default inheritance specifier, 616
template parameter, 654

class derivation list, 596
access control, 612
default access specifier, 616
direct base class, 600
indirect base class, 600
multiple inheritance, 803
virtual base class, 812

class template, 96, 131, 658, 659, 658–667,
713

see also template parameter
see also instantiation
Blob, 659
declaration, 669
default template argument, 671
definition, 659
error detection, 657
explicit instantiation, 675, 675–676
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explicit template argument, 660
friend, 664

all instantiations, 665
declaration dependencies, 665
same instantiation, 664
specific instantiation, 665

instantiation, 660
member function

defined outside class body, 661
instantiation, 663

member template, see member tem-
plate

specialization, 707, 709–712, 714
hash<key_type>, 709, 788
member, 711
namespace, 788
partial, 711, 714

static member, 667
accessed through an instantiation,

667
definition, 667

template argument, 660
template parameter, used in defini-

tion, 660
type parameter as friend, 666
type-dependent code, 658

class type, 19, 26
conversion, 162, 305, 590

ambiguities, 587
conversion operator, 579
converting constructor, 294
impact on function matching, 584
overloaded function, 586
with standard conversion, 581

default initialization, 44
initialization, 73, 84, 262
union member of, 848
variable vs. function declaration, 294

clear
sequential container, 350
stream, 313

clog, 6, 26
close, file stream, 318
cmatch, 733
cmath header, 751, 757
collapsing rule, reference, 688
combine, Sales_data, 259
comma (,) operator, 157
comment, 9, 26

block (/* */), 9, 26
single-line (//), 9, 26

compare
default template argument, 670
function template, 652

default template argument, 670
explicit template argument, 683
specialization, 706
string literal version, 654
template argument deduction, 680

string, 366
compareIsbn

and associative container, 426
Sales_data, 387

compilation
common errors, 16
compiler options, 207
conditional, 240
declaration vs. definition, 44
mixing C and C++, 860
needed when class changes, 270
templates, 656

error detection, 657
explicit instantiation, 675–676

compiler
extension, 114, 131
GNU, 5
Microsoft, 5
options for separate compilation, 207

composition vs. inheritance, 637
compound assignment (e.g.,+=)

arithmetic operators, 147
bitwise operators, 147

compound expression, see expression
compound statement, 173, 199
compound type, 50, 50–58, 78

array, 113
declaration style, 57
understanding complicated declara-

tions, 115
concatenation

string, 89
string literal, 39

condition, 12, 26
= (assignment) in, 146
conversion, 159
do while statement, 189
for statement, 13, 185
if statement, 18, 175
in IO expression, 156
logical operators, 141
smart pointer as, 451
stream type as, 15, 162, 312
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while statement, 12, 183
condition state, IO classes, 312, 324
conditional compilation, 240
conditional operator (?:), 151
connection, 468
console window, 6
const, 59, 78

and typedef, 68
conversion, 162

template argument deduction, 679
dynamically allocated

destruction, 461
initialization, 460

initialization, 59
class type object, 262

low-level const, 64
argument and parameter, 213
conversion from, 163
conversion to, 162
overloaded function, 232
template argument deduction, 693

member function, 258, 305
() (call operator), 573
not constructors, 262
overloaded function, 276
reference return, 276

parameter, 212
function matching, 246
overloaded function, 232

pointer, 63, 78
pointer to, 62, 79

conversion from nonconst, 162
initialization from nonconst, 62
overloaded parameter, 232

reference, see reference to const
top-level const, 64

and auto, 69
argument and parameter, 212
decltype, 71
parameter, 232
template argument deduction, 679

variable, 59
declared in header files, 76
extern, 60
local to file, 60

const_cast, 163, 163
const_iterator, container, 108, 332
const_reference, container, 333
const_reverse_iterator, container,

332, 407
constant expression, 65, 78

array dimension, 113
bit-field, 854
case label, 179
enumerator, 833
integral, 65
nontype template parameter, 655
sizeof, 156
static data member, 303

constexpr, 66, 78
constructor, 299
declared in header files, 76
function, 239, 251

nonconstant return value, 239
function template, 655
pointer, 67
variable, 66

construct
allocator, 482
forwards to constructor, 527

constructor, 262, 264, 262–266, 305
see also default constructor
see also copy constructor
see also move constructor
calls to virtual function, 627
constexpr, 299
converting, 294, 305

function matching, 585
Sales_data, 295
with standard conversion, 580

default argument, 290
delegating, 291, 306
derived class, 598

initializes direct base class, 610
initializes virtual base, 813

explicit, 296, 306
function try block, 778, 817
inherited, 628
initializer list, 265, 288–292, 305

class member initialization, 274
compared to assignment, 288
derived class, 598
function try block, 778, 817
sometimes required, 288
virtual base class, 814

initializer_listparameter, 662
not const, 262
order of initialization, 289

derived class object, 598, 623
multiple inheritance, 804
virtual base classes, 814

overloaded, 262
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StrBlob, 456
StrBlobPtr, 474
TextQuery, 488
Blob, 662
initializer_list, 662
iterator parmeters, 673

Bulk_quote, 598, 610
Disc_quote, 609
Sales_data, 264–266

container, 96, 131, 326, 372
see also sequential container
see also associative container
adaptor, 368, 368–371

equality and relational operators,
370

initialization, 369
requirements on container, 369

and inheritance, 630
as element type, 97, 329
associative, 420, 447
copy initialization, 334
element type constraints, 329, 341
elements and destructor, 502
elements are copies, 342
initialization from iterator range, 335
list initialization, 336
members

see also iterator
= (assignment), 337
== (equality), 341
!= (inequality), 341
begin, 106, 333, 372
cbegin, 109, 333, 334, 372
cend, 109, 333, 334, 372
const_iterator, 108, 332
const_reference, 333
const_reverse_iterator, 332,

407
crbegin, 333
crend, 333
difference_type, 131, 332
empty, 87, 102, 131, 340
end, 106, 131, 333, 373
equality and relational operators,

88, 102, 340
iterator, 108, 332
rbegin, 333, 407
reference, 333
relational operators, 341
rend, 333, 407
reverse_iterator, 332, 407

size, 88, 102, 132, 340
size_type, 88, 102, 132, 332
swap, 339

move operations, 529
moved-from object is valid but un-

specified, 537
nonmember swap, 339
of container, 97, 329
overview, 328
sequential, 326, 373
type members, :: (scope operator),

333
continue statement, 191, 199
control, flow of, 11, 172, 200
conversion, 78, 159, 168

= (assignment), 145, 159
ambiguous, 583–589
argument, 203
arithmetic, 35, 159, 168
array to pointer, 117

argument, 214
exception object, 774
multidimensional array, 128
template argument deduction, 679

base-to-derived, not automatic, 602
bool, 35
class type, 162, 294, 305, 590

ambiguities, 587
conversion operator, 579
function matching, 584, 586
with standard conversion, 581

condition, 159
derived-to-base, 597, 649

accessibility, 613
key concepts, 604
shared_ptr, 630

floating-point, 35
function to pointer, 248

exception object, 774
template argument deduction, 679

integral promotion, 160, 169
istream, 162
multiple inheritance, 805

ambiguous, 806
narrowing, 43
operand, 159
pointer to bool, 162
rank, 245
return value, 223
Sales_data, 295
signed type, 160
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signed to unsigned, 34
to const, 162

from pointer to nonconst, 62
from reference to nonconst, 61
template argument deduction, 679

unscoped enumeration to integer, 834
unsigned, 36
virtual base class, 812

conversion operator, 580, 580–587, 590
design, 581
explicit, 582, 590
bool, 583

function matching, 585, 586
SmallInt, 580
used implicitly, 580
with standard conversion, 580

converting constructor, 294, 305
function matching, 585
with standard conversion, 580

_copy algorithms, 383, 414
copy, 382, 874
copy and swap assignment, 518

move assignment, 540
self-assignment, 519

copy assignment, 500–501, 549
= default, 506
= delete, 507
base from derived, 603
copy and swap, 518, 549
derived class, 626
HasPtr

reference counted, 516
valuelike, 512

memberwise, 500
Message, 523
preventing copies, 507
private, 509
reference count, 514
rule of three/five, 505

virtual destructor exception, 622
self-assignment, 512
StrVec, 528
synthesized, 500, 550

deleted function, 508, 624
derived class, 623
multiple inheritance, 805

union with class type member, 852
valuelike class, 512

copy constructor, 496, 496–499, 549
= default, 506
= delete, 507

base from derived, 603
derived class, 626
HasPtr

reference counted, 515
valuelike, 512

memberwise, 497
Message, 522
parameter, 496
preventing copies, 507
private, 509
reference count, 514
rule of three/five, 505

virtual destructor exception, 622
StrVec, 528
synthesized, 497, 550

deleted function, 508, 624
derived class, 623
multiple inheritance, 805

union with class type member, 851
used for copy-initialization, 498

copy control, 267, 496, 549
= delete, 507–508
inheritance, 623–629
memberwise, 267, 550

copy assignment, 500
copy constructor, 497
move assignment, 538
move constructor, 538

multiple inheritance, 805
synthesized, 267

as deleted function, 508
as deleted in derived class, 624
move operations as deleted func-

tion, 538
unions, 849
virtual base class, synthesized, 815

copy initialization, 84, 131, 497, 497–499,
549

array, 337
container, 334
container elements, 342
explicit constructor, 498
invalid for arrays, 114
move vs. copy, 539
parameter and return value, 498
uses copy constructor, 497
uses move constructor, 541

copy_backward, 875
copy_if, 874
copy_n, 874
copyUnion, Token, 851
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count
algorithm, 378, 871
associative container, 437, 438
bitset, 727

count_calls, program, 206
count_if, 871
cout, 6, 26

tied to cin, 315
cplusplus_primer, namespace, 787
crbegin, container, 333
cref, binds reference parameter, 400, 417
cregex_iterator, 733, 769
crend, container, 333
cstddef header, 116, 120
cstdio header, 762
cstdlib header, 54, 227, 778, 823
cstring

functions, 122–123
header, 122

csub_match, 733, 769
ctime header, 749
curly brace, 2, 26

D
dangling else, 177, 199
dangling pointer, 225, 463, 491

undefined behavior, 463
data abstraction, 254, 306
data hiding, 270
data member, see class data member
data structure, 19, 26
deallocate, allocator, 483, 528
debug_rep program

additional nontemplate versions, 698
general template version, 695
nontemplate version, 697
pointer template version, 696

DebugDelete, member template, 673
dec, manipulator, 754
decimal, literal, 38
declaration, 45, 78

class, 278, 305
class template, 669
class type, variable, 294
compound type, 57
dependencies

member function as friend, 281
overloaded templates, 698
template friends, 665
template instantiation, 657

template specializations, 708
variadic templates, 702

derived class, 600
explicit instantiation, 675
friend, 269
function template, 669
instantiation, 713
member template, 673
template, 669
template specialization, 708
type alias, 68
using, 82, 132

access control, 615
overloaded inherited functions, 621

variable, 45
const, 60

declarator, 50, 79
decltype, 70, 79

array return type, 230
cbegin, 109, 379
cend, 109, 379
depends on form, 71
for type abbreviation, 88, 106, 129
of array, 118
of function, 250
pointer to function, 249
top-level const, 71
yields lvalue, 71, 135

decrement operators, 147–149
default argument, 236, 251

adding default arguments, 237
and header file, 238
constructor, 290
default constructor, 291
function call, 236
function matching, 243
initializer, 238
static member, 304
virtual function, 607

default case label, 181, 199
default constructor, 263, 306

= default, 265
= delete, 507
default argument, 291
Sales_data, 262
StrVec, 526
synthesized, 263, 306

deleted function, 508, 624
derived class, 623

Token, 850
used implicitly
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default initialization, 293
value initialization, 293

default initialization, 43
array, 336
built-in type, 43
class type, 44
string, 44, 84
uses default constructor, 293
vector, 97

default template argument, 670
class template, 671
compare, 670
function template, 670
template<>, 671

default_random_engine, 745, 769
defaultfloat manipulator, 757
definition, 79

array, 113
associative container, 423
base class, 594
class, 72, 256–267
class template, 659

member function, 661
static member, 667

class template partial specialization,
711

derived class, 596
dynamically allocated object, 459
explicit instantiation, 675
function, 577
in if condition, 175
in while condition, 183
instantiation, 713
member function, 256–260
multidimensional array, 126
namespace, 785

can be discontiguous, 786
member, 788

overloaded operator, 500, 552
pair, 426
pointer, 52
pointer to function, 247
pointer to member, 836
reference, 51
sequential container, 334
shared_ptr, 450
static member, 302
string, 84
template specialization, 706–712
unique_ptr, 470, 472
variable, 41, 45

const, 60
variable after case label, 182
vector, 97
weak_ptr, 473

delegating constructor, 291, 306
delete, 460, 460–463, 491

const object, 461
execution flow, 820
memory leak, 462
null pointer, 461
pointer, 460
runs destructor, 502

delete[], dynamically allocated array,
478

deleted function, 507, 549
deleter, 469, 491

shared_ptr, 469, 480, 491
unique_ptr, 472, 491

deprecated, 401
auto_ptr, 471
binary_function, 579
bind1st, 401
bind2nd, 401
generalized exception specification,

780
ptr_fun, 401
unary_function, 579

deque, 372
see also container, container member
see also sequential container
[ ] (subscript), 347
at, 348
header, 329
initialization, 334–337
list initialization, 336
overview, 327
push_back, invalidates iterator, 354
push_front, invalidates iterator, 354
random-access iterator, 412
value initialization, 336

deref, StrBlobPtr, 475
derived class, 592, 649

see also virtual function
:: (scope operator) to access base-

class member, 607
= (assignment), 626
access control, 613
as base class, 600
assgined or copied to base object, 603
base-to-derived conversion, not au-

tomatic, 602
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constructor, 598
initializer list, 598
initializes direct base class, 610
initializes virtual base, 813

copy assignment, 626
copy constructor, 626
declaration, 600
default derivation specifier, 616
definition, 596
derivation list, 596, 649

access control, 612
derived object

contains base part, 597
multiple inheritance, 803

derived-to-base conversion, 597
accessibility, 613
key concepts, 604
multiple inheritance, 805

destructor, 627
direct base class, 600, 649
final, 600
friendship not inherited, 615
indirect base class, 600, 650
is user of base class, 614
member new and delete, 822
move assignment, 626
move constructor, 626
multiple inheritance, 803
name lookup, 617
order of destruction, 627

multiple inheritance, 805
order of initialization, 598, 623

multiple inheritance, 804
virtual base classes, 814

scope, 617
hidden base members, 619
inheritance, 617–621
multiple inheritance, 807
name lookup, 618
virtual function, 620

static members, 599
synthesized

copy control members, 623
deleted copy control members, 624

using declaration
access control, 615
overloaded inherited functions, 621

virtual function, 596
derived-to-base conversion, 597, 649

accessible, 613
key concepts, 604

multiple inheritance, 805
not base-to-derived, 602
shared_ptr, 630

design
access control, 614
Bulk_quote, 592
conversion operator, 581
Disc_quote, 608
equality and relational operators, 562
generic programs, 655
inheritance, 637
Message class, 520
namespace, 786
overloaded operator, 554–556
Query classes, 636–639
Quote, 592
reference count, 514
StrVec, 525

destination sequence, 381, 413
destroy, allocator, 482, 528
destructor, 452, 491, 501, 501–503, 549

= default, 506
called during exception handling, 773
calls to virtual function, 627
container elements, 502
derived class, 627
doesn’t delete pointer mambers, 503
explicit call to, 824
HasPtr

reference counted, 515
valuelike, 512

local variables, 502
Message, 522
not deleted function, 508
not private, 509
order of destruction, 502

derived class, 627
multiple inheritance, 805
virtual base classes, 815

reference count, 514
rule of three/five, 505

virtual destructor, exception, 622
run by delete, 502
shared_ptr, 453
should not throw exception, 774
StrVec, 528
synthesized, 503, 550

deleted function, 508, 624
derived class, 623
multiple inheritance, 805

Token, 850
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valuelike class, 512
virtual function, 622
virtual in base class, 622

development environment, integrated, 3
difference_type, 112

vector, 112
container, 131, 332
string, 112

direct base class, 600
direct initialization, 84, 131

emplace members use, 345
Disc_quote

abstract base class, 610
class definition, 609
constructor, 609
design, 608

discriminant, 849, 862
Token, 850

distribution types
bernoulli_distribution, 752
default template argument, 750
normal_distribution, 751
random-number library, 745
uniform_int_distribution, 746
uniform_real_distribution, 750

divides<T>, 575
division rounding, 141
do while statement, 189, 200
domain_error, 197
double, 33

literal (numEnum or numenum), 38
output format, 755
output notation, 757

dynamic binding, 593, 650
requirements for, 603
static vs. dynamic type, 605

dynamic type, 601, 650
dynamic_cast, 163, 825, 825, 862

bad_cast, 826
to pointer, 825
to reference, 826

dynamically allocated, 450, 491
array, 476, 476–484
allocator, 481
can’t use begin and end, 477
can’t use range for statement, 477
delete[], 478
empty array, 478
new[], 477
returns pointer to an element, 477
shared_ptr, 480

unique_ptr, 479
delete runs destructor, 502
lifetime, 450
new runs constructor, 458
object, 458–463
const object, 460
delete, 460
factory program, 461
initialization, 459
make_shared, 451
new, 458
shared objects, 455, 486
shared_ptr, 464
unique_ptr, 470

E
echo command, 4
ECMAScript, 730, 739

regular expression library, 730
edit-compile-debug, 16, 26

errors at link time, 657
element type constraints, container, 329,

341
elimDups program, 383–391
ellipsis, parameter, 222
else, see if statement
emplace

associative container, 432
priority_queue, 371
queue, 371
sequential container, 345
stack, 371

emplace_back
sequential container, 345
StrVec, 704

emplace_front, sequential container, 345
empty

container, 87, 102, 131, 340
priority_queue, 371
queue, 371
stack, 371

encapsulation, 254, 306
benefits of, 270

end
associative container, 430
container, 106, 131, 333, 373
function, 118, 131
multidimensional array, 129
StrBlob, 475
StrVec, 526
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end-of-file, 15, 26, 762
character, 15

Endangered, 803
endl, 7

manipulator, 314
ends, manipulator, 315
engine, random-number library, 745, 770

default_random_engine, 745
max, min, 747
retain state, 747
seed, 748, 770

enum, unscoped enumeration, 832
enum class, scoped enumeration, 832
enumeration, 832, 863

as union discriminant, 850
function matching, 835
scoped, 832, 864
unscoped, 832, 864

conversion to integer, 834
unnamed, 832

enumerator, 832, 863
constant expression, 833
conversion to integer, 834

eof, 313
eofbit, 312
equal, 380, 872
equal virtual function, 829
equal_range

algorithm, 722, 873
associative container, 439

equal_to<T>, 575
equality operators, 141

arithmetic conversion, 144
container adaptor, 370
container member, 340
iterator, 106
overloaded operator, 561
pointer, 120
Sales_data, 561
string, 88
vector, 102

erase
associative container, 434
changes container size, 385
invalidates iterator, 349
sequential container, 349
string, 362

error, standard, 6
error_type, 732
error_msg program, 221
ERRORLEVEL, 4

escape sequence, 39, 79
hexadecimal (\Xnnn), 39
octal (\nnn), 39

eval function
AndQuery, 646
NotQuery, 647
OrQuery, 645

exception
class, 193, 200
class hierarchy, 783
deriving from, 782
Sales_data, 783

header, 197
initialization, 197
what, 195, 782

exception handling, 193–198, 772, 817
see also throw
see also catch
exception declaration, 195, 775, 816

and inheritance, 775
must be complete type, 775

exception in destructor, 773
exception object, 774, 817
finding a catch, 776
function try block, 778, 817
handler, see catch
local variables destroyed, 773
noexcept specification, 535, 779, 817
nonthrowing function, 779, 818
safe resource allocation, 467
stack unwinding, 773, 818
terminate function, 196, 200
try block, 194, 773
uncaught exception, 773
unhandled exception, 196

exception object, 774, 817
catch, 775
conversion to pointer, 774
initializes catch parameter, 775
pointer to local object, 774
rethrow, 777

exception safety, 196, 200
smart pointers, 467

exception specification
argument, 780
generalized, deprecated, 780
noexcept, 779
nonthrowing, 779
pointer to function, 779, 781
throw(), 780
violation, 779
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virtual function, 781
executable file, 5, 251
execution flow

() (call operator), 203
delete, 820
for statement, 186
new, 820
switch statement, 180
throw, 196, 773

EXIT_FAILURE, 227
EXIT_SUCCESS, 227
expansion

forward, 705
parameter pack, 702, 702–704, 714

function parameter pack, 703
template parameter pack, 703

pattern, 702
explicit

constructor, 296, 306
copy initialization, 498

conversion operator, 582, 590
conversion to bool, 583

explicit call to
destructor, 824
overloaded operator, 553
postfix operators, 568

explicit instantiation, 675, 713
explicit template argument, 660, 713

class template, 660
forward, 694
function template, 682

function pointer, 686
template argument deduction, 682

exporting C++ to C, 860
expression, 7, 27, 134, 168

callable, see callable object
constant, 65, 78
lambda, see lambda expression
operand conversion, 159
order of evaluation, 137
parenthesized, 136
precedence and associativity, 136–137
regular, see regular expression

expression statement, 172, 200
extension, compiler, 114, 131
extern

and const variables, 60
explicit instantiation, 675
variable declaration, 45

extern ’C’, see linkage directive

F
fact program, 202
factorial program, 227
factory program

new, 461
shared_ptr, 453

fail, 313
failbit, 312
failure, new, 460
file, source, 4
file extension, program, 730

version 2, 738
file marker, stream, 765
file mode, 319, 324
file redirection, 22
file static, 792, 817
file stream, see fstream
fill, 380, 874
fill_n, 381, 874
final specifier, 600

class, 600
virtual function, 607

find
algorithm, 376, 871
associative container, 437, 438
string, 364

find last word program, 408
find_char program, 211
find_first_of, 872
find_first_not_of, string, 365
find_first_of, 872

string, 365
find_if, 388, 397, 414, 871
find_if_not, 871
find_if_not_of, 871
find_last_not_of, string, 366
find_last_of, string, 366
findBook, program, 721
fixed manipulator, 757
flip

bitset, 727
program, 694

flip1, program, 692
flip2, program, 693
float, 33

literal (numF or numf), 41
floating-point, 32

conversion, 35
literal, 38
output format, 755
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output notation, 757
flow of control, 11, 172, 200
flush, manipulator, 315
Folder, see Message
for statement, 13, 27, 185, 185–187, 200

condition, 13
execution flow, 186
for header, 185
range, 91, 187, 187–189, 200

can’t add elements, 101, 188
multidimensional array, 128

for_each, 391, 872
format state, stream, 753
formatted IO, 761, 769
forward, 694

argument-dependent lookup, 798
explicit template argument, 694
pack expansion, 705
passes argument type unchanged, 694,

705
usage pattern, 706

forward declaration, class, 279, 306
forward iterator, 411, 417
forward_list

see also container
see also sequential container
before_begin, 351
forward iterator, 411
header, 329
initialization, 334–337
list initialization, 336
merge, 415
overview, 327
remove, 415
remove_if, 415
reverse, 415
splice_after, 416
unique, 415
value initialization, 336

forwarding, 692–694
passes argument type unchanged, 694
preserving type information, 692
rvalue reference parameters, 693, 705
typical implementation, 706
variadic template, 704

free, StrVec, 528
free library function, 823, 863
free store, 450, 491
friend, 269, 306

class, 280
class template type parameter, 666

declaration, 269
declaration dependencies

member function as friend, 281
template friends, 665

function, 269
inheritance, 614
member function, 280, 281
overloaded function, 281
scope, 270, 281

namespace, 799
template as, 664

front
queue, 371
sequential container, 346
StrBlob, 457

front_inserter, 402, 417
compared to inserter, 402
requires push_front, 402

fstream, 316–320
close, 318
file marker, 765
file mode, 319
header, 310, 316
initialization, 317
off_type, 766
open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768

function, 2, 27, 202, 251
see alsoreturn type
see also return value
block, 204
body, 2, 27, 202, 251
callable object, 388
candidate, 251
candidate function, 243
constexpr, 239, 251

nonconstant return value, 239
declaration, 206
declaration and header file, 207
decltype returns function type, 250
default argument, 236, 251

adding default arguments, 237
and header file, 238
initializer, 238

deleted, 507, 549
function matching, 508

exception specification
noexcept, 779
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throw(), 780
friend, 269
function to pointer conversion, 248
inline, 238, 252

and header, 240
linkage directive, 859
member, see member function
name, 2, 27
nonthrowing, 779, 818
overloaded

compared to redeclaration, 231
friend declaration, 281
scope, 234

parameter, see parameter
parameter list, 2, 27, 202, 204
prototype, 207, 251
recursive, 227

variadic template, 701
scope, 204
viable, 252
viable function, 243
virtual, see virtual function

function, 577, 576–579, 590
and pointer to member, 842
definition, 577
desk calculator, 577

function call
ambiguous, 234, 245, 251
default argument, 236
execution flow, 203
overhead, 238
through pointer to function, 248
through pointer to member, 839
to overloaded operator, 553
to overloaded postfix operator, 568

function matching, 233, 251
= delete, 508
argument, conversion, 234
candidate function, 243

overloaded operator, 587
const arguments, 246
conversion, class type, 583–587
conversion operator, 585, 586
conversion rank, 245

class type conversions, 586
default argument, 243
enumeration, 835
function template, 694–699

specialization, 708
integral promotions, 246
member function, 273

multiple parameters, 244
namespace, 800
overloaded operator, 587–589
prefers more specialized function, 695
rvalue reference, 539
variadic template, 702
viable function, 243

function object, 571, 590
argument to algorithms, 572
arithmetic operators, 574
is callable object, 571

function parameter, see parameter
function parameter pack, 700

expansion, 703
pattern, 704

function pointer, 247–250
callable object, 388
definition, 247
exception specification, 779, 781
function template instantiation, 686
overloaded function, 248
parameter, 249
return type, 204, 249

using decltype, 250
template argument deduction, 686
type alias declaration, 249
typedef, 249

function table, 577, 577, 590, 840
function template, 652, 713

see also template parameter
see also template argument deduction
see also instantiation
argument conversion, 680
array function parameters, 654
candidate function, 695
compare, 652

string literal version, 654
constexpr, 655
declaration, 669
default template argument, 670
error detection, 657
explicit instantiation, 675, 675–676
explicit template argument, 682
compare, 683

function matching, 694–699
inline function, 655
nontype parameter, 654
overloaded function, 694–699
parameter pack, 713
specialization, 707, 714
compare, 706
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function matching, 708
is an instantiation, 708
namespace, 788
scope, 708

trailing return type, 684
type-dependent code, 658

function try block, 778, 817
functional header, 397, 399, 400, 575,

577, 843

G
g++, 5
gcount, istream, 763
generate, 874
generate_n, 874
generic algorithms, see algorithms
generic programming, 108

type-independent code, 655
get

istream, 761
multi-byte version, istream, 762
returns int, istream, 762, 764

get<n>, 719, 770
getline, 87, 131

istream, 762
istringstream, 321
TextQuery constructor, 488

global function
operator delete, 863
operator new, 863

global namespace, 789, 817
:: (scope operator), 789, 818

global scope, 48, 80
global variable, lifetime, 204
GNU compiler, 5
good, 313
goto statement, 192, 200
grade clusters program, 103
greater<T>, 575
greater_equal<T>, 575

H
.h file header, 19
handler, see catch
has-a relationship, 637
hash<key_type>, 445, 447

override, 446
specialization, 709, 788

compatible with == (equality), 710

hash function, 443, 447
HasPtr

reference counted, 514–516
copy assignment, 516
destructor, 515

valuelike, 512
copy assignment, 512
move assignment, 540
move constructor, 540
swap, 516

header, 6, 27
iostream, 27
C library, 91
const and constexpr, 76
default argument, 238
function declaration, 207
.h file, 19
#include, 6, 21
inline function, 240
inlinemember function definition,

273
namespace members, 786
standard, 6
table of library names, 866
template definition, 656
template specialization, 708
user-defined, 21, 76–77, 207, 240
using declaration, 83
Sales_data.h, 76
Sales_item.h, 19
algorithm, 376
array, 329
bitset, 723
cassert, 241
cctype, 91
cmath, 751, 757
cstddef, 116, 120
cstdio, 762
cstdlib, 54, 227, 778, 823
cstring, 122
ctime, 749
deque, 329
exception, 197
forward_list, 329
fstream, 310, 316
functional, 397, 399, 400, 575, 577,

843
initializer_list, 220
iomanip, 756
iostream, 6, 310
iterator, 119, 382, 401
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list, 329
map, 420
memory, 450, 451, 481, 483
new, 197, 460, 478, 821
numeric, 376, 881
queue, 371
random, 745
regex, 728
set, 420
sstream, 310, 321
stack, 370
stdexcept, 194, 197
string, 74, 76, 84
tuple, 718
type_info, 197
type_traits, 684
typeinfo, 826, 827, 831
unordered_map, 420
unordered_set, 420
utility, 426, 530, 533, 694
vector, 96, 329

header guard, 77, 79
preprocessor, 77

heap, 450, 491
hex, manipulator, 754
hexadecimal

escape sequence (\Xnnn), 39
literal (0Xnum or 0xnum), 38

hexfloat manipulator, 757
high-order bits, 723, 770

I
i before e, program, 729

version 2, 734
IDE, 3
identifier, 46, 79

reserved, 46
_if algorithms, 414
if statement, 17, 27, 175, 175–178, 200

compared to switch, 178
condition, 18, 175
dangling else, 177
else branch, 18, 175, 200

ifstream, 311, 316–320, 324
see also istream
close, 318
file marker, 765
file mode, 319
initialization, 317
off_type, 766

open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768

ignore, istream, 763
implementation, 254, 254, 306
in (file mode), 319
in scope, 49, 79
in-class initializer, 73, 73, 79, 263, 265, 274
#include

standard header, 6, 21
user-defined header, 21

includes, 880
incomplete type, 279, 306

can’t be base class, 600
not in exception declaration, 775
restrictions on use, 279

incr, StrBlobPtr, 475
increment operators, 147–149
indentation, 19, 177
index, 94, 131

see also [ ] (subscript)
indirect base class, 600, 650
inferred return type, lambda expression,

396
inheritance, 650

and container, 630
conversions, 604
copy control, 623–629
friend, 614
hierarchy, 592, 600
interface class, 637
IO classes, 311, 324
name collisions, 618
private, 612, 650
protected, 612, 650
public, 612, 650
vs. composition, 637

inherited, constructor, 628
initialization

aggregate class, 298
array, 114
associative container, 423, 424
bitset, 723–725
C-style string, 122
class type objects, 73, 262
const
static data member, 302
class type object, 262
data member, 289
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object, 59
copy, 84, 131, 497, 497–499, 549
default, 43, 293
direct, 84, 131
dynamically allocated object, 459
exception, 197
istream_iterator, 405
list, see list initialization
lvalue reference, 532
multidimensional array, 126
new[], 477
ostream_iterator, 405
pair, 426
parameter, 203, 208
pointer, 52–54

to const, 62
queue, 369
reference, 51

data member, 289
to const, 61

return value, 224
rvalue reference, 532
sequential container, 334–337
shared_ptr, 464
stack, 369
string, 84–85, 360–361
string streams, 321
tuple, 718
unique_ptr, 470
value, 98, 132, 293
variable, 42, 43, 79
vector, 97–101
vs. assignment, 42, 288
weak_ptr, 473

initializer_list, 220, 220–222, 252
= (assignment), 563
constructor, 662
header, 220

inline function, 238, 252
and header, 240
function template, 655
member function, 257, 273

and header, 273
inline namespace, 790, 817
inner scope, 48, 79
inner_product, 882
inplace_merge, 875
input, standard, 6
input iterator, 411, 418
insert

associative container, 432

multiple key container, 433
sequential container, 343
string, 362

insert iterator, 382, 401, 402, 418
back_inserter, 402
front_inserter, 402
inserter, 402

inserter, 402, 418
compared to front_inserter, 402

instantiation, 96, 131, 653, 656, 713
Blob, 660
class template, 660

member function, 663
declaration, 713
definition, 713
error detection, 657
explicit, 675–676
function template from function pointer,

686
member template, 674
static member, 667

int, 33
literal, 38

integral
constant expression, 65
promotion, 134, 160, 169

function matching, 246
type, 32, 79

integrated development environment, 3
interface, 254, 306
internal, manipulator, 759
interval, left-inclusive, 373
invalid pointer, 52
invalid_argument, 197
invalidated iterator

and container operations, 354
undefined behavior, 353

invalidates iterator
assign, 338
erase, 349
resize, 352

IO
formatted, 761, 769
unformatted, 761, 770

IO classes
condition state, 312, 324
inheritance, 324

IO stream, see stream
iomanip header, 756
iostate, 312

machine-dependent, 313
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iostream, 5
file marker, 765
header, 6, 27, 310
off_type, 766
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768
virtual base class, 810

iota, 882
is-a relationship, 637
is_partitioned, 876
is_permutation, 879
is_sorted, 877
is_sorted_until, 877
isalnum, 92
isalpha, 92
isbn

Sales_data, 257
Sales_item, 23

ISBN, 2
isbn_mismatch, 783
iscntrl, 92
isdigit, 92
isgraph, 92
islower, 92
isprint, 92
ispunct, 92
isShorter program, 211
isspace, 92
istream, 5, 27, 311

see also manipulator
>> (input operator), 8

precedence and associativity, 155
as condition, 15
chained input, 8
condition state, 312
conversion, 162
explicit conversion to bool, 583
file marker, 765
flushing input buffer, 314
format state, 753
gcount, 763
get, 761

multi-byte version, 762
returns int, 762, 764

getline, 87, 321, 762
ignore, 763
no copy or assign, 311
off_type, 766
peek, 761

pos_type, 766
put, 761
putback, 761
random access, 765
random IO program, 766
read, 763
seek and tell, 763–768
unformatted IO, 761

multi-byte, 763
single-byte, 761

unget, 761
istream_iterator, 403, 418

>> (input operator), 403
algorithms, 404
initialization, 405
off-the-end iterator, 403
operations, 404
type requirements, 406

istringstream, 311, 321, 321–323
see also istream
word per line processing, 442
file marker, 765
getline, 321
initialization, 321
off_type, 766
phone number program, 321
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768
TextQuery constructor, 488

isupper, 92
isxdigit, 92
iter_swap, 875
iterator, 106, 106–112, 131

++ (increment), 107, 132
-- (decrement), 107
* (dereference), 107
+= (compound assignment), 111
+ (addition), 111
- (subtraction), 111
== (equality), 106, 107
!= (inequality), 106, 107
algorithm type independence, 377
arithmetic, 111, 131
compared to reverse iterator, 409
destination, 413
insert, 401, 418
move, 401, 418, 543
uninitialized_copy, 543

off-the-beginning
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before_begin, 351
forward_list, 351

off-the-end, 106, 132, 373
istream_iterator, 403

parameter, 216
regex, 734
relational operators, 111
reverse, 401, 407–409, 418
stream, 401, 403–406, 418
used as destination, 382

iterator
compared to reverse_iterator,

408
container, 108, 332
header, 119, 382, 401
set iterators are const, 429

iterator category, 410, 410–412, 418
bidirectional iterator, 412, 417
forward iterator, 411, 417
input iterator, 411, 418
output iterator, 411, 418
random-access iterator, 412, 418

iterator range, 331, 331–332, 373
algorithms, 376
as initializer of container, 335
container erase member, 349
container insert member, 344
left-inclusive, 331
off-the-end, 331

K
key concept

algorithms
and containers, 378
iterator arguments, 381

class user, 255
classes define behavior, 20
defining an assignment operator, 512
dynamic binding in C++, 605
elements are copies, 342
encapsulation, 270
headers for template code, 657
indentation, 19
inheritance and conversions, 604
isA and hasA relationships, 637
name lookup and inheritance, 619
protected members, 614
refactoring, 611
respecting base class interface, 599
specialization declarations, 708

type checking, 46
types define behavior, 3
use concise expressions, 149

key_type
associative container, 428, 447
requirements

ordered container, 425
unordered container, 445

keyword table, 47
Koenig lookup, 797

L
L’c’ (wchar_t literal), 38
label

case, 179, 199
statement, 192

labeled statement, 192, 200
lambda expression, 388, 418

arguments, 389
biggies program, 391

reference capture, 393
capture list, 388, 417

capture by reference, 393
capture by value, 390, 392
implicit capture, 394

inferred return type, 389, 396
mutable, 395
parameters, 389
passed to find_if, 390
passed to stable_sort, 389
synthesized class type, 572–574
trailing return type, 396

left, manipulator, 758
left-inclusive interval, 331, 373
length_error, 197
less<T>, 575
less_equal<T>, 575
letter grade, program, 175
lexicographical_compare, 881
library function objects, 574

as arguments to algorithms, 575
library names to header table, 866
library type, 5, 27, 82
lifetime, 204, 252

compared to scope, 204
dynamically allocated objects, 450, 461
global variable, 204
local variable, 204
parameter, 205

linkage directive, 858, 863
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C++ to C, 860
compound, 858
overloaded function, 860
parameter or return type, 859
pointer to function, 859
return type, 859
single, 858

linker, 208, 252
template errors at link time, 657

list, 373
see also container
see also sequential container
bidirectional iterator, 412
header, 329
initialization, 334–337
list initialization, 336
merge, 415
overview, 327
remove, 415
remove_if, 415
reverse, 415
splice, 416
unique, 415
value initialization, 336

list initialization, 43, 79
= (assignment), 145
array, 337
associative container, 423
container, 336
dynamically allocated, object, 459
pair, 427, 431, 527
preferred, 99
prevents narrowing, 43
return value, 226, 427, 527
sequential container, 336
vector, 98

literal, 38, 38–41, 79
bool, 41

in condition, 143
char, 39
decimal, 38
double (numEnum or numenum), 38
float (numF or numf), 41
floating-point, 38
hexadecimal (0Xnum or 0xnum), 38
int, 38
long (numL or numl), 38
long double (ddd.dddL or ddd.dddl),

41
long long (numLL or numll), 38
octal (0num), 38

string, 7, 28, 39
unsigned (numU or numu), 41
wchar_t, 40

literal type, 66
class type, 299

local class, 852, 863
access control, 853
name lookup, 853
nested class in, 854
restrictions, 852

local scope, see block scope
local static object, 205, 252
local variable, 204, 252

destroyed during exception handling,
467, 773

destructor, 502
lifetime, 204
pointer, return value, 225
reference, return value, 225
return statement, 224

lock, weak_ptr, 473
logic_error, 197
logical operators, 141, 142

condition, 141
function object, 574

logical_and<T>, 575
logical_not<T>, 575
logical_or<T>, 575
long, 33

literal (numL or numl), 38
long double, 33

literal (ddd.dddL or ddd.dddl), 41
long long, 33

literal (numLL or numll), 38
lookup, name, see name lookup
low-level const, 64, 79

argument and parameter, 213
conversion from, 163
conversion to, 162
overloaded function, 232
template argument deduction, 693

low-order bits, 723, 770
lower_bound

algorithm, 873
ordered container, 438

lround, 751
lvalue, 135, 169

cast to rvalue reference, 691
copy initialization, uses copy construc-

tor, 539
decltype, 135
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reference collapsing rule, 688
result
-> (arrow operator), 150
++ (increment) prefix, 148
-- (decrement) prefix, 148
* (dereference), 135
[ ] (subscript), 135
= (assignment), 145
, (comma operator), 158
?: (conditional operator), 151
cast, 163
decltype, 71
function reference return type, 226

variable, 533
lvalue reference, see also reference, 532, 549

collapsing rule, 688
compared to rvalue reference, 533
function matching, 539
initialization, 532
member function, 546

overloaded, 547
move, 533
template argument deduction, 687

M
machine-dependent

bit-field layout, 854
char representation, 34
end-of-file character, 15
enum representation, 835
iostate, 313
linkage directive language, 861
nonzero return from main, 227
random IO, 763
reinterpret_cast, 164
return from exception what, 198
signed out-of-range value, 35
signed types and bitwise operators,

153
size of arithmetic types, 32
terminate function, 196
type_info members, 831
vector, memory management, 355
volatile implementation, 856

main, 2, 27
not recursive, 228
parameters, 218
return type, 2
return value, 2–4, 227

make_move_iterator, 543

make_pair, 428
make_plural program, 224
make_shared, 451
make_tuple, 718
malloc library function, 823, 863
manipulator, 7, 27, 753, 770

boolalpha, 754
change format state, 753
dec, 754
defaultfloat, 757
endl, 314
ends, 315
fixed, 757
flush, 315
hex, 754
hexfloat, 757
internal, 759
left, 758
noboolalpha, 754
noshowbase, 755
noshowpoint, 758
noskipws, 760
nouppercase, 755
oct, 754
right, 758
scientific, 757
setfill, 759
setprecision, 756
setw, 758
showbase, 755
showpoint, 758
skipws, 760
unitbuf, 315
uppercase, 755

map, 420, 447
see also ordered container
* (dereference), 429
[ ] (subscript), 435, 448

adds element, 435
at, 435
definition, 423
header, 420
insert, 431
key_type requirements, 425
list initialization, 423
lower_bound, 438
map, initialization, 424
TextQuery class, 485
upper_bound, 438
word_count program, 421
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mapped_type, associative container, 428,
448

match
best, 251
no, 252

match_flag_type,regex_constants,
743

max, 881
max_element, 881
mem_fn, 843, 863

generates callable, 843
member, see class data member
member access operators, 150
member function, 23, 27, 306

as friend, 281
base member hidden by derived, 619
class template

defined outside class body, 661
instantiation, 663

const, 258, 305
() (call operator), 573
reference return, 276

declared but not defined, 509
defined outside class, 259
definition, 256–260
:: (scope operator), 259
name lookup, 285
parameter list, 282
return type, 283

explicitly inline, 273
function matching, 273
implicit this parameter, 257
implicitly inline, 257
inline and header, 273
move-enabled, 545
name lookup, 287
overloaded, 273

on const, 276
on lvalue or rvalue reference, 547

overloaded operator, 500, 552
reference qualified, 546, 550
returning *this, 260, 275
rvalue reference parameters, 544
scope, 282
template, see member template

member template, 672, 714
Blob, iterator constructor, 673
DebugDelete, 673
declaration, 673
defined outside class body, 674
instantiation, 674

template parameters, 673, 674
memberwise

copy assignment, 500
copy constructor, 497
copy control, 267, 550
destruction is implicit, 503
move assignment, 538
move constructor, 538

memory
see also dynamically allocated
exhaustion, 460
leak, 462

memory header, 450, 451, 481, 483
merge, 874

list and forward_list, 415
Message, 519–524

add_to_Folder, 522
class definition, 521
copy assignment, 523
copy constructor, 522
design, 520
destructor, 522
move assignment, 542
move constructor, 542
move_Folders, 542
remove_from_Folders, 523

method, see member function
Microsoft compiler, 5
min, 881
min_element, 881
minmax, 881
minus<T>, 575
mismatch, 872
mode, file, 324
modulus<T>, 575
move, 530, 533, 874

argument-dependent lookup, 798
binds rvalue reference to lvalue, 533
explained, 690–692
inherently dangerous, 544
Message, move operations, 541
moved from object has unspecified

value, 533
reference collapsing rule, 691
StrVec reallocate, 530
remove_reference, 691

move assignment, 536, 550
copy and swap, 540
derived class, 626
HasPtr, valuelike, 540
memberwise, 538
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Message, 542
moved-from object destructible, 537
noexcept, 535
rule of three/five, virtual destructor

exception, 622
self-assignment, 537
StrVec, 536
synthesized

deleted function, 538, 624
derived class, 623
multiple inheritance, 805
sometimes omitted, 538

move constructor, 529, 534, 534–536, 550
and copy initialization, 541
derived class, 626
HasPtr, valuelike, 540
memberwise, 538
Message, 542
moved-from object destructible, 534,

537
noexcept, 535
rule of three/five, virtual destructor

exception, 622
string, 529
StrVec, 535
synthesized

deleted function, 624
derived class, 623
multiple inheritance, 805
sometimes omitted, 538

move iterator, 401, 418, 543, 550
make_move_iterator, 543
StrVec, reallocate, 543
uninitialized_copy, 543

move operations, 531–548
function matching, 539
move, 533
noexcept, 535
rvalue references, 532
valid but unspecified, 537

move_backward, 875
move_Folders, Message, 542
multidimensional array, 125–130

[ ] (subscript), 127
argument and parameter, 218
begin, 129
conversion to pointer, 128
definition, 126
end, 129
initialization, 126
pointer, 128

range for statement and, 128
multimap, 448

see also ordered container
* (dereference), 429
definition, 423
has no subscript operator, 435
insert, 431, 433
key_type requirements, 425
list initialization, 423
lower_bound, 438
map, initialization, 424
upper_bound, 438

multiple inheritance, 802, 817
see also virtual base class
= (assignment), 805
ambiguous conversion, 806
ambiguous names, 808
avoiding ambiguities, 809
class derivation list, 803
conversion, 805
copy control, 805
name lookup, 807
object composition, 803
order of initialization, 804
scope, 807
virtual function, 807

multiplies<T>, 575
multiset, 448

see also ordered container
insert, 433
iterator, 429
key_type requirements, 425
list initialization, 423
lower_bound, 438
override comparison
Basket class, 631
using compareIsbn, 426

upper_bound, 438
used in Basket, 632

mutable
data member, 274
lambda expression, 395

N
\n (newline character), 39
name lookup, 283, 306

:: (scope operator), overrides, 286
argument-dependent lookup, 797
before type checking, 619

multiple inheritance, 809
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block scope, 48
class, 284
class member

declaration, 284
definition, 285, 287
function, 284

depends on static type, 617, 619
multiple inheritance, 806

derived class, 617
name collisions, 618

local class, 853
multiple inheritance, 807

ambiguous names, 808
namespace, 796
nested class, 846
overloaded virtual functions, 621
templates, 657
type checking, 235
virtual base class, 812

named cast, 162
const_cast, 163, 163
dynamic_cast, 163, 825
reinterpret_cast, 163, 164
static_cast, 163, 163

namespace, 7, 27, 785, 817
alias, 792, 817
argument-dependent lookup, 797
candidate function, 800
cplusplus_primer, 787
definition, 785
design, 786
discontiguous definition, 786
friend declaration scope, 799
function matching, 800
global, 789, 817
inline, 790, 817
member, 786
member definition, 788

outside namespace, 788
name lookup, 796
nested, 789
overloaded function, 800
placeholders, 399
scope, 785–790
std, 7
template specialization, 709, 788
unnamed, 791, 818

local to file, 791
replace file static, 792

namespace pollution, 785, 817
narrowing conversion, 43

NDEBUG, 241
negate<T>, 575
nested class, 843, 863

access control, 844
class defined outside enclosing class,

845
constructor, QueryResult, 845
in local class, 854
member defined outside class body,

845
name lookup, 846
QueryResult, 844
relationship to enclosing class, 844,

846
scope, 844
static member, 845

nested namespace, 789
nested type, see nested class
new, 458, 458–460, 491

execution flow, 820
failure, 460
header, 197, 460, 478, 821
initialization, 458
placement, 460, 491, 824, 863
unionwith class type member, 851

shared_ptr, 464
unique_ptr, 470
with auto, 459

new[], 477, 477–478
initialization, 477
returns pointer to an element, 477
value initialization, 478

newline (\n), character, 39
next_permutation, 879
no match, 234, 252

see also function matching
noboolalpha, manipulator, 754
NoDefault, 293
noexcept

exception specification, 779, 817
argument, 779–781
violation, 779

move operations, 535
operator, 780, 817

nonconst reference, see reference
none, bitset, 726
none_of, 871
nonportable, 36, 863
nonprintable character, 39, 79
nonthrowing function, 779, 818
nontype parameter, 654, 714
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compare, 654
must be constant expression, 655
type requirements, 655

normal_distribution, 751
noshowbase, manipulator, 755
noshowpoint, manipulator, 758
noskipws, manipulator, 760
not_equal_to<T>, 575
NotQuery, 637

class definition, 642
eval function, 647

nouppercase, manipulator, 755
nth_element, 877
NULL, 54
null (\0), character, 39
null pointer, 53, 79

delete of, 461
null statement, 172, 200
null-terminated character string, see C-style

string
nullptr, 54, 79
numeric header, 376, 881
numeric conversion, to and fromstring,

367
numeric literal

float (numF or numf), 41
long (numL or numl), 41
long double (ddd.dddL or ddd.dddl),

41
long long(numLL or numll), 41
unsigned (numU or numu), 41

O
object, 42, 79

automatic, 205, 251
dynamically allocated, 458–463
const object, 460
delete, 460
factory program, 461
initialization, 459
lifetime, 450
new, 458

lifetime, 204, 252
local static, 205, 252
order of destruction

class type object, 502
derived class object, 627
multiple inheritance, 805
virtual base classes, 815

order of initialization

class type object, 289
derived class object, 598, 623
multiple inheritance, 804
virtual base classes, 814

object code, 252
object file, 208, 252
object-oriented programming, 650
oct, manipulator, 754
octal, literal (0num), 38
octal escape sequence (\nnn), 39
off-the-beginning iterator, 351, 373

before_begin, 351
forward_list, 351

off-the-end
iterator, 106, 132, 373
iterator range, 331
pointer, 118

ofstream, 311, 316–320, 324
see also ostream
close, 318
file marker, 765
file mode, 319
initialization, 317
off_type, 766
open, 318
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768

old-style, cast, 164
open, file stream, 318
operand, 134, 169

conversion, 159
operator, 134, 169
operator alternative name, 46
operator delete

class member, 822
global function, 820, 863

operator delete[]
class member, 822
compared to deallocate, 823
global function, 820

operator new
class member, 822
global function, 820, 863

operator new[]
class member, 822
compared to allocate, 823
global function, 820

operator overloading, see overloaded op-
erator
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operators
arithmetic, 139
assignment, 12, 144–147
binary, 134, 168
bitwise, 152–156
bitset, 725

comma (,), 157
compound assignment, 12
conditional (?:), 151
decrement, 147–149
equality, 18, 141
increment, 12, 147–149
input, 8
iterator

addition and subtraction, 111
arrow, 110
dereference, 107
equality, 106, 108
increment and decrement, 107
relational, 111

logical, 141
member access, 150
noexcept, 780
output, 7
overloaded, arithmetic, 560
pointer

addition and subtraction, 119
equality, 120
increment and decrement, 118
relational, 120, 123
subscript, 121

relational, 12, 141, 143
Sales_data
+= (compound assignment), 564
+ (addition), 560
== (equality), 561
!= (inequality), 561
>> (input operator), 558
<< (output operator), 557

Sales_item, 20
scope, 82
sizeof, 156
sizeof..., 700
string

addition, 89
equality and relational, 88
IO, 85
subscript, 93–95

subscript, 116
typeid, 826, 864
unary, 134, 169

vector
equality and relational, 102
subscript, 103–105

options to main, 218
order of destruction

class type object, 502
derived class object, 627
multiple inheritance, 805
virtual base classes, 815

order of evaluation, 134, 169
&& (logical AND), 138
|| (logical OR), 138
, (comma operator), 138
?: (conditional operator), 138
expression, 137
pitfalls, 149

order of initialization
class type object, 289
derived class object, 598
multiple base classes, 816
multiple inheritance, 804
virtual base classes, 814

ordered container
see also container
see also associative container
key_type requirements, 425
lower_bound, 438
override default comparison, 425
upper_bound, 438

ordering, strict weak, 425, 448
OrQuery, 637

class definition, 644
eval function, 645

ostream, 5, 27, 311
see also manipulator
<< (output operator), 7

precedence and associativity, 155
chained output, 7
condition state, 312
explicit conversion to bool, 583
file marker, 765
floating-point notation, 757
flushing output buffer, 314
format state, 753
no copy or assign, 311
not flushed if program crashes, 315
off_type, 766
output format, floating-point, 755
pos_type, 766
precision member, 756
random access, 765
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random IO program, 766
seek and tell, 763–768
tie member, 315
virtual base class, 810
write, 763

ostream_iterator, 403, 418
<< (output operator), 405
algorithms, 404
initialization, 405
operations, 405
type requirements, 406

ostringstream, 311, 321, 321–323
see also ostream
file marker, 765
initialization, 321
off_type, 766
phone number program, 323
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768
str, 323

out (file mode), 319
out-of-range value, signed, 35
out_of_range, 197

at function, 348
out_of__stock, 783
outer scope, 48, 79
output, standard, 6
output iterator, 411, 418
overflow, 140
overflow_error, 197
overhead, function call, 238
overload resolution, see function match-

ing
overloaded function, 230, 230–235, 252

see also function matching
as friend, 281
compared to redeclaration, 231
compared to template specialization,

708
const parameters, 232
constructor, 262
function template, 694–699
linkage directive, 860
member function, 273
const, 276
move-enabled, 545
reference qualified, 547
virtual, 621

move-enabled, 545

namespace, 800
pointer to, 248
scope, 234

derived hides base, 619
using declaration, 800

in derived class, 621
using directive, 801

overloaded operator, 135, 169, 500, 550,
552, 590

++ (increment), 566–568
-- (decrement), 566–568
* (dereference), 569
StrBlobPtr, 569

& (address-of), 554
-> (arrow operator), 569
StrBlobPtr, 569

[ ] (subscript), 564
StrVec, 565

() (call operator), 571
absInt, 571
PrintString, 571

= (assignment), 500, 563
StrVec initializer_list, 563

+= (compound assignment), 555, 560
Sales_data, 564

+ (addition), Sales_data, 560
== (equality), 561
Sales_data, 561

!= (inequality), 562
Sales_data, 561

< (less-than), strict weak ordering,
562

>> (input operator), 558–559
Sales_data, 558

<< (output operator), 557–558
Sales_data, 557

&& (logical AND), 554
|| (logical OR), 554
& (bitwise AND), Query, 644
| (bitwise OR), Query, 644
~ (bitwise NOT), Query, 643
, (comma operator), 554
ambiguous, 588
arithmetic operators, 560
associativity, 553
binary operators, 552
candidate function, 587
consistency between relational and

equality operators, 562
definition, 500, 552
design, 554–556
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equality operators, 561
explicit call to, 553

postfix operators, 568
function matching, 587–589
member function, 500, 552
member vs. nonmember function,

552, 555
precedence, 553
relational operators, 562
requires class-type parameter, 552
short-circuit evaluation lost, 553
unary operators, 552

override, virtual function, 595, 650
override specifier, 593, 596, 606

P
pair, 426, 448

default initialization, 427
definition, 426
initialization, 426
list initialization, 427, 431, 527
make_pair, 428
map, * (dereference), 429
operations, 427
public data members, 427
return value, 527

Panda, 803
parameter, 202, 208, 252

array, 214–219
buffer overflow, 215
to pointer conversion, 214

C-style string, 216
const, 212
copy constructor, 496
ellipsis, 222
forwarding, 693
function pointer, linkage directive, 859
implicit this, 257
initialization, 203, 208
iterator, 216
lifetime, 205
low-level const, 213
main function, 218
multidimensional array, 218
nonreference, 209

uses copy constructor, 498
uses move constructor, 539

pass by reference, 210, 252
pass by value, 209, 252
passing, 208–212

pointer, 209, 214
pointer to const, 246
pointer to array, 218
pointer to function, 249

linkage directive, 859
reference, 210–214

to const, 213, 246
to array, 217

reference to const, 211
template, see template parameter
top-level const, 212

parameter list
function, 2, 27, 202
template, 653, 714

parameter pack, 714
expansion, 702, 702–704, 714
function template, 713
sizeof..., 700
variadic template, 699

parentheses, override precedence, 136
partial_sort, 877
partial_sort_copy, 877
partial_sum, 882
partition, 876
partition_copy, 876
partition_point, 876
pass by reference, 208, 210, 252
pass by value, 209, 252

uses copy constructor, 498
uses move constructor, 539

pattern, 702, 714
function parameter pack, 704
regular expression, phone number,

739
template parameter pack, 703

peek, istream, 761
PersonInfo, 321
phone number, regular expression

program, 738
reformat program, 742
valid, 740

pitfalls
dynamic memory, 462
order of evaluation, 149
self-assignment, 512
smart pointer, 469
using directive, 795

placeholders, 399
placement new, 460, 491, 824, 863

union, class type member, 851
plus<T>, 575
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pointer, 52, 52–58, 79
++ (increment), 118
-- (decrement), 118
* (dereference), 53
[ ] (subscript), 121
= (assignment), 55
+ (addition), 119
- (subtraction), 119
== (equality), 55, 120
!= (inequality), 55, 120
and array, 117
arithmetic, 119, 132
const, 63, 78
const pointer to const, 63
constexpr, 67
conversion

from array, 161
to bool, 162
to const, 62, 162
to void*, 161

dangling, 463, 491
declaration style, 57
definition, 52
delete, 460
derived-to-base conversion, 597

under multiple inheritance, 805
dynamic_cast, 825
implicit this, 257, 306
initialization, 52–54
invalid, 52
multidimensional array, 128
null, 53, 79
off-the-end, 118
parameter, 209, 214
relational operators, 123
return type, 204
return value, local variable, 225
smart, 450, 491
to const, 62

and typedef, 68
to array

parameter, 218
return type, 204
return type declaration, 229

to const, 79
overloaded parameter, 232, 246

to pointer, 58
typeid operator, 828
valid, 52
volatile, 856

pointer to function, 247–250

auto, 249
callable object, 388
decltype, 249
exception specification, 779, 781
explicit template argument, 686
function template instantiation, 686
linkage directive, 859
overloaded function, 248
parameter, 249
return type, 204, 249

using decltype, 250
template argument deduction, 686
trailing return type, 250
type alias, 249
typedef, 249

pointer to member, 835, 863
arrow (->*), 837
definition, 836
dot (.*), 837
function, 838

and bind, 843
and function, 842
and mem_fn, 843
not callable object, 842

function call, 839
function table, 840
precedence, 838

polymorphism, 605, 650
pop

priority_queue, 371
queue, 371
stack, 371

pop_back
sequential container, 348
StrBlob, 457

pop_front, sequential container, 348
portable, 854
precedence, 134, 136–137, 169

= (assignment), 146
?: (conditional operator), 151
assignment and relational operators,

146
dot and dereference, 150
increment and dereference, 148
of IO operator, 156
overloaded operator, 553
parentheses overrides, 136
pointer to member and call operator,

838
precedence table, 166
precision member, ostream, 756
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predicate, 386, 418
binary, 386, 417
unary, 386, 418

prefix, smatch, 736
preprocessor, 76, 79

#include, 7
assert macro, 241, 251
header guard, 77
variable, 54, 79

prev_permutation, 879
print, Sales_data, 261
print program

array parameter, 215
array reference parameter, 217
pointer and size parameters, 217
pointer parameter, 216
two pointer parameters, 216
variadic template, 701

print_total
explained, 604
program, 593

PrintString, 571
() (call operator), 571

priority_queue, 371, 373
emplace, 371
empty, 371
equality and relational operators, 370
initialization, 369
pop, 371
push, 371
sequential container, 371
size, 371
swap, 371
top, 371

private
access specifier, 268, 306
copy constructor and assignment, 509
inheritance, 612, 650

program
addition
Sales_data, 74
Sales_item, 21, 23

alternative_sum, 682
biggies, 391
binops desk calculator, 577
book from author version 1, 438
book from author version 2, 439
book from author version 3, 440
bookstore
Sales_data, 255
Sales_datausing algorithms, 406

Sales_item, 24
buildMap, 442
children’s story, 383–391
compare, 652
count_calls, 206
debug_rep

additional nontemplate versions,
698

general template version, 695
nontemplate version, 697
pointer template version, 696

elimDups, 383–391
error_msg, 221
fact, 202
factorial, 227
factory
new, 461
shared_ptr, 453

file extension, 730
version 2, 738

find last word, 408
find_char, 211
findBook, 721
flip, 694
flip1, 692
flip2, 693
grade clusters, 103
grading
bitset, 728
bitwise operators, 154

i before e, 729
version 2, 734

isShorter, 211
letter grade, 175
make_plural, 224
message handling, 519
phone number
istringstream, 321
ostringstream, 323
reformat, 742
regular expression version, 738
valid, 740

print
array parameter, 215
array reference parameter, 217
pointer and size parameters, 217
pointer parameter, 216
two pointer parameters, 216
variadic template, 701

print_total, 593
Query, 635
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class design, 636–639
random IO, 766
reset

pointer parameters, 209
reference parameters, 210

restricted word_count, 422
sum, 682
swap, 223
TextQuery, 486

design, 485
transform, 442
valid, 740
vector capacity, 357
vowel counting, 179
word_count
map, 421
unordered_map, 444

word_transform, 441
ZooAnimal, 802

promotion, see integral promotion
protected

access specifier, 595, 611, 650
inheritance, 612, 650
member, 611

ptr_fun deprecated, 401
ptrdiff_t, 120, 132
public

access specifier, 268, 306
inheritance, 612, 650

pure virtual function, 609, 650
Disc_quote, 609
Query_base, 636

push
priority_queue, 371
queue, 371
stack, 371

push_back
back_inserter, 382, 402
sequential container, 100, 132, 342

move-enabled, 545
StrVec, 527

move-enabled, 545
push_front

front_inserter, 402
sequential container, 342

put, istream, 761
putback, istream, 761

Q
Query, 638

<< (output operator), 641
& (bitwise AND), 638

definition, 644
| (bitwise OR), 638

definition, 644
~ (bitwise NOT), 638

definition, 643
classes, 636–639
definition, 640
interface class, 637
operations, 635
program, 635
recap, 640

Query_base, 636
abstract base class, 636
definition, 639
member function, 636

QueryResult, 485
class definition, 489
nested class, 844

constructor, 845
print, 490

queue, 371, 373
back, 371
emplace, 371
empty, 371
equality and relational operators, 370
front, 371
header, 371
initialization, 369
pop, 371
push, 371
sequential container, 371
size, 371
swap, 371

Quote
class definition, 594
design, 592

R
Raccoon, virtual base class, 812
raise exception, see throw
rand function, drawbacks, 745
random header, 745
random IO, 765

machine-dependent, 763
program, 766

random-access iterator, 412, 418
random-number library, 745

compared to rand function, 745
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distribution types, 745, 770
engine, 745, 770
default_random_engine, 745
max, min, 747
retain state, 747
seed, 748, 770

generator, 746, 770
range, 747

random_shuffle, 878
range for statement, 91, 132, 187, 187–

189, 200
can’t add elements, 101, 188
multidimensional array, 128
not with dynamic array, 477

range_error, 197
rbegin, container, 333, 407
rdstate, stream, 313
read

istream, 763
Sales_data, 261

reallocate, StrVec, 530
move iterator version, 543

recursion loop, 228, 252, 608
recursive function, 227, 252

variadic template, 701
ref, binds reference parameter, 400, 418
refactoring, 611, 650
reference, 50, 79

see also lvalue reference
see also rvalue reference
auto deduces referred to type, 69
collapsing rule, 688
forward, 694
lvalue arguments, 688
move, 691
rvalue reference parameters, 693

const, see reference to const
conversion

not from const, 61
to reference to const, 162

data member, initialization, 289
declaration style, 57
decltype yields reference type, 71
definition, 51
derived-to-base conversion, 597

under multiple inheritance, 805
dynamic_cast operator, 826
initialization, 51
member function, 546
parameter, 210–214
bind, 400

limitations, 214
template argument deduction, 687–

689
remove_reference, 684
return type, 224

assignment operator, 500
is lvalue, 226

return value, local variable, 225
to array parameter, 217

reference, container, 333
reference count, 452, 491, 514, 550

copy assignment, 514
copy constructor, 514
design, 514
destructor, 514
HasPtr class, 514–516

reference to const, 61, 80
argument, 211
initialization, 61
parameter, 211, 213

overloaded, 232, 246
return type, 226

regex, 728, 770
error_type, 732
header, 728
regex_error, 732, 770
syntax_option_type, 730

regex_constants, 743
match_flag_type, 743

regex_error, 732, 770
regex_match, 729, 770
regex_replace, 742, 770

format flags, 744
format string, 742

regex_search, 729, 730, 770
regular expression library, 728, 770

case sensitive, 730
compiled at run time, 732
ECMAScript, 730
file extension program, 730
i before e program, 729

version 2, 734
match data, 735–737
pattern, 729
phone number, valid, 740
phone number pattern, 739
phone number program, 738
phone number reformat, program, 742
regex iterators, 734
search functions, 729
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smatch, provides context for a match,
735

subexpression, 738
file extension program version 2,

738
types, 733
valid, program, 740

reinterpret_cast, 163, 164
machine-dependent, 164

relational operators, 141, 143
arithmetic conversion, 144
container adaptor, 370
container member, 340
function object, 574
iterator, 111
overloaded operator, 562
pointer, 120, 123
Sales_data, 563
string, 88
tuple, 720
vector, 102

release, unique_ptr, 470
remove, 878

list and forward_list, 415
remove_copy, 878
remove_copy_if, 878
remove_from_Folders, Message, 523
remove_if, 878

list and forward_list, 415
remove_pointer, 685
remove_reference, 684

move, 691
rend, container, 333, 407
replace, 383, 875

string, 362
replace_copy, 383, 874
replace_copy_if, 874
replace_if, 875
reserve

string, 356
vector, 356

reserved identifiers, 46
reset

bitset, 727
shared_ptr, 466
unique_ptr, 470

reset program
pointer parameters, 209
reference parameters, 210

resize
invalidates iterator, 352

sequential container, 352
value initialization, 352

restricted word_count program, 422
result, 134, 169

* (dereference), lvalue, 135
[ ] (subscript), lvalue, 135
, (comma operator), lvalue, 158
?: (conditional operator), lvalue, 151
cast, lvalue, 163

rethrow, 776
exception object, 777
throw, 776, 818

return statement, 222, 222–228
from main, 227
implicit return from main, 223
local variable, 224, 225

return type, 2, 27, 202, 204, 252
array, 204
array using decltype, 230
function, 204
function pointer, 249

using decltype, 250
linkage directive, 859
main, 2
member function, 283
nonreference, 224

copy initialized, 498
pointer, 204
pointer to function, 204
reference, 224
reference to const, 226
reference yields lvalue, 226
trailing, 229, 252, 396, 684
virtual function, 606
void, 223

return value
conversion, 223
copy initialized, 498
initialization, 224
list initialization, 226, 427, 527
local variable, pointer, 225
main, 2–4, 227
pair, 427, 527
reference, local variable, 225
*this, 260, 275
tuple, 721
type checking, 223
unique_ptr, 471

reverse, 878
list and forward_list, 415

reverse iterator, 401, 407–409, 418
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++ (increment), 407
-- (decrement), 407, 408
base, 409
compared to iterator, 409

reverse_copy, 414, 878
reverse_copy_if, 414
reverse_iterator

compared to iterator, 408
container, 332, 407

rfind, string, 366
right, manipulator, 758
rotate, 878
rotate_copy, 878
rule of three/five, 505, 541

virtual destructor exception, 622
run-time type identification, 825–831, 864

compared to virtual functions, 829
dynamic_cast, 825, 825
bad_cast, 826
to poiner, 825
to reference, 826

type-sensitive equality, 829
typeid, 826, 827

returns type_info, 827
runtime binding, 594, 650
runtime_error, 194, 197

initialization from string, 196
rvalue, 135, 169

copy initialization, uses move con-
structor, 539

result
++ (increment) postfix, 148
-- (decrement) postfix, 148
function nonreference return type,

224
rvalue reference, 532, 550

cast from lvalue, 691
collapsing rule, 688
compared to lvalue reference, 533
function matching, 539
initialization, 532
member function, 546

overloaded, 547
move, 533
parameter

forwarding, 693, 705
member function, 544

preserves argument type information,
693

template argument deduction, 687
variable, 533

S
Sales_data

compareIsbn, 387
+= (compound assignment), 564
+ (addition), 560
== (equality), 561
!= (inequality), 561
>> (input operator), 558
<< (output operator), 557
add, 261
addition program, 74
avg_price, 259
bookstore program, 255

using algorithms, 406
class definition, 72, 268
combine, 259
compareIsbn, 425

with associative container, 426
constructors, 264–266
converting constructor, 295
default constructor, 262
exception classes, 783
exception version
+= (compound assignment), 784
+ (addition), 784

explicit constructor, 296
isbn, 257
operations, 254
print, 261
read, 261
relational operators, 563

Sales_data.h header, 76
Sales_item, 20

+ (addition), 22
>> (input operator), 21
<< (output operator), 21
addition program, 21, 23
bookstore program, 24
isbn, 23
operations, 20

Sales_item.h header, 19
scientific manipulator, 757
scope, 48, 80

base class, 617
block, 48, 80, 173
class, 73, 282, 282–287, 305
static member, 302
compared to object lifetime, 204
derived class, 617
friend, 270, 281
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function, 204
global, 48, 80
inheritance, 617–621
member function, 282

parameters and return type, 283
multiple inheritance, 807
name collisions,using directive, 795
namespace, 785–790
nested class, 844
overloaded function, 234
statement, 174
template parameter, 668
template specialization, 708
using directive, 794
virtual function, 620

scoped enumeration, 832, 864
enum class, 832

Screen, 271
pos member, 272
concatenating operations, 275
do_display, 276
friends, 279
get, 273, 282
get_cursor, 283
Menu function table, 840
move, 841
move members, 275
set, 275

search, 872
search_n, 871
seed, random-number engine, 748
seekp, seekg, 763–768
self-assignment

copy and swap assignment, 519
copy assignment, 512
explicit check, 542
HasPtr

reference counted, 515
valuelike, 512

Message, 523
move assignment, 537
pitfalls, 512
StrVec, 528

semicolon (;), 3
class definition, 73
null statement, 172

separate compilation, 44, 80, 252
compiler options, 207
declaration vs. definition, 44
templates, 656

sequential container, 326, 373

array, 326
deque, 326
forward_list, 326
initialization, 334–337
list, 326
list initialization, 336
members
assign, 338
back, 346
clear, 350
emplace, 345
emplace_back, 345
emplace_front, 345
erase, 349
front, 346
insert, 343
pop_back, 348
pop_front, 348
push_back, 132
push_back, 100, 342, 545
push_front, 342
resize, 352
value_type, 333

performance characteristics, 327
priority_queue, 371
queue, 371
stack, 370
value initialization, 336
vector, 326

set, 420, 448
see also ordered container
bitset, 727
header, 420
insert, 431
iterator, 429
key_type requirements, 425
list initialization, 423
lower_bound, 438
TextQuery class, 485
upper_bound, 438
word_count program, 422

set_difference, 880
set_intersection, 647, 880
set_symmetric_difference, 880
set_union, 880
setfill, manipulator, 759
setprecision, manipulator, 756
setstate, stream, 313
setw, manipulator, 758
shared_ptr, 450, 450–457, 464–469, 491

* (dereference), 451
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copy and assignment, 451
definition, 450
deleter, 469, 491

bound at run time, 677
derived-to-base conversion, 630
destructor, 453
dynamically allocated array, 480
exception safety, 467
factory program, 453
initialization, 464
make_shared, 451
pitfalls, 469
reset, 466
StrBlob, 455
TextQuery class, 485
with new, 464

short, 33
short-circuit evaluation, 142, 169

&& (logical AND), 142
|| (logical OR), 142
not in overloaded operator, 553

ShorterString, 573
() (call operator), 573

shorterString, 224
showbase, manipulator, 755
showpoint, manipulator, 758
shrink_to_fit

deque, 357
string, 357
vector, 357

shuffle, 878
signed, 34, 80

char, 34
conversion to unsigned, 34, 160
out-of-range value, 35

signed type, 34
single-line (//), comment, 9, 26
size

container, 88, 102, 132, 340
priority_queue, 371
queue, 371
returns unsigned, 88
stack, 371
StrVec, 526

size_t, 116, 132, 727
array subscript, 116

size_type, container, 88, 102, 132, 332
SizeComp, 573

() (call operator), 573
sizeof, 156, 169

array, 157

data member, 157
sizeof..., parameter pack, 700
skipws, manipulator, 760
sliced, 603, 650
SmallInt

+ (addition), 588
conversion operator, 580

smart pointer, 450, 491
exception safety, 467
pitfalls, 469

smatch, 729, 733, 769, 770
prefix, 736
provide context for a match, 735
suffix, 736

sort, 384, 876
source file, 4, 27
specialization, see template specialization
splice, list, 416
splice_after, forward_list, 416
sregex_iterator, 733, 770

i before e program, 734
sstream

file marker, 765
header, 310, 321
off_type, 766
pos_type, 766
random access, 765
random IO program, 766
seek and tell, 763–768

ssub_match, 733, 736, 770
example, 740

stable_partition, 876
stable_sort, 387, 876
stack, 370, 373

emplace, 371
empty, 371
equality and relational operators, 370
header, 370
initialization, 369
pop, 371
push, 371
sequential container, 370
size, 371
swap, 371
top, 371

stack unwinding, exception handling, 773,
818

standard error, 6, 27
standard header, #include, 6, 21
standard input, 6, 27
standard library, 5, 27
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standard output, 6, 27
statement, 2, 27

block, see block
break, 190, 199
compound, 173, 199
continue, 191, 199
do while, 189, 200
expression, 172, 200
for, 13, 27, 185, 185–187, 200
goto, 192, 200
if, 17, 27, 175, 175–178, 200
labeled, 192, 200
null, 172, 200
range for, 91, 187, 187–189, 200
return, 222, 222–228
scope, 174
switch, 178, 178–182, 200
while, 11, 28, 183, 183–185, 200

statement label, 192
static (file static), 792, 817
static member

Account, 301
class template, 667

accessed through an instantiation,
667

definition, 667
const data member, initialization,

302
data member, 300

definition, 302
default argument, 304
definition, 302
inheritance, 599
instantiation, 667
member function, 301
nested class, 845
scope, 302

static object, local, 205, 252
static type, 601, 650

determines name lookup, 617, 619
multiple inheritance, 806

static type checking, 46
static_cast, 163, 163

lvalue to rvalue, 691
std, 7, 28
std::forward, see forward
std::move, see move
stdexcept header, 194, 197
stod, 368
stof, 368
stoi, 368

stol, 368
stold, 368
stoll, 368
store, free, 450, 491
stoul, 368
stoull, 368
str, string streams, 323
StrBlob, 456

back, 457
begin, 475
check, 457
constructor, 456
end, 475
front, 457
pop_back, 457
shared_ptr, 455

StrBlobPtr, 474
++ (increment), 566
-- (decrement), 566
* (dereference), 569
-> (arrow operator), 569
check, 474
constructor, 474
deref, 475
incr, 475
weak_ptr, 474

strcat, 123
strcmp, 123
strcpy, 123
stream

as condition, 15, 162, 312
clear, 313
explicit conversion to bool, 583
file marker, 765
flushing buffer, 314
format state, 753
istream_iterator, 403
iterator, 401, 403–406, 418

type requirements, 406
not flushed if program crashes, 315
ostream_iterator, 403
random IO, 765
rdstate, 313
setstate, 313

strict weak ordering, 425, 448
string, 80, 84–93, 132

see also container
see also sequential container
see also iterator
[ ] (subscript), 93, 132, 347
+= (compound assignment), 89
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+ (addition), 89
>> (input operator), 85, 132
>> (input operator) as condition, 86
<< (output operator), 85, 132
and string literal, 89–90
append, 362
assign, 362
at, 348
C-style string, 124
c_str, 124
capacity, 356
case sensitive, 365
compare, 366
concatenation, 89
default initialization, 44
difference_type, 112
equality and relational operators, 88
erase, 362
find, 364
find_first_not_of, 365
find_last_not_of, 366
find_last_of, 366
getline, 87, 321
header, 74, 76, 84
initialization, 84–85, 360–361
initialization from string literal, 84
insert, 362
move constructor, 529
numeric conversions, 367
random-access iterator, 412
replace, 362
reserve, 356
rfind, 366
subscript range, 95
substr, 361
TextQuery class, 485

string literal, 7, 28, 39
see also C-style string
and string, 89–90
concatenation, 39

stringstream, 321, 321–323, 324
initialization, 321

strlen, 122
struct

see also class
default access specifier, 268
default inheritance specifier, 616

StrVec, 525
[ ] (subscript), 565
= (assignment), initializer_list,

563

alloc_n_copy, 527
begin, 526
capacity, 526
chk_n_alloc, 526
copy assignment, 528
copy constructor, 528
default constructor, 526
design, 525
destructor, 528
emplace_back, 704
end, 526
free, 528
memory allocation strategy, 525
move assignment, 536
move constructor, 535
push_back, 527

move-enabled, 545
reallocate, 530

move iterator version, 543
size, 526

subexpression, 770
subscript range, 93

array, 116
string, 95
validating, 104
vector, 105

substr, string, 361
suffix, smatch, 736
sum, program, 682
swap, 516

array, 339
container, 339
container nonmember version, 339
copy and swap assignment operator,

518
priority_queue, 371
queue, 371
stack, 371
typical implementation, 517–518

swap program, 223
swap_ranges, 875
switch statement, 178, 178–182, 200

default case label, 181
break, 179–181, 190
compared to if, 178
execution flow, 180
variable definition, 182

syntax_option_type, regex, 730
synthesized

copy assignment, 500, 550
copy constructor, 497, 550
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copy control, 267
as deleted function, 508
as deleted in derived class, 624
Bulk_quote, 623
multiple inheritance, 805
virtual base class, 815
virtual base classes, 815
volatile, 857

default constructor, 263, 306
derived class, 623
members of built-in type, 263

destructor, 503, 550
move operations

deleted function, 538
not always defined, 538

T
\t (tab character), 39
tellp, tellg, 763–768
template

see also class template
see also function template
see also instantiation
declaration, 669
link time errors, 657
overview, 652
parameter, see template parameter
parameter list, 714
template argument, 653, 714

explicit, 660, 713
template member, see member tem-

plate
type alias, 666
type transformation templates, 684,

714
type-dependencies, 658
variadic, see variadic template

template argument deduction, 678, 714
compare, 680
explicit template argument, 682
function pointer, 686
limited conversions, 679
low-level const, 693
lvalue reference parameter, 687
multiple function parameters, 680
parameter with nontemplate type, 680
reference parameters, 687–689
rvalue reference parameter, 687
top-level const, 679

template class, see class template

template function, see function template
template parameter, 653, 714

default template argument, 670
class template, 671
function template, 671

name, 668
restrictions on use, 669

nontype parameter, 654, 714
must be constant expression, 655
type requirements, 655

scope, 668
template argument deduction, 680
type parameter, 654, 654, 714

as friend, 666
used in template class, 660

template parameter pack, 699, 714
expansion, 703
pattern, 703

template specialization, 707, 706–712, 714
class template, 709–712
class template member, 711
compare function template, 706
compared to overloading, 708
declaration dependencies, 708
function template, 707
hash<key_type>, 709, 788
headers, 708
of namespace member, 709, 788
partial, class template, 711, 714
scope, 708
template<>, 707

template<>
default template argument, 671
template specialization, 707

temporary, 62, 80
terminate function, 773, 818

exception handling, 196, 200
machine-dependent, 196

terminology
const reference, 61
iterator, 109
object, 42
overloaded new and delete, 822

test, bitset, 727
TextQuery, 485

class definition, 487
constructor, 488
main program, 486
program design, 485
query, 489
revisited, 635
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this pointer, 257, 306
static members, 301
as argument, 266
in return, 260
overloaded

on const, 276
on lvalue or rvalue reference, 546

throw, 193, 193, 200, 772, 818
execution flow, 196, 773
pointer to local object, 774
rethrow, 776, 818
runtime_error, 194

throw(), exception specification, 780
tie member, ostream, 315
to_string, 368
Token, 849

assignment operators, 850
copy control, 851
copyUnion, 851
default constructor, 850
discriminant, 850

tolower, 92
top

priority_queue, 371
stack, 371

top-level const, 64, 80
and auto, 69
argument and parameter, 212
decltype, 71
parameter, 232
template argument deduction, 679

toupper, 92
ToyAnimal, virtual base class, 815
trailing return type, 229, 252

function template, 684
lambda expression, 396
pointer to array, 229
pointer to function, 250

transform
algorithm, 396, 874
program, 442

translation unit, 4
trunc (file mode), 319
try block, 193, 194, 200, 773, 818
tuple, 718, 770

findBook, program, 721
equality and relational operators, 720
header, 718
initialization, 718
make_tuple, 718
return value, 721

value initialization, 718
type

alias, 67, 80
template, 666

alias declaration, 68
arithmetic, 32, 78
built-in, 2, 26, 32–34
checking, 46, 80

argument and parameter, 203
array reference parameter, 217
function return value, 223
name lookup, 235

class, 19, 26
compound, 50, 50–58, 78
conversion, see conversion
dynamic, 601, 650
incomplete, 279, 306
integral, 32, 79
literal, 66

class type, 299
specifier, 41, 80
static, 601, 650

type alias declaration, 68, 78, 80
pointer, to array, 229
pointer to function, 249
pointer to member, 839
template type, 666

type independence, algorithms, 377
type member, class, 271
type parameter, see template parameter
type transformation templates, 684, 714

type_traits, 685
type_info, 864

header, 197
name, 831
no copy or assign, 831
operations, 831
returned from typeid, 827

type_traits
header, 684
remove_pointer, 685
remove_reference, 684

and move, 691
type transformation templates, 685

typedef, 67, 80
const, 68
and pointer, to const, 68
pointer, to array, 229
pointer to function, 249

typeid operator, 826, 827, 864
returns type_info, 827
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typeinfo header, 826, 827, 831
typename

compared to class, 654
required for type member, 670
template parameter, 654

U
unary operators, 134, 169

overloaded operator, 552
unary predicate, 386, 418
unary_function deprecated, 579
uncaught exception, 773
undefined behavior, 35, 80

base class destructor not virtual, 622
bitwise operators and signed values,

153
caching end() iterator, 355
cstring functions, 122
dangling pointer, 463
default initialized members of built-

in type, 263
delete of invalid pointer, 460
destination sequence too small, 382
element access empty container, 346
invalidated iterator, 107, 353
missing return statement, 224
misuse of smart pointer get, 466
omitting []when deleting array, 479
operand order of evaluation, 138, 149
out-of-range subscript, 93
out-of-range value assigned to signed

type, 35
overflow and underflow, 140
pointer casts, 163
pointer comparisons, 123
return reference or pointer to local

variable, 225
string invalid initializer, 361
uninitialized

dynamic object, 458
local variable, 205
pointer, 54
variable, 45

using unconstructed memory, 482
using unmatched match object, 737
writing to a const object, 163
wrong deleter with smart pointer, 480

underflow_error, 197
unformatted IO, 761, 770

istream, 761

multi-byte, istream, 763
single-byte, istream, 761

unget, istream, 761
uniform_int_distribution, 746
uniform_real_distribution, 750
uninitialized, 8, 28, 44, 80

pointer, undefined behavior, 54
variable, undefined behavior, 45

uninitialized_copy, 483
move iterator, 543

uninitialized_fill, 483
union, 847, 864

anonymous, 848, 862
class type member, 848

assignment operators, 850
copy control, 851
default constructor, 850
deleted copy control, 849
placement new, 851

definition, 848
discriminant, 850
restrictions, 847

unique, 384, 878
list and forward_list, 415

unique_copy, 403, 878
unique_ptr, 450, 470–472, 491

* (dereference), 451
copy and assignment, 470
definition, 470, 472
deleter, 472, 491

bound at compile time, 678
dynamically allocated array, 479
initialization, 470
pitfalls, 469
release, 470
reset, 470
return value, 471
transfer ownership, 470
with new, 470

unitbuf, manipulator, 315
unnamed namespace, 791, 818

local to file, 791
replace file static, 792

unordered container, 443, 448
see also container
see also associative container
bucket management, 444
hash<key_type> specialization, 709,

788
compatible with == (equality), 710

key_type requirements, 445
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override default hash, 446
unordered_map, 448

see also unordered container
* (dereference), 429
[ ] (subscript), 435, 448

adds element, 435
at, 435
definition, 423
header, 420
list initialization, 423
word_count program, 444

unordered_multimap, 448
see also unordered container
* (dereference), 429
definition, 423
has no subscript operator, 435
insert, 433
list initialization, 423

unordered_multiset, 448
see also unordered container
insert, 433
iterator, 429
list initialization, 423
override default hash, 446

unordered_set, 448
see also unordered container
header, 420
iterator, 429
list initialization, 423

unscoped enumeration, 832, 864
as union discriminant, 850
conversion to integer, 834
enum, 832

unsigned, 34, 80
char, 34
conversion, 36
conversion from signed, 34
conversion to signed, 160
literal (numU or numu), 41
size return type, 88

unsigned type, 34
unwinding, stack, 773, 818
upper_bound

algorithm, 873
ordered container, 438
used in Basket, 632

uppercase, manipulator, 755
use count, see reference count
user-defined conversion, see class type con-

version
user-defined header, 76–77

const and constexpr, 76
default argument, 238
function declaration, 207
#include, 21
inline function, 240
inlinemember function definition,

273
template definition, 656
template specialization, 708

using =, see type alias declaration
using declaration, 82, 132, 793, 818

access control, 615
not in header files, 83
overloaded function, 800
overloaded inherited functions, 621
scope, 793

using directive, 793, 818
overloaded function, 801
pitfalls, 795
scope, 793, 794

name collisions, 795
utility header, 426, 530, 533, 694

V
valid, program, 740
valid but unspecified, 537
valid pointer, 52
value initialization, 98, 132

dynamically allocated, object, 459
map subscript operator, 435
new[], 478
resize, 352
sequential container, 336
tuple, 718
uses default constructor, 293
vector, 98

value_type
associative container, 428, 448
sequential container, 333

valuelike class, copy control, 512
varargs, 222
variable, 8, 28, 41, 41–49, 80

const, 59
constexpr, 66
declaration, 45

class type, 294
define before use, 46
defined after label, 182, 192
definition, 41, 45
extern, 45
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extern and const, 60
initialization, 42, 43, 79
is lvalue, 533
lifetime, 204
local, 204, 252
preprocessor, 79

variadic template, 699, 714
declaration dependencies, 702
forwarding, 704

usage pattern, 706
function matching, 702
pack expansion, 702–704
parameter pack, 699
print program, 701
recursive function, 701
sizeof..., 700

vector, 96–105, 132, 373
see also container
see also sequential container
see also iterator
[ ] (subscript), 103, 132, 347
= (assignment), list initialization, 145
at, 348
capacity, 356
capacity program, 357
definition, 97
difference_type, 112
erase, changes container size, 385
header, 96, 329
initialization, 97–101, 334–337
initialization from array, 125
list initialization, 98, 336
memory management, 355
overview, 326
push_back, invalidates iterator, 354
random-access iterator, 412
reserve, 356
subscript range, 105
TextQuery class, 485
value initialization, 98, 336

viable function, 243, 252
see also function matching

virtual base class, 811, 818
ambiguities, 812
Bear, 812
class derivation list, 812
conversion, 812
derived class constructor, 813
iostream, 810
name lookup, 812
order of destruction, 815

order of initialization, 814
ostream, 810
Raccoon, 812
ToyAnimal, 815
ZooAnimal, 811

virtual function, 592, 595, 603–610, 650
compared to run-time type identifi-

cation, 829
default argument, 607
derived class, 596
destructor, 622
exception specification, 781
final specifier, 607
in constructor, destructor, 627
multiple inheritance, 807
overloaded function, 621
override, 595, 650
override specifier, 593, 596, 606
overriding run-time binding, 607
overview, 595
pure, 609
resolved at run time, 604, 605
return type, 606
scope, 620
type-sensitive equality, 829

virtual inheritance, see virtual base class
Visual Studio, 5
void, 32, 80

return type, 223
void*, 56, 80

conversion from pointer, 161
volatile, 856, 864

pointer, 856
synthesized copy-control members,

857
vowel counting, program, 179

W
wcerr, 311
wchar_t, 33

literal, 40
wchar_t streams, 311
wcin, 311
wcout, 311
weak ordering, strict, 448
weak_ptr, 450, 473–475, 491

definition, 473
initialization, 473
lock, 473
StrBlobPtr, 474
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938 Index

wfstream, 311
what, exception, 195, 782
while statement, 11, 28, 183, 183–185, 200

condition, 12, 183
wide character streams, 311
wifstream, 311
window, console, 6
Window_mgr, 279
wiostream, 311
wistream, 311
wistringstream, 311
wofstream, 311
word, 33, 80
word_count program

map, 421
set, 422
unordered_map, 444

word_transform program, 441
WordQuery, 637, 642
wostream, 311
wostringstream, 311
wregex, 733
write, ostream, 763
wstringstream, 311

X
\Xnnn (hexadecimal escape sequence), 39

Z
ZooAnimal

program, 802
virtual base class, 811
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